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ABSTRACT

Despite their simplicity, scalar threshold operators effec-
tively remove additive white Gaussian noise from wavelet
detail coefficients of many practical signals. This paper ex-
plores the use of multivariate estimators that are almost as
simple as scalar threshold operators. Şendur and Selesnick
have recently shown the effectiveness of joint threshold es-
timation of parent and child wavelet coefficients. This pa-
per discusses analogous results in two situations. With a
frame representation, a simple joint threshold estimator is
derived and it is shown that its generalization is equivalent
to a type of �1-regularized denoising. Then, for the case
where multiple independent noisy observations are avail-
able, the counter-intuitive results by Chang, Yu, and Vetterli
on combining averaging and thresholding are explained as
a fortuitous consequence of randomization.

1. INTRODUCTION

Consider the problem of estimating a random vector x from
a noisy observation

y = x + n (1)

where the joint distribution of the signal x ∈ R
N and noise

n ∈ R
N is known. In principle, one can use the maximum a

posteriori probability (MAP) or minimum mean-squared er-
ror (MMSE) criterion to determine a function g to generate
estimates through x̂ = g(y). The problem, of course, is that
g may be very difficult to determine or apply. Henceforth
we make the standard assumption that n is independent of
x and has the i.i.d. Gaussian distribution N (0, σ2IN ); but
this does not change the fact that an optimal estimator can
be difficult to determine.

To reduce the complexity of the estimation procedure,
one may require that g lie in a class of simple functions.
For example, it is well known that one can require g to be
a linear function and still obtain optimal (MAP or MMSE)
estimates when the signal is Gaussian. Similarly, when the
components of x are independent Laplacian random vari-
ables, the MAP estimate is obtained with component-wise
soft thresholding of y. In this work, we explore situations

where there are interesting estimators that are more compli-
cated than acting component-wise (scalar), but have a sim-
ple and similar structure.

For review and motivation, scalar thresholding and a re-
cent bivariate method [6] are discussed in Section 2. Then,
in Section 3, a model motivated by the overcomplete expan-
sion of signal is given. In a bivariate situation, this leads to
a simple vector threshold estimator. More generally, this
gives a new interpretation to a recent maximum entropy
method [5]. Finally, we consider the case where x1 = x2 =
· · · = xN , i.e., there are multiple noisy observations of a
single random quantity. We demonstrate that the optimal
estimate must be expressible as a function of N −1

∑N
i=1 yi

and reconcile this fact with the conclusions of [2].

2. MAP ESTIMATORS AND THRESHOLDS

Consider first the scalar (N = 1) version of (1) where x has
the Laplacian distribution with zero mean, i.e., let x have
probability density function fx(x) = 1

2λe−λ|x|. A straight-
forward calculation shows that the MAP estimate of x from
y is given by the standard soft-thresholding operator

Λρ(y) =
{

y − sgn(y) · ρ if |y| > ρ;
0 otherwise,

(2)

with threshold ρ = λσ2. The MMSE estimate has a more
complicated closed form, but is also approximated by a soft
threshold operator. The two estimators are shown in Fig. 1
for λ = 1 and σ = 1.

Empirically, it is reasonable to model the (detail) wavelet
coefficients of images as independent Laplacian random
variables. Treating x in (1) as a vector of independent Lapla-
cian random variables allows the estimation procedure to
be broken down to N component-wise operations. Thus,
the ability to effectively estimate Laplacian signals with the
estimator (2) provides a basic justification for thresholding
wavelet detail coefficients as a denoising method for im-
ages. (More mathematical justifications based on signal
smoothness classes are given in [4].)

One source of significant improvement in image denois-
ing over the basic wavelet thresholding of [4] is to use spa-
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Fig. 1. MAP and MMSE estimates of a Laplacian signal.

tially adapted thresholds as in [1]. Although this makes the
denoising operation not component-wise separable in the
wavelet domain, this is not what we refer to as vector thresh-
olding; information across subbands and from the spatial
neighborhood is used to adjust the threshold ρ but not to
change the argument to the threshold function Λ ρ.

One method for vector thresholding is due to Şendur
and Selesnick [6]. They consider a detail coefficient with
its parent and use a density model where these are not inde-
pendent. Then, they derive the MAP estimate for the detail
coefficient given the noisy detail coefficient and noisy par-
ent coefficient. This estimate has the qualitative aspects that
make it a vector threshold operator applied to two-tuple.

3. MAP ESTIMATION OF VECTORS

When one uses nonorthogonal transformations—including
overcomplete transformations—on a noisy signal, the noise
components are dependent. One can exploit this depen-
dence in estimation even when no specific form of signal
dependence is assumed.

For example, consider our estimation problem with N =
2 and let the non-orthogonal transform matrix T be given by

T =
[

1 a
a 1

]

for some constant a. Let X = Tx and Y = Ty be the trans-
forms of the true and noisy vectors. A simple signal model
that can be reasonably validated for detail coefficients of im-
ages is for X1 and X2 to be i.i.d. Laplacian variables. Fig. 2
plots the MAP estimate of the component X1 as a function
of Y1 and Y2 for the case when a = 0.5. It can be seen that
X1 is a threshold-like function of Y1, but with a dependence
on Y2. The value a = 0.5 is motivated, for example, by the
approximate correlation between a Daubechies highpass fil-
ter and its shift by one. (The orthogonality property holds
for even shifts.)

