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Abstract

A well-known analysis of Tropp and Gilbert shows that orthogonal matching
pursuit (OMP) can recover ak-sparsen-dimensional real vector fromm =
4k log(n) noise-free linear measurements obtained through a random Gaussian
measurement matrix with a probability that approaches one as n → ∞. This
work strengthens this result by showing that a lower number of measurements,
m = 2k log(n − k), is in fact sufficient for asymptotic recovery. More gen-
erally, when the sparsity level satisfieskmin ≤ k ≤ kmax but is unknown,
m = 2kmax log(n − kmin) measurements is sufficient. Furthermore, this number
of measurements is also sufficient for detection of the sparsity pattern (support)
of the vector with measurement errors provided the signal-to-noise ratio (SNR)
scales to infinity. The scalingm = 2k log(n− k) exactly matches the number of
measurements required by the more complex lasso method for signal recovery in
a similar SNR scaling.

1 Introduction

Supposex ∈ R
n is a sparse vector, meaning its number of nonzero componentsk is smaller thann.

The support ofx is the locations of the nonzero entries and is sometimes called itssparsity pattern.
A common sparse estimation problem is to infer the sparsity pattern ofx from linear measurements
of the form

y = Ax+w, (1)

whereA ∈ R
m×n is a known measurement matrix,y ∈ R

m represents a vector of measurements
andw ∈ R

m is a vector of measurements errors (noise).

Sparsity pattern detection and related sparse estimation problems are classical problems in nonlinear
signal processing and arise in a variety of applications including wavelet-based image processing [1]
and statistical model selection in linear regression [2]. There has also been considerable recent
interest in sparsity pattern detection in the context ofcompressed sensing, which focuses on large
random measurement matricesA [3–5]. It is this scenario with random measurements that will be
analyzed here.

Optimal subset recovery is NP-hard [6] and usually involvessearches over all the
(
n

k

)
possible

support sets ofx. Thus, most attention has focused on approximate methods for reconstruction.

One simple and popular approximate algorithm is orthogonalmatching pursuit (OMP) developed
in [7–9]. OMP is a simple greedy method that identifies the location of one nonzero component ofx
at a time. A version of the algorithm will be described in detail below in Section 2. The best known
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analysis of the performance of OMP for large random matricesis due to Tropp and Gilbert [10,11].
Among other results, Tropp and Gilbert show that when the number of measurements scales as

m ≥ (1 + δ)4k log(n) (2)

for someδ > 0, A has i.i.d. Gaussian entries, and the measurements are noise-free (w = 0), the
OMP method will recover the correct sparse pattern ofx with a probability that approaches one as
n andk → ∞. Deterministic conditions on the matrixA that guarantee recovery ofx by OMP are
given in [12].

However, numerical experiments reported in [10] suggest that a smaller number of measurements
than (2) may be sufficient for asymptotic recovery with OMP. Specifically, the experiments suggest
that the constant 4 can be reduced to 2.

Our main result, Theorem 1 below, proves this conjecture. Specifically, we show that the scaling in
measurements

m ≥ (1 + δ)2k log(n− k) (3)

is also sufficient for asymptotic reliable recovery with OMPprovided bothn− k andk → ∞. The
result goes further by allowing uncertainty in the sparsitylevelk.

We also improve upon the Tropp–Gilbert analysis by accounting for the effect of the noisew. While
the Tropp–Gilbert analysis requires that the measurementsare noise-free, we show that the scaling
(3) is also sufficient when there is noisew, provided the signal-to-noise ratio (SNR) goes to infinity.

The main significance of the new scaling (3) is that it exactlymatches the conditions for sparsity
pattern recovery using the well-known lasso method. The lasso method, which will be described
in detail in Section 4, is based on a convex relaxation of the optimal detection problem. The best
analysis of the sparsity pattern recovery with lasso is due to Wainwright [13, 14]. He showed in
[13] that under a similar high SNR assumption, the scaling (3) in number of measurements is both
necessary and sufficient for asymptotic reliable sparsity pattern detection.1 Now, although the lasso
method is often more complex than OMP, it is widely believed that lasso has superior performance
[10]. Our results show that at least for sparsity pattern recovery with large Gaussian measurement
matrices in high SNR, lasso and OMP have identical performance. Hence, the additional complexity
of lasso for these problems is not warranted.

Of course, neither lasso nor OMP is the best known approximate algorithm, and our intention isnot
to claim that OMP is optimal in any sense. For example, where there is no noise in the measurements,
the lasso minimization (14) can be replaced by

x̂ = argmin
v∈Rn

‖v‖1, s.t.y = Av.

