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ABSTRACT 
Due to constraints in cost, power, and communication, losses 
often arise in large sensor networks. The sensor can be mod- 
eled as an output of a linear stochastic system with random 
losses of the sensor output samples. This paper considers 
the general problem of state estimation for jump linear sys- 
tems where the discrete transitions are modeled as a Markov 
chain. Among other applications, this rich model can be 
used to analyze sensor networks. The sensor loss events are 
then modeled as Markov processes. Under the jump linear 
system model, many types of underlying losses can be easily 
considered, and the optimal estimator to be performed at 
the receiver in the presence of missing sensor data samples 
is given by a standard time-varying Kalman filter. 

We show that the asymptotic average estimation error 
variance converges and is given by a Linear Matrix Inequal- 
ity, which can be easily solved. Under this framework, any 
arbitrary Markov loss process can be modeled, and its av- 
erage asymptotic error variance can be directly computed. 
We include a few illustrative examples including fixed-length 
burst errors, a two-state model, and partial losses due to 
multiple SNR states. Our analysis encompasses modeling 
discrete changes not only in the received data as stated 
above, but also in the underlying system. In the context 
of the lossy sensor model, the former allows for variation 
in sensor positioning, power control, and loss of data com- 
munications; the latter could allow for discrete changes in 
the dynamics of the variable monitored by the sensor. This 
freedom in modeling yields a tool that is potentially valuable 
in various scenarios in which entities that share information 
are subjected to challenging and time-varying network con- 
ditions. 

Categories and Subject Descriptors 
H. l . l  [Systems and Information Theory]: General sys- 
tems theory 
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1. INTRODUCTION 
The possibility of deploying small, cheap, networked sen- 

sors in large numbers is a relatively recent concept and yet 
has inspired an extraordinary amount of research [24]. One 
reason for this is that the range of research contributions 
that pertain in some way to sensor networks is vast. For 
example, it includes a variety of issues related to building 
sensors (miniaturization, ruggedization, improving measure- 
ment and communication abilities, lowering power consump- 
tion, etc.), to the communication between sensors and other 
network nodes (ad hoc networking, fault tolerance, schedul- 
ing, multi-terminal information theory, etc.), and to using 
data collected by a sensor network (estimation, inference, 
classification, hypothesis testing, etc.). 

This paper addresses centralized estimation of a time- 
varying real vector from the measurements made at sen- 
sors distributed across a network, where those measurements 
are subject to communication loss and to degradation from 
sensor noise and quantization. In particular, we provide a 
computational framework for estimating the asymptotic es- 
timation error variance without resorting to stochastic sim- 
ulation. A straightforward application of this framework 
provides a sensor network system designer with an efficient 
means to see the effects of communication reliability and 
sensor resolution on estimation quality. It may also be use- 
ful in optimizing sensor density and placement. Of course, 
sensor networks are not the only place where such estima- 
tion problems arise, but we emphasize these applications for 
these Proceedings. Another application is discussed briefly 
in our concluding comments. 

1.1 Estimation with Physical Dynamics 
In our sensor network model, “messages” are sent from 

sensors to data collection nodes. Each data collection node 
is attempting to estimate a real vector quantity from the 
messages. The data collection nodes operate independently, 
so we henceforth consider just one node. Our interest is 
in relating the physical dynamzcs of the measured quantity 
and the communzcataon relzabzlzty of the network to  the qual- 
ity of estimate that is obtained, with great generality. We 
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propose to use a fairly rich set of models for the physical 
process-jump linear systems. Jump linear systems are de- 
scribed formally in Section 5;  informally, a jump linear sys- 
tem is a linear, time-varying system in which the dynamics 
of the system “jump” between discrete states, within any 
one discrete state the system is linear and time invariant, 
and the transition between states satisfy the Markov prop- 
erty. For jump linear systems we study the mean-squared 
error (MSE) of optimal estimators when the measurements 
are subject to various types of degradations. 

A contrasting approach, which is more information- 
theoretic in style, is to design the transmission strategy 
jointly for all the sensors to optimize the estimation [13].’ 
While this alternative is promising, we address instead the 
traditional system architectures with separation between an 
application/data layer vs. a channel/network layer. Thus 
far, nonstationary signal models have not been incorporated 
into the communication-centric approach; conversely, our 
approach applies for autoregressive models with Markov 
regimes. 