The remainder of this section connects this type of thresh-
olding that operates jointly over the components with the
“maximum entropy” (MAXENT) method developed by Ish-
war and Moulin [5] and gives further examples.
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Fig. 2. Two-dimensional MAP estimate with a non-
orthogonal transform T . Qualitatively, it has the form of
a soft threshold applied to a linear combination of Y1 and
Y2, with small weight on Y2.

3.1. Maximum Entropy Method

The MAXENT approach provides a systematic way to com-
bine information from several wavelet bases. We will see
that it exhibits a number of “threshold-like” phenomena.

A simplified version is as follows: Take (1) to be in
time domain. The wavelet transform of x is modeled by an
M ×N matrix T . In the single-basis problem, M ≤ N and
T would represent the transform to the detail coefficients
of the wavelet transform in a single basis. For the multiba-
sis problem, we can take T = [T T

1 · · · T T
K ]T , where the

Tk’s are transforms to the detail coefficients in K different
wavelet bases.

Given a transform matrix T , the MAXENT method as-
sumes a prior distribution, f(x), on the unknown signal x,
of the form,

f(x) = C exp(−λ‖Tx‖p
p) (3)

where p ≥ 1, C and λ are constants and ‖ · ‖p represents
the p-norm. The MAXENT method then estimates x from
y by the standard maximum a posteriori (MAP) estimate
arg maxx f(x|y). Using the Gaussian distribution on n, the
MAP estimate can be rewritten as

x̂ = argmin
x

[‖y − x‖2
2 + 2σ2λ‖Tx‖p

p

]
. (4)

To motivate the prior distribution f(x) above, note that
f(x) is a product of Generalized Gaussian distributions on
the components of Tx. In general, the exponent p of the
distribution is selected such that p < 2, making the distribu-
tions “heavy-tailed”. The heavy-tailed distribution models
that the distribution of the detail coefficients of the wavelet
transform of images tends to be sparse. Using the product
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Fig. 3. MAXENT denoising of a chirp signal. Top: True
and noisy signal (SNR=11.5 dB). Middle: True signal and
estimate (SNR=19.0 dB). SNR with single-basis denoising
is 14.3 dB and with cycle spinning is 14.8 dB. Bottom: De-
tail coefficients of the true signal and the estimate.

distribution models the wavelet coefficients as if they were
independent, although, when the transform matrix T is tall,
it is impossible for the components of Tx to be indepen-
dent. Nevertheless, it is shown in [5] that the product dis-
tribution on the components of Tx is the maximum entropy
distribution under a certain constraint on the pth moment
E‖Tx‖p

p. Information theoretically, the maximum entropy
distribution is a “maximally noncommittal” distribution in
the sense that it makes minimal assumptions on the rela-
tionship between components of Tx.

3.2. Single Basis MAXENT Estimation

In the case of a single wavelet basis, the MAXENT method
reduces to the classical wavelet threshold denoising. To see
this, let W be an N × N matrix representing an orthogonal
wavelet transform, and partition W into Ts and Td to pro-
duce the scaling and detail components, respectively. In (4),
if we take p = 1 and T = Td and use the orthogonality of
W , the MAXENT estimate reduces to

x̂ = T T
s Tsy + T T

d Λρ(Tdy), (5)

where Λρ is as given in (2) and ρ = λσ2. The estima-
tor in (5) is precisely the standard soft-threshold estimate
of x given y. The estimate is the sum of the scaling com-
ponents of the noisy signal, along with thresholded detail
coefficients.

3.3. Shift-Invariant Denoising Example

Now consider the use of MAXENT estimation for shift-
invariant denoising. The wavelet transform is not in gen-

eral shift-invariant. Consequently, different estimates can
be obtained by shifting the noisy signal, applying standard
wavelet thresholding and shifting the estimate back. If the
wavelet transform has J stages, one can obtain up to 2J dif-
ferent estimates in this manner. In [3], Donoho and John-
stone propose a method called “cycle spinning” which sim-
ply averages these 2J estimates.

MAXENT estimation provides an alternative way to
combine the information from the different shifts. It is not
difficult to see that the components from the different shifts
of the noisy signal can be obtained from performing a single
wavelet transform without any decimation. Given an N -
length input signal, the undecimated wavelet transform will
result in (J + 1)N coefficients, JN of which will be detail
coefficients. To use the MAXENT method above, we can
let x and y be the true and noisy time-domain signals and
let T be the JN × N matrix representing the undecimated
transform for the detail coefficients.

Consider denoising the chirp signal x[t] shown in the
top panel in Fig. 3. For simplicity, we use a single-stage
wavelet transform with the Daubechies D4 filter pair. The
MAXENT estimate was found by solving (4) with p = 1,
using quadratic programming to perform the minimization.