A well-known analysis due to Donoho and Tanner [15] shows that, for i.i.d. Gaussian measurement
matrices, this minimization will recover the correct vector with

m ≍ 2k log(n/m) (4)

whenk ≪ n. This scaling is fundamentally better than the scaling (3) achieved by OMP and lasso.

There are also several variants of OMP that have shown improved performance. The CoSaMP algo-
rithm of Needell and Tropp [16] and subspace pursuit algorithm of Dai and Milenkovic [17] achieve
a scaling similar to (4). Other variants of OMP include the stagewise OMP [18] and regularized
OMP [19]. Indeed with the recent interest in compressed sensing, there is now a wide range of
promising algorithms available. We do not claim that OMP achieves the best performance in any
sense. Rather, we simply intend to show that both OMP and lasso have similar performance in
certain scenarios.

Our proof of (3) follows along the same lines as Tropp and Gilbert’s proof of (2), but with two key
differences. First, we account for the effect of the noise byseparately considering its effect in the
“true” subspace and its orthogonal complement. Second and more importantly, we provide a tighter
bound on the maximum correlation of the incorrect vectors. Specifically, in each iteration of the

1Sufficient conditions under weaker conditions on the SNR aremore subtle [14]: the scaling of SNR with
n determines the sequences of regularization parameters forwhich asymptotic almost sure success is achieved,
and the regularization parameter sequence affects the sufficient number of measurements.
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OMP algorithm, there aren− k possible incorrect vectors that the algorithm can choose. Since the
algorithm runs fork iterations, there are total ofk(n − k) possible error events. The Tropp and
Gilbert proof bounds the probability of these error events with a union bound, essentially treating
them as statistically independent. However, here we show that energies on any one of the incorrect
vectors across thek iterations are correlated. In fact, they are precisely described by samples on
a certain normalized Brownian motion. Exploiting this correlation we show that the tail bound on
error probability grows asn− k, notk(n− k), independent events.

The outline of the remainder of this paper is as follows. Section 2 describes the OMP algorithm. Our
main result, Theorem 1, is stated in Section 3. A comparison to lasso is provided in Section 4, and
we suggest some future problems in Section 6. The proof of themain result is sketched in Section 7.

2 Orthogonal Matching Pursuit

To describe the algorithm, suppose we wish to determine the vectorx from a vectory of the form
(1). Let

Itrue = { j : xj 6= 0 }, (5)

which is the support of the vectorx. The setItrue will also be called thesparsity pattern. Let
k = |Itrue|, which is the number of nonzero components ofx. The OMP algorithm produces a
sequence of estimateŝI(t), t = 0, 1, 2, . . ., of the sparsity patternItrue, adding one index at a time.
In the description below, letaj denote thejth column ofA.

Algorithm 1 (Orthogonal Matching Pursuit) Given a vectory ∈ R
m, a measurement matrix

A ∈ R
m×n and threshold levelµ > 0, compute an estimatêIOMP of the sparsity pattern ofx

as follows:

1. Initializet = 0 and Î(t) = ∅.

2. ComputeP(t), the projection operator onto the orthogonal complement ofthe span of
{ai, i ∈ Î(t)}.

3. For eachj, compute

ρ(t, j) =
|a′jP(t)y|2
‖P(t)y‖2 ,

and let
[ρ∗(t), i∗(t)] = max

j=1,...,n
ρ(t, j), (6)

whereρ∗(t) is the value of the maximum andi∗(t) is an index which achieves the maximum.

4. If ρ∗(t) > µ, setÎ(t+ 1) = Î(t) ∪ {i∗(t)}. Also, incrementt = t+ 1 and return to step 2.

5. Otherwise stop. The final estimate of the sparsity patternis ÎOMP = Î(t).

Note that sinceP(t) is the projection onto the orthogonal complement ofaj for all j ∈ Î(t),
P(t)aj = 0 for all j ∈ Î(t). Hence,ρ(t, j) = 0 for all j ∈ Î(t), and therefore the algorithm will
not select the same vector twice.

The algorithm above only provides an estimate,ÎOMP, of the sparsity pattern ofItrue. UsingÎOMP,
one can estimate the vectorx in a number of ways. For example, one can take the least-squares
estimate,

x̂ = argmin ‖y −Av‖2 (7)

where the minimization is over all vectorsv suchvj = 0 for all j 6∈ ÎOMP. The estimatêx is
the projection of the noisy vectory onto the space spanned by the vectorsai with i in the sparsity
pattern estimatêIOMP. However, this paper only analyzes the sparsity pattern estimateÎOMP itself,
and not the vector estimatêx.
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3 Asymptotic Analysis

We analyze the OMP algorithm in the previous section under the following assumptions.