The communication between sensors and data collection 
nodes in a sensor network is usually erratic. This may be 
due to  time-variation in sensor positions or the communi- 
cation media, or allocating power and bandwidth sufficient 
for transparent, lossless communication may be inefficient. 
I t  may also be caused by sensors turning themselves off to 
conserve energy or by device failures. Sensor network com- 
munication models-which may include, for example, mea- 
surement losses with various correlations-prompt the de- 
velopment of our new estimation results. The theoretical 
context for this work comes from the theory of stochastic 
linear systems [16]. This field provides a large repository of 
results to build upon; however, the most attention has been 
focused on control rather than estzmatzon and contznuous 
tzme rather than dzscrete tzme-the duals of what we are 
most interested in. In particular, an attractive feature of 
our model is that the dual problem of control of jump linear 
systems has been extensively analyzed. Our approach also 
makes extensive use of a convex programming method based 
on linear matrix inequalities (LMIs), a technique widely used 
in control [2]. 

1.2 Overview and Paper Structure 
The initial contribution of this paper is to demonstrate 

that jump linear systems are a good modeling framework for 
estimation problems that arise with measurements subject 
to various sorts of Markov degradation processes. Then, the 
main contribution is to show how to relate the state estima- 
tion error covariance and output estimation error variance 
of these systems to a constrained optimization with LMIs. 
These optimization problems can be numerically solved very 
efficiently and in some cases solved symbolically. One appli- 
cation of this work could be to optimize source and channel 
coding rates in a sensor network according to an error vari- 
ance criterion. 

This paper is structured as follows: First, previous work 
is outlined in Section 2. The state-space signal model and 
overall system model are given in Section 3, followed by a 
review of optimal estimation in Section 4. The Markov loss 
model described in Section 5 is central to the development 

‘While the transmissions of sensors are designed for a global 
criterion, communication between sensors may or may not 
be present. 

because it turns the overall system into a Markov jump lin- 
ear system. Several examples are given. Section 6 then gives 
the main results of the paper, which are characterizations of 
the asymptotic state estimation error covariance and out- 
put estimation error variance in terms of LMIs. Numerical 
examples are given in Section 7. 

2. PREVIOUS WORK 
Jump linear systems have been studied extensively in the 

field of systems and control and a. bit less so in signal process- 
ing. A continuous-time quadratic jump linear control prob- 
lem appeared as early as the 1960s in the work of Krasovskii 
and Lidskii [14]. Sworder [22] and Wonham [23] provided 
early solutions to the problem using optimal control and dy- 
namic programming methods. Since then, numerous exten- 
sions have been considered. In particular, the discrete-time 
control problem is examined in several papers including [3, 
6, 5, 7, 181. The solution presented in [3, 5 ,  71 is based on a 
coupled versions of the standard Riccati equation arising in 
optimal control of LTI systems (see, for example, [8]). LMI 
solutions to  the coupled Riccati equations were developed 
in [6] and [18]. 

In this paper, we consider the jump linear state estimation 
problem which, mathematically, is the dual of the state- 
feedback control problem. We exploit this duality to derive 
the main result of this paper, Theorem 1, which presents an 
LMI similar to that in [6]. 

Jump linear system state estimation is also considered 
in [l, 4,9,  10, 11, 15, 171. However, these papers consider the 
more difficult problem of estimating both the linear system 
state and the discrete Markov state from a noisy output. 
In this paper, the Markov state is assumed to be known, 
and we compute the average estimation error of the Kalman 
filter. While the problem we look at is easier, the focus is 
not on presenting estimation methods but rather on being 
able to efficiently compute or approximate the perfonnance 
of optimal estimators. 

As for sensor modeling, the use of Kalman filtering to han- 
dle sensors has been proposed for vehicular sensors in [19] 
and sensor network problems in [20]. A jump linear system 
model with Markov sensor errors is presented in [21]. The 
paper [20] provides an LMI analysis, but only for the case 
of independent and identically distributed (i.i.d.) sensor era- 
sures. This paper can be seen as an extension of this LMI 
analysis to more general signal models and general Markov 
error models. 