A chirp signal is not a natural candidate for wavelet
thresholding since it does not have any sharp discontinu-
ities. Indeed, the bottom panel of Fig. 3 shows the undeci-
mated detail coefficients of the signal, and we can see that
the signal is not sparse in the wavelet domain. Nevertheless,
we see two interesting phenomena. Firstly, the MAXENT
estimate is able to denoise the signal well in comparison
to single-basis denoising and cycle spinning. Secondly, as
shown in the bottom panel of Fig. 3, although the true signal
is not sparse in the wavelet domain, the MAXENT estima-
tor finds an estimate that is sparse. In this sense, the MAX-
ENT estimate can be seen as a vector thresholding operation
which zeros out most coefficients while preserving the key
components to model the signal.

4. ESTIMATION FROM MULTIPLE
OBSERVATIONS

Now suppose that in (1) we have x1 Laplacian and x1 =
x2 = · · · = xN , i.e., N noisy observations of the same ran-
dom variable. A paper by Chang et al. [2] optimizes and
compares two methods: (a) averaging the observations (the
yis) and then applying a soft threshold; and (b) applying a
soft threshold separately to each observation and then av-
eraging. The main result of [2] is that the choice between
these methods that gives lower mean-squared error (MSE)
depends on the number of observations and the input signal-
to-noise ratio (SNR). Specifically, choice (b) is superior
when N = 2, 3, or 4, and the SNR is larger than 0 dB.

We will presently describe why we consider the supe-



riority of method (b) to be counterintuitive. Then we will
explain the performance of method (b). This explanation
suggests how to design vector threshold functions that will
give small improvements over method (b). For notational
convenience, we consider only the case of N = 2.

The estimates in [2] are the average of thresholds

x̂AT = 1
2 (ΛρAT(y1) + ΛρAT(y2))

and the threshold of averages

x̂TA = ΛρTA

(
1
2 (y1 + y2)

)
.

The latter seems unfounded because all of the information
about x in the vector (y1, y2) is contained in the average
1
2 (y1 +y2). To understand why, consider the transformation
to sum s and difference d:

s = y1 + y2 = 2x1 + n1 + n2

d = y1 − y2 = n1 − n2.

Since n1 and n2 are i.i.d. Gaussian, n1 + n2 and n1 − n2

are independent; thus, d is independent of x1. Thus, the
optimal estimate under any criterion (e.g., MAP or MMSE)
is a function of s alone, independent of d. However, this
does not mean that optimizing over a constrained set of es-
timation functions of s (e.g., optimizing Λρ(1

2s) over ρ) will
always give the best estimate.

With careful consideration of the nine regimes created
by yi ∈ (−∞,−ρ), [−ρ, ρ], or (ρ,∞), i = 1, 2, one can
write x̂AT as a function of s and d. For s > 2ρ,

x̂AT =




1
2s − ρ, |d| < s − 2ρ;
1
4s + 1

4 |d| − 1
2ρ, |d| ∈ [s − 2ρ, s + 2ρ];

1
2s, |d| > s + 2ρ.

(6)
For s ∈ [0, 2ρ],

x̂AT =




0, |d| < 2ρ − s;
1
4s + 1

4 |d| − 1
2ρ, |d| ∈ [2ρ − s, 2ρ + s];

1
2s, |d| > 2ρ + s.

(7)
This can easily be extended for s < 0. Note that d in (6)–
(7) need not be derived from the observations; the results are
identical in distribution if d is generated randomly, indepen-
dent of the observations, with the N (0, 2σ2) distribution.

In (6)–(7), x̂AT is not a simple, threshold-like function
of s. The strategy of thresholding first and then averaging
uses the otherwise irrelevant value of d to randomize the
choice of x̂AT so as to soften the transition of the threshold
function. In particular, when ρ is chosen optimally, µ(s) =
E[x̂AT|s] can be a better match to the MMSE estimate given
1
2s (see Fig. 1) than ΛρTA(1

2s) for any ρTA. However, the
bias reduction caused by the randomization comes with a
variance E[(x̂AT−µ(s))2|s]. The latter offsets the potential
advantage of a smoother estimator.
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Fig. 4. Functions for estimating a Laplacian signal from two
noisy observations. (Each is an odd function of s.)

Consider a unit-variance source, i.e., λ =
√

2, and noise
variance σ2 = 9

16 . According to [2, Fig. 1], these values ap-
proximately maximize the advantage of x̂AT over x̂TA. By
numerical search, one can determine that ρTA ≈ 0.2962 and
ρAT ≈ 0.3476 are MSE-minimizing values. With these pa-
rameter choices, Fig. 4 compares the MMSE estimate given
s to the estimate x̂TA and the expected value of the estimate
x̂AT given s. The latter is a closer match to the MMSE esti-
mate, but this is offset by the variance of x̂AT|s so that x̂AT

is only slightly superior to x̂TA. A vector threshold function
can improve upon x̂AT by reducing the variance.
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