Assumption 1 Consider a sequence of sparse recovery problems, indexed bythe vector dimension
n. For eachn, let x ∈ R

n be a deterministic vector and letk = k(n) be the number of nonzero
components inx. Also assume:

(a) The sparsity level,k = k(n) satisfies

k(n) ∈ [kmin(n), kmax(n)], (8)

for some deterministic sequenceskmin(n) andkmax(n) with kmin(n) → ∞ asn → ∞
andkmax(n) < n/2 for all n.

(b) The number of measurementsm = m(n) is a deterministic sequence satisfying

m ≥ (1 + δ)2kmax log(n− kmin), (9)

for someδ > 0.

(c) The minimum component powerx2
min satisfies

lim
n→∞

kx2
min = ∞, (10)

where
xmin = min

j∈Itrue
|xj |, (11)

is the magnitude of the smallest nonzero component ofx.

(d) The powers of the vectors‖x‖2 satisfy

lim
n→∞

1

(n− k)ǫ
log

(
1 + ‖x‖2

)
= 0. (12)

for all ǫ > 0.

(e) The vectory is a random vector generated by (1) whereA andw have i.i.d. Gaussian
components with zero mean and variance of1/m.

Assumption 1(a) provides a range on the sparsity level,k. As we will see below in Section 5, bounds
on this range are necessary for proper selection of the threshold levelµ > 0.

Assumption 1(b) is our the main scaling law on the number of measurements that we will show is
sufficient for asymptotic reliable recovery. In the specialcase whenk is known so thatkmax =
kmin = k, we obtain the simpler scaling law

m ≥ (1 + δ)2k log(n− k). (13)

We have contrasted this scaling law with the Tropp–Gilbert scaling law (2) in Section 1. We will
also compare it to the scaling law for lasso in Section 4.

Assumption 1(c) is critical and places constraints on the smallest component magnitude. The im-
portance of the smallest component magnitude in the detection of the sparsity pattern was first
recognized by Wainwright [13,14,20]. Also, as discussed in[21], the condition requires that signal-
to-noise ratio (SNR) goes to infinity. Specifically, if we define the SNR as

SNR =
E‖Ax‖2
‖w‖2 ,

then under Assumption 1(e), it can be easily checked that

SNR = ‖x‖2.
Sincex hask nonzero components,‖x‖2 ≥ kx2

min, and therefore condition (10) requires that
SNR → ∞. For this reason, we will call our analysis of OMP a high-SNR analysis. The analysis of
OMP with SNR that remains bounded above is an interesting open problem.
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Assumption (d) is technical and simply requires that the SNRdoes not grow too quickly withn.
Note that even ifSNR = O(kα) for anyα > 0, Assumption 1(d) will be satisfied.

Assumption 1(e) states that our analysis concerns large Gaussian measurement matricesA and
Gaussian noisew.

Theorem 1 Under Assumption 1, there exists a sequence of threshold levelsµ = µ(n) such that the
OMP method in Algorithm 1 will asymptotically detect the correct sparsity pattern in that

lim
n→∞

Pr
(
ÎOMP 6= Itrue

)
= 0.

Moreover, the threshold levelsµ can be selected simply as a function ofkmin, kmax, n, m andδ.

Theorem 1 provides our main result and shows that the scalinglaw (9) is sufficient for asymptotic
recovery.

4 Comparison to Lasso Performance

It is useful to compare the scaling law (13) to the number of measurements required by the widely-
used lasso method described for example in [22]. The lasso method finds an estimate for the vector
x in (1) by solving the quadratic program

x̂ = argmin
v∈Rn

‖y −Av‖2 + µ‖v‖1, (14)

whereµ > 0 is an algorithm parameter that trades off the prediction error with the sparsity of the
solution. Lasso is sometimes referred to as basis pursuit denoising [23]. While the optimization (14)
is convex, the running time of lasso is significantly longer than OMP unlessA has some particular
structure [10]. However, it is generally believed that lasso has superior performance.

The best analysis of lasso for sparsity pattern recovery forlarge random matrices is due to Wain-
wright [13,14]. There, it is shown that with an i.i.d. Gaussian measurement matrix and white Gaus-
sian noise, the condition (13) isnecessaryfor asymptotic reliable detection of the sparsity pattern.
In addition, under the condition (10) on the minimum component magnitude, the scaling (13) is also
sufficient. We thus conclude that OMP requires an identical scaling in the number of measurements
to lasso. Therefore, at least for sparsity pattern recoveryfrom measurements with large random
Gaussian measurement matrices and high SNR, there is no additional performance improvement
with the more complex lasso method over OMP.