3. STATE-SPACE SENSOR MODELING: 
STATIONARY SIGNAL CASE 

We consider the lossy sensor system in Fig. l (a) .  The sig- 
nal detected by the sensor is denoted z ( k ) .  All signals are in 
discrete time. The sensor produces an output yo(k), which 
may differ from z ( k )  due to sensor noise and other sensor 
imperfections. The sensor output samples are transmitted 
over a lossy channel, which can result in sample erasures. 
A receiver receives the channels y(k) and must estimate the 
original signal z ( k )  from whatever it receives. The estimator 
must account for the sensor imperfections and any losses in 
the channel. The estimator output is denoted 2(k ) .  

The signal of interest, z ( k ) ,  is modeled as a correlated 
random process. The process correlations are assumed to 
be known at the receiver and can be exploited to estimate 
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Sensor Network Data collection node 

(a) System model (b) Signal generation model 

Figure 1: (a) Overall system model. Desired signal z ( k )  is observed by a sensor that generates yo(k). The 
network is abstracted as an erasure channel that passes y ( k )  to the data collection node. The result of 
estimation is denoted Z(k) .  (b) Signal generation model whereby z ( k )  is a filtered version of white noise w,(k). 
The state-space model (A, ,  B,,C,, 0,) is also denoted as H,. 

z ( k )  from the lossy sensor samples. Specifically, we use the 
standard and general model whereby z ( k )  is assumed to 
be filtered white noise. This abstract model is shown in 
Fig. l (b) ,  where w, (k )  is unit variance noise and H,  is a 
linear time-invariant filter. Any finite-order wide-sense sta- 
tionary process can be represented in such a manner with an 
appropriate choice of H,; consequently, this model is widely- 
used. Typically, z ( k )  is assumed to be slowly-varying, and 
H ,  is selected to be low-pass with a cutoff frequency with 
appropriate bandwidth. An example is illustrated in the 
numerical examples at the end of the paper. 

The filter H,  can itself be described in numerous ways. 
For the purposes of this paper, it will be most convenient to 
represent H,  in state space form as in Fig. l (b) :  

where z , ( k )  is the system state and the state-space matrices 
(A,, B,, C,, 0,) describe the filter H,. 

Turning to the sensor, we model the sensor as a linear 
gain with additive noise. Specifically, we assume that 

where w,(k)  is unit-variance white noise, C, is a linear gain 
term, and D,  is a noise scaling term depending on the sensor 
noise variance. The resulting sensor noise variance is DsD:.  
The sensor noise w,(k) is assumed to account for sensor 
errors and any finite resolution (quantization) and compres- 
sion effects. The sensor noise is shown in the abstract model 
in Fig. l(b) as a random input to the sensor. 

Finally, for the channel, channel losses are modeled as 
sample erasures. That is, each sample yo(k) is either re- 
ceived perfectly or completely lost and unavailable to the 
receiver: 

(3 )  
if sample k is not lost; 
if sample k is lost. y ( k )  = { r(k) 

This erasure model is well-suited for digital communication 
of the sensor data where the samples yo(k) are digitally en- 

coded and transmitted, and channel losses result in complete 
losses of the digital data for one or more samples. 

Example: A simple example of this framework could 
have 

A, = a E (0 , l )  

c, = 1 
D ,  = 0 
c, = 1 
D,  = un E R ,  

B, = (1 - a2)1’2u, E R 

which represents a first-order autoregressive signal z ( k )  with 
total power Elz(lc)12 = U;. The parameter a determines the 
correlation of the process z(lc): A process with a = 0.95 
would be slowly varying and a process with a = 0.6 would 
vary more quickly. The parameter U: is the sensor noise 
power, so the sensor SNR is a:/a:. 

Note: In Section 5, we extend the signal model by re- 
placing the linear, time-invariant system H,  with a jump 
linear system, i.e., a system whose state includes an M-state 
Markov chain and a potentially different (A, ,  B,, C,, 0,) for 
each state. We avoid that additional complication at  present 
to simplify the notation in Section 4. 

4. KALMAN FILTERING AND 
ESTIMATION REVIEW 

In the previous section, the receiver must estimate the 
sensor input z ( k )  from the lossy channel output y(k) .  The 
main motivation for the linear state-space modeling is that 
the optimal estimator is given by a standard Kalman filter. 
The Kalman filter is classical and described in numerous 
texts such as [16]. 