5 Threshold Selection and Stopping Conditions

In many problems, the sparsity levelk is not knowna priori and must be detected as part of the esti-
mation process. In OMP, the sparsity level of estimated vector is precisely the number of iterations
conducted before the algorithm terminates. Thus, reliablesparsity level estimation requires a good
stopping condition.

When the measurements are noise-free and one is concerned only with exact signal recovery, the
optimal stopping condition is simple: the algorithm shouldsimply stop whenever there is no more
error. That isρ∗(t) = 0 in (6). However, with noise, selecting the correct stoppingcondition requires
some care. The OMP method as described in Algorithm 1 uses a stopping condition based on testing
if ρ∗(t) > µ for some thresholdµ.

One of the appealing features of Theorem 1 is that it providesa simple sufficient condition under
which this threshold mechanism will detect the correct sparsity level. Specifically, Theorem 1 pro-
vides a rangek ∈ [kmin, kmax] under which there exists a threshold that the OMP algorithm will
terminate in the correct number of iterations. The larger the number of measurements,m, the greater
one can make the range[kmin, kmax]. The formula for the threshold level is given in (20).

Of course, in practice, one may deliberately want to stop theOMP algorithm with fewer iterations
than the “true” sparsity level. As the OMP method proceeds, the detection becomes less reliable and
it is sometimes useful to stop the algorithm whenever there is a high chance of error. Stopping early
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may miss some small components, but may result in an overall better estimate by not introducing
too many erroneous components or components with too much noise. However, since our analysis
is only concerned with exact sparsity pattern recovery, we do not consider this type of stopping
condition.

6 Conclusions and Future Work

We have provided an improved scaling law on the number of measurements for asymptotic reli-
able sparsity pattern detection with OMP. This scaling law exactly matches the scaling needed by
lasso under similar conditions. However, much about the performance of OMP is still not fully un-
derstood. Most importantly, our analysis is limited to highSNR. It would be interesting to see if
reasonable sufficient conditions can be derived for finite SNR as well. Also, our analysis has been
restricted to exact sparsity pattern recovery. However, inmany problems, especially with noise, it is
not necessary to detect every component in the sparsity pattern. It would be useful if partial support
recovery results such as [24–27] can be obtained for OMP.

Finally, our main scaling law (9) is onlysufficient. While numerical experiments in [10,28] suggest
that this scaling is also necessary for vectors with equal magnitude, it is possible that OMP can
perform better than the scaling law (9) when the component magnitudes have some variation; this is
demonstrated numerically in [28]. The benefit of dynamic range in an OMP-like algorithm has also
been observed in [29] and sparse Bayesian learning methods in [30,31].

7 Proof Sketch for Theorem 1

7.1 Proof Outline

Due to space considerations, we only sketch the proof; additional details are given in [28].

The main difficulty in analyzing OMP is the statistical dependencies between iterations in the OMP
algorithm. Following along the lines of the Tropp–Gilbert proof in [10], we avoid these difficulties
by considering the following “genie” algorithm. A similar alternate algorithm is analyzed in [29].

1. Initializet = 0 andItrue(t) = ∅.

2. ComputePtrue(t), the projection operator onto the orthogonal complement ofthe span of
{ai, i ∈ Itrue(t)}.

3. For allj = 1, . . . , n, compute

ρtrue(t, j) =
|a′jPtrue(t)y|2
‖Ptrue(t)y‖2

, (15)

and let

[ρ∗true(t), i
∗(t)] = max

j∈Itrue
ρtrue(t, j). (16)

4. If t < k, setItrue(t+ 1) = Itrue(t) ∪ {i∗(t)}. Incrementt = t+ 1 and return to step 2.

5. Otherwise stop. The final estimate of the sparsity patternis Itrue(k).

This “genie” algorithm is identical to the regular OMP method in Algorithm 1, except that it runs
for preciselyk iterations as opposed to using a thresholdµ for the stopping condition. Also, in
the maximization in (16), the genie algorithm searches overonly the correct indicesj ∈ Itrue.
Hence, this genie algorithm can never select an incorrect index j 6∈ Itrue. Also, as in the regular
OMP algorithm, the genie algorithm will never select the same vector twice for almost all vectors
y. Therefore, afterk iterations, the genie algorithm will have selected all thek indices inItrue and
terminate with correct sparsity pattern estimateItrue(k) = Itrue with probability one. So, we need
to show that true OMP algorithm behaves identically to the “genie” algorithm with high probability.
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To this end, define the following two probabilities:

pMD = Pr

(
max

t=0,...k−1
min

j∈Itrue
ρtrue(t, j) ≤ µ

)
(17)

pFA = Pr

(
max

t=0,...k
max
j 6∈Itrue

ρtrue(t, j) ≥ µ

)
(18)