The Kalman filter provides a recursive method for com- 
puting the minimum mean square error (MMSE) estimates 
of the state z , ( k )  and output z ( k )  from the output y(k). 
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The MMSE estimates are the conditional expectations 
A 

(4) 
~ o p t ( k  I k-1)  
Z p t ( k  I k-1) = E(z(k) I y,”’), 

=. E(xc,(k) I Y?), 

where denotes the subsequence y(O), y(l) ,  . . . , y(k-1). 
That is, the estimates Zopt(k I IC - 1) and Zopt(IC I k -  1) are 
the MMSE estimates of the state z , ( k )  and sensor input 
z ( k )  given the output samples y( j )  up to time k-1. We use 
the subscript “opt” to indicate that these estimates are, by 
definition, the optimal estimates in the MMSE sense. Below, 
we will compare these estimates with certain suboptimal 
estimators. Let Popt(k I k - 1) denote the state estimation 
error covariance and Jopt(k 1 k -  1) the mean square output 
estimation error: 

To employ the Kalman filter in the lossy sensor problem, 
we first need to combine the signal model H,  and the sensor 
into a single state-space system. To this end, we define the 
joint noise vector 

w ( k )  = [w,(k)’ w*(k)’]’. 

Now, combining (1) with (2), we can write the signal z ( k )  
and sensor output y o ( k )  as outputs of a single state-space 
system: 

z (k+ l )  = Az(k) + B w ( k ) ,  
z ( k )  = ClZ(k) + DlW(k), ( 6 )  

yo(k) = C 2 z ( k )  + D2w(k) ,  

where 

A = A, 
B = [B, 01 
c1 = c, 
D1 = P z  01 

c2 = c,c, 
DZ = [CsDz Os]. 

Using this state space model, we can now state the standard 
Kalman filter equations. The reader is referred to [16] for 
derivations. 

The Kalman equations are recursive in that the state and 
error covariance estimates at each sample k depend on the 
estimates at the previous sample k - 1. In the sensor prob- 
lem, there are two cases for the updates, corresponding to 
whether the sample yo(k) is lost or not. If the sample is not 
lost, the state and state error covariance are updated with 
the equations 

Zopt(IC+l I k )  1 Afopt(k I k-1) 

Popt(k+l I k )  = A P o p t ( k  1 k-1)A’ + BB’ (7)  
+ L ( k ) ( y ( k )  - CzZopt(k I k - l ) ) ,  

- L(k)G(k)L(k), 
where 

Alternatively, if the sample k is lost, 

In both cases, the MMSE estimate for z ( k )  and the output 
error variance are given by 

(9) 
2obpt(lC I k - 1 )  = ClZopt(IC I k - l ) ,  
J o p t ( k  I k-1) = Tr [CiPopt(k 1 k-1)C; + DID;]. 

5. MARKOV LOSS MODEL 
The primary application of the framework of this paper 

is to quantify the effect of channel losses on the sensor es- 
timation error. To do this, we need a statistical model for 
the erasures on the channel. 

We model the erasures with a hzdden Markov model. That 
is, we assume that there is some Markov chain 

O ( k )  E (1, 2, . . . , M }  for k E Z 

such that the sample yo(k) is lost if and only if B(k)  E IloSs. 
II,,, is some subset of the discrete states (1, 2, . . . , M } .  We 
will let pz3 denote the transition probabilities 

(10) p,, = Pr(B(kf1) = j 1 e ( k )  = i ) .  

We will assume that the chain is aperiodic and irreducible, 
so that it admits a unique stationary distribution 

9% = Pr(B(k) = i ) ,  . (11) 

which is given by the unique solution to the equations 

M 

q3 = ~ Q ~ P , ~ ,  j = 1,2 , . .  . , M 
2=1 

The hidden Markov model is extremely general and can 
incorporate a wide range of loss processes. The modeling is 
best illustrated with some simple examples: 

e Independent losses: In this case, we use M = 2 states. 
One state, say B(k)  = 1, corresponds to  a loss of the 
sample yo(IC), and the other state B(k)  = 2 corresponds 
to a non-loss. If O(k)  is i.i.d., a loss probability of A 
can be represented with the transition probabilities 

Pl,l = p2,1 = 1 - p1,2 = 1 - p2,2 = A. 

The stationary distribution of the Markov chain is 

91 = 1 - q2 = A. (1’4 

Gilbert-Elliot losses: This loss model is identical to the 
model above, except that the transition probabilities 
are 

Pl,l = 1 -p1,2 = A1 
p2,1 = 1 -p2 ,2  = A2 

for some probabilities A 1  and X2. This provides a sim- 
ple model for correlated and bursty losses. The pa- 
rameter X2 represents the probability of going from 
the non-lossy to  the lossy state. Once in the lossy 
state, the system will remain in the lossy state an ex- 
ponentially distributed time with mean l / ( l -X~) .  The 
stationary distribution of the Markov chain is 

g 1 = 1 -  A2 

1 - A1 + Xz ’ 92 = 

The value of ql in (13) is the overall loss probability; 
it reduces to X for A1 = X p  = X as expected. (8)  

Popt(kt1 I k )  = AZopt(k I k-1) 
Popt(k+l I k )  = A P o p t ( k  I k-1)A’ + BB’. 
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Fzxed-length burst losses: As another example of burst 
losses, suppose that when losses occur, a fixed num- 
ber, L, consecutive samples of yo(k)  are lost. This 
differs from the Gilbert-Elliot model where the num- 
ber of samples lost at a time are random. Also, sup- 
pose that, on any given sample, an L-length burst loss 
occurs with some probability X > 0. To model this 
type of loss, we use an L + 1 state Markov chain, so 
that B ( k )  6 (1,. . . , L + 1). Again, we use one state, 
say e ( k )  = L + 1 to correspond to the state with no 
loss. In the other L states, e ( k )  = i indicates that the 
current sample is lost along with the i previous sam- 
ples in the L-length burst loss. Using these states, the 
transition probabilities for this chain are of the form 

Pz,l = A 
P,,,+l = 1 - A 

for i = 1 , .  . . , L  + 1, 
for i = 1 , .  . . , L ,  

PL+l,L+l = 1 - A, 

with all other transition probabilities equal to zero. 

The above are just a few examples. As described in [16], 
by appropriately discretizing the distribution, virtually any 
distribution on the number of losses can be modeled with 
enough states. 

The Markov loss process-and indeed many other model- 
ing possibilities-are captured by replacing the state space 
system (6) with the following jump linear system: 

z(k+l) == Ae(k ) z (k )  + Be(k )w(k ) ,  
z ( k )  = c e ( k ) , i x ( k )  + De(k),iw(k), (14) 
Y(k) CB(k),Zx(k) f DO(k),Zw(k). 

The particular case we have focused on has 

= A for all O ( k ) ,  

Be(lc) = B for all O(k) ,  

De(lc),l = DI for all Q ( k ) ,  
Ce(k),l  = C1 for all e ( k ) , .  

ce(k),2 = { fz for @ ( k )  @ 110ss;  

for B ( k )  E AoSs, 
DZ for B(k)  IloSs; 

for O(k) E 11,~~. { 0 
D e ( k ) , z  = 

Having a plurality of modes for the physical dynamics would 
give a new, larger discrete state space and, potentially, de- 
pendence on B(k)  for Ae(rc), Be(lc), Ce(k) , i ,  and De(rc),i. A 
set of sensor modes (e.g., different resolutions or quantiza- 
tions) would also increase the state space and multiply the 
possibilities for C ~ ( k ) , z  and D e ( k ) , z .  

6. LMI ASYMPTOTIC AVERAGE ERROR 
ANALYSIS 

6.1 Asymptotic Average Error 
In Section 4, the Kalman filter updates depend on which 

particular samples are lost, and the sample losses are in turn 
determined by the Markov parameter 8 ( k ) .  Consequently, 
since B(k) is a random process, the state estimation error 
covariance Popt(k I k - 1) and output estimation error vari- 
ance J ( k  1 k - 1) will also be random processes varying with 
e ( k ) .  This property will be true in a general jump linear sys- 
tem as well: the state and output estimation error variance 

will be time-varying quantities depending on the particular 
realization of the Markov parameter @ ( I C ) .  

The goal of this paper is to estimate the asymptotzc av- 
erage estimation error. For the general jump linear system 
(14), consider the state and output estimates 

(15) 
P o p t ( k  Jk-1) = E(z,(k) Iy;--',@), 
Zopt(k I k-1) = E ( z ( k )  I y?', e,"), 

which are identical to the estimates in (4), except that we 
have explicitly indicated the dependence of the estimates on 
B(k) .  As in the particular case of the sensor model example, 
the estimates f o p t ( k  I k-1) and Zopt(k I 
kmm) can be computed with a time-varying Kalman filter. 
Let Popt(k I k-1) denote the corresponding state estimation 
error covariance and Jopt(k 1 k -  1) the mean square output 
estimation error: 

Po,t(k I k-1) 

Jopt(k I k-1) = E [ I I Z ( ~ )  - ~opt(k)ii2 I eo"] . 
= E [ ( z z ( k )  - Zopt(k))(z,(k) - % p t ( k ) ) '  I eo"] , 

We define the asymptotic average state error covariance and 
mean square output error as 

- 
Popt = k i c c  lim E [Popt(k I k-l)] , 
- 
J o p t  = 2 L t E  [Jopt(k I k-I)] , (16) 

where the expectations are over the possible random tra- 
jectories e ( k ) .  Since Popt(k I k-1) is the state estimate co- 
variance conditional on Q ( 3 )  up to time j = k ,  it follows 
that 

Popt = lim E ( x ( k )  - Zopt(k I k-l))(z(k) - Zopt(k I k-1))'. 

That is, Popt is the asymptotic average minimal state vari- 
ance, averaging over both the noise w ( k )  and discrete state 
sequence O ( k ) .  Similarly, we define 

Jopt = lim Ellz(k) - 2&(k I k-l) l lz ,  

- 
k - m  

- 

k - m  

so Topt represents the average mean square output error. 
The limit as k + 03 in (16) is to eliminate transient effects 

of the initial conditions in either the Markov chain or linear 
state-space system. 

6.2 Suboptimal Estimator and LMI Analysis 
In general, it is difficult to compute the asymptotic aver- 

age errors, Popt and J o p t ,  exactly for the Kalman filter. In- 
stead, we consider a slightly suboptimal estimator for which 
we can compute the error easily through an LMI. The error 
of the suboptimal estimator will serve as an upper bound on 
the minimum error achieved by the Kalman filter. 

To this end, consider a state and output estimator of the 
form 

(17) 
Z(k + 1) = A Z ( k )  + ~ L ( y ( k )  - C,zZ(k)) ,  

q k )  = CzlP(k ) ,  

where i = B(k) .  The matrices L1, Lz, . . . , LM will be called 
the estimator gam rnatmces and represent adjustable pa- 
rameters. The estimator (17) is identical in form to the 
Kalman estimator in (7) except for these gain matrices. In 
the Kalman filter, the gain matrix L ( k )  in (7) is, in effect, a 
function of all the values of O ( j )  up to time j = k .  In the es- 
timator (17), L ( k )  is restricted to be a function only of the 
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current value of e ( k ) .  In this way, the class of estimators 
defined by (17) may be slightly suboptimal since it may not 
necessarily include the optimal Kalman estimator. 

The advantage of the estimator (17) is that it can be ana- 
lyzed and optimized easily using LMIs. We first analyze the 
performance of the estimator for a given set of gain matri- 
ces, L1, L2,. . . , L M .  The analysis in this case is standard: 
Define the state and output estimation error sequences 

e z ( k )  = z ( k )  - 2 ( k )  and 

Using this notation, the state and output estimation errors 
for the system (17) are given by 

P ( k )  = E [ ( ~ ( k )  - 2 ( k ) ) ( x ( k )  - 2(k))’]  

e,(k) = z ( k )  - 2(k ) .  

= E [ez (k )e z (k ) ’ ]  , 
J ( k )  = E [Ilz(k) - f(k)ll2] 

= E [lle&)1121 1 

and the corresponding asymptotic average values are 
- 
P = k - m  lim P ( k )  and J =  k-oo lim J ( k ) .  (18) 

Also, combining (17) and (14), we see that 

(19) 
e z ( k  + 1) = Aci , iez(k)  + Bcl , iw(k)  

e , (k)  = C i i e z ( k )  + D i l w ( k )  

where i = O(k) and the subscript “cl” is used to denote the 
“close-loop” matrices 

and 

Equations (19) show that the state and output error se- 
quences e z ( k )  and e,(k)  are themselves the state and output 
of a jump linear state-space system. The asymptotic errors 
in (18) are now given by the following standard LMI. 

A,l,i = Ai - L2Ci2 Bcl,i = Bi - LiDiz. 

LEMMA 1 ([SI). Consider the j u m p  linear system (14) 
and corresponding estimator (17) defined fo r  a set of gain 
matrices L I ,  L z ,  . . . , L M .  Then, the asymptotic mean-square 
output estimation error 7, defined in (18), is  given by 

M - 
J = min qiTr(CilpiC,’l + D , ~  oil) 

i=l 
where the minimization i s  over matrices 

P i 2 0 ,  i = l , 2  , . . . ,  A4 
satisfying the coupled Lyapunov inequalities 

Pa L Acl,zPiAL,i + Bc~,&,t, 

Pi = c p a j p 3 .  

(20)  
where 

M - 

j=1 

(Recall that the pis are the stationary distribution of the 
Markov chain 0 ( k ) . )  Also, i f  Pis are the minimizing ma- 
trices, the asymptotic state error covariance p ,  defined in 
(18), is  given by 

M - 
P = c q i p i .  

i=l 
If there is n o  feasible set of Pis satisfying the coupled Lya- 
punov inequalities (20), then the limits (18) do not converge. 

The minimization in Lemma 1 can be solved easily as an 
LMI in the variables Pi, thereby proiding 5 way of com- 
puting the asymptotic average errors P and J .  

The following lemma, which is also standard, provides 
an alternativeLM1 for computing 7. Although the state 
error variance P cannot be computed with this method, the 
method is useful in the next subsection. 

LEMMA 2 ( [ 6 ] ) .  Consider the jump linear system (14) 
and corresponding estimator (17) defined f o r  a set of gain 
matrices L1, L z ,  . . . , L M .  Then, the asymptotic mean-square 
output estimation error 7, defined in (18), i s  given by 

M - 
J = m i n x  qin(BL,i lQil3cl , i l  + D i l D i l )  

2=1 

where the minimization i s  over matrices 

Qi 2 0,  i = 1, 2,  . . . , M 

satisfying the coupled Lyapunov inequalities 

Qi L ALl,iBi&i,i + C,’,Cii, 
where 

M - 
Qi = pt3Qj .. 

j=1 

If there i s  no feasible set of Q i s  satisfying the coupled Lya- 
punov inequalities (Zl), then the limits (1 8) do not converge. 

6.3 Estimation Optimization and the 
LMI Upper Bound 

The previous subsections show how to compute the esti- 
mation error for the estimator (17) for a given set of gain 
matrices L1, L 2 , .  . . , L M .  In this subsection, we show how 
the optimal gain matrices can be found also using an LMI. 

The optimization is based on finding matrices Wi > 0 
satisfying the following coupled Riccati inequalities: 

where Wi is partitioned as 

and 
M 

.mi = pij wj. 
j=1  

We have the following theorem. 

THEOREM 1. Consider the j u m p  linear system (14). Sup- 
pose that there exist matrices Wi > 0 satisfying the coupled 
Riccati LMIs (22) and 

Li = - Wi;‘WiZ. 

Then, f o r  the estimator (17), the asymptotic mean square 
output error 7, defined in (18), is bounded by  

M - 
J 5 x q i T r ( [ B :  Di2] Wi [BI Di2]’) + Di lDi l .  (23) 

Conversely, i f  there exist matrices Li resulting in a n  asymp- 
totic mean square output error 5, there must exist matrices 

i=l 
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Wi 2 0 satisfying the coupled Riccati LMIs (22) and the 
upper bound (23). 

Theorem 1 shows that the optimal gain matrices Li for the 
estimator (17) can be found by minimizing the right hand 
side of (23) over the matrix variables Wi subject to Riccati 
LMIs (22). This minimization is an LMI. 

The theorem can also be used to bound the performance 
of the Kalman filter. Recall that the Kalman filter is the 
optimal estimator in MMSE sense. Therefore, for any gain 
matrices Li, the mean square output error J of the estimator 
(17) cannot be lower than the corresponding error J o p t  of 
the Kalman filter. That is, for all gain matrices Li, 

Combining this fact with Theorem 1, we have the following 
bound on the average error of the Kalman filter. 

COROLLARY 1. Consider the jump linear system (14) and 
corresponding Kalman filter. Then, if there exists matrices 
Wi > 0 satisfying the coupled Riccati LMIs (22), the Kalman 
filter asymptotic mean square output error Jopt in (16) is 
bounded by 

M - 
Jop t  5 qiTr([B: D:2] Wi [BI D:2]’) + DilD:l. 

i=l 

7. NUMERICAL EXAMPLES 
To demonstrate the types of calculations that can be made 

with this framework, we provide a simple example generated 
with the Gilbert-Elliot loss model. 

Following the notation in Section 3, we take the signal 
z(k) to be a low-pass Gaussian random process. To this 
end, we take H ( z )  to be a two-state Chebyshev filter with 
cutoff frequency of 0.2 times the sampling rate. The sensor 
noise is taken to be Gaussian and white with variance such 
that the SNR is 10 dB. We use the Gilbert-Elliot loss model 
described in Section 5. The loss probability parameters are 
varied with A1 E [0,1] and A2 = 1 - A f .  Under this assump- 
tion, A2 represents the loss probability. For each (A,,A2) 
pair, we run the Kalman filter on a randomly generated 
1000-sample trajectory and compute the average estimation 
error over the trajectory. This is compared to the upper 
bound provided by Theorem 1. The result is plotted in 
Fig. 2. The estimation error is plotted relative to the norm 
of the signal, in dB, as a function of XZ. As we can see, 
Theorem 1 in fact gives an upper bound. The LMI bound 
matches the simulated performance for XZ near 0 or near 1 
and is within 2 dB otherwise. 

The result of second set of computations is shown in Fig. 3. 
The signal model is unchanged, but now the channel is mod- 
eled as losing sensor measurements in bursts of length two. 
As before, for a large number of overall loss probabilities, we 
run the Kalman filter on a randomly generated 1000-sample 
trajectory and compute the average estimation error over 
the trajectory. This is compared to the upper bound pro- 
vided by Theorem 1. The result is plotted in Fig. 3. Again, 
Theorem 1 gives an upper bound that matches the simulated 
performance very well. 

As described in Section 5 ,  various other computations 
could be made with no modification of the framework. This 
includes the possibility of variable SNR at the sensors: In 
certain situations, poor sensor samples are better modeled 

Loss probability A2 

Figure 2:  Example calculations with Gilbert-Elliot 
loss model. The signal source is approximately low- 
pass with bandwidth 0.2 times the sampling fre- 
quency. As the overall sensor sample loss proba- 
bility increases, the asymptotic estimation MSE in- 
creases. Theorem 1 in fact gives an upper bound 
that approximates the simulated performance of the 
optimal estimator. 

as samples with increased noise as opposed to  complete era- 
sures. This situation is easily modeled in the jump linear 
model (14) through the sensor noise matrix Do(k),2. 

8. APPLICATIONS 
Multiple sensors: Accommodating multiple sensors 

does not require any change to the fundamental framework. 
Recalling the notation of Section 3, each sensor would have 
its own (Cs, O s )  pair and hence its own (C2, D2) pair. With- 
out losses, the data from which to compute an estimate is 
the concatenation (stack) of y(k)s. With losses, different, 
potentially-coupled Markov chains may describe the rela- 
tionships between yo(k)s and y(k)s. The Cartesian product 
of the state spaces of the individual Markov chains gives an 
overall state space for a jump linear system. This all thus 
fits within our framework. 

Multiple data collection nodes: Multiple data collec- 
tion nodes can also be analyzed jointly without changing the 
basic framework. A direct application of Theorem 1 gives 
an upper bound to the sum of estimation error variances 
at the data collection nodes assuming optimal, collaborative 
estimation among the nodes. Analyzing the data collection 
nodes separately and jointly may thus help in understanding 
the merits of collaborative estimation. 

Predictive quantization: When the process being mon- 
itored by the sensor is slowly-varying, the sensor data may 
be compressed with some form of predictive quantization 
before transmission to the receiver. If the prediction filter 
is linear and the quantization noise is modeled as additive 
and white, then the predictive quantizer can be incorporated 
into the linear system model. Specifically, the states of the 
linear system can be extended to  include the states of the 
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Figure  3: Example  calculations wi th  burst losses of 
fixed length two. Again, .Theorem 1 gives an upper 
bound on est imat ion error variance that approxi- 
mates the simulated performance of the opt imal  es- 
timator. 

prediction filter and the noise can be extended to  include 
the quantization noise. This is explored further in [12]. 
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