Both probabilities are implicitly functions ofn. The first term,pMD, can be interpreted as a
“missed detection” probability, since it corresponds to the event that the maximum correlation en-
ergyρtrue(t, j) on the correct vectorsj ∈ Itrue falls below the threshold. We call the second term
pFA the “false alarm” probability since it corresponds to the maximum energy on one of the “incor-
rect” indicesj 6∈ Itrue exceeding the threshold. A simple induction argument showsthat if there
are no missed detections or false alarms, the true OMP algorithm will select the same vectors as the
“genie” algorithm, and therefore recover the sparsity pattern. This shows that

Pr
(
ÎOMP 6= Itrue

)
≤ pMD + pFA.

So we need to show that there exists a sequence of thresholdsµ = µ(n) > 0, such thatpMD and
pFA → 0 asn → ∞. To set this threshold, we select anǫ > 0 such that

1 + δ

1 + ǫ
≥ 1 + ǫ, (19)

whereδ is from (9). Then, define the threshold level

µ = µ(n) =
2(1 + ǫ)

m
log(n− kmin). (20)

7.2 Probability of Missed Detection

The proof thatpMD → 0 is similar to that of Tropp and Gilbert’s proof in [10]. The key modification
is to use (10) to show that the effect of the noise is asymptotically negligible so that for largen,

y ≈ Ax = Φxtrue. (21)

This is done by separately considering the components ofw in the span of the vectorsaj for j ∈
Itrue and its orthogonal complement.

One then follows the Tropp–Gilbert proof for the noise-freecase to show that

max
j∈Itrue

ρtrue(t, j) ≥
1

k

for largek. Hence, using (9) and (20) one can then show

lim inf
n→∞

max
j∈Itrue

1

µ
ρtrue(t, j) ≥ 1 + ǫ,

which shows thatpMD → 0.

7.3 Probability of False Alarm

This part is harder. Define

z(t, j) =
a′jPtrue(t)y

‖Ptrue(t)y‖
,

so thatρtrue(t, j) = |z(t, j)|2. Now, Ptrue(t) andy are functions ofw andaj for j ∈ Itrue.
Therefore, they are independent ofaj for any j 6∈ Itrue. Also, since the vectorsaj have i.i.d.
Gaussian components with variance1/m, conditional onPtrue(t) andy, z(t, j) is normal with
variance1/m. Hence,mρtrue(t, j) is a chi-squared random variable with one degree of freedom.

Now, there arek(n − k) values ofρtrue(t, k) for t = 1, . . . , k andj 6∈ Itrue. The Tropp–Gilbert
proof bounds the maximum of thesek(n− k) value by the standard tail bound

max
j 6∈Itrue

max
t=1,...,k

ρtrue(t, j) ≤
2

m
log(k(n− k)) ≤ 2

m
log(n2) =

4

m
log(n).
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To improve the bound in this proof, we exploit the fact that for any j, the values ofz(t, j) are
correlated. In fact, we show that the valuesz(t, j), t = 1, . . . , k are distributed identically to points
on a normalized Brownian motion. Specifically, letW (s) be a standard linear Brownian motion and
let S(s) be the normalized Brownian motion

S(s) =
1√
s
B(s), s > 0. (22)

We then show that, for everyj, there exists timess1, . . . , sk with

1 ≤ s1 < · · · < sk ≤ 1 + ‖x‖2

such that the vector
z(j) = [z(1, j), . . . , z(k, j)]

is identically distributed to
[S(s1), . . . , S(sj)].

Hence,
max

t=1,...,k
|z(t, j)|2 = max

t=1,...,k
|S(sj)|2 ≤ sup

s∈[1,1+‖x‖2]

|S(s)|2.

The right-hand side of the sample path can then be bounded by the reflection principle [32]. This
yields an improved bound,

max
j 6∈Itrue

max
t=1,...,k

ρtrue(t, j) ≤
2

m
log(n− k).

Combining this with (20) shows

lim inf
n→∞

max
j∈Itrue

1

µ
ρtrue(t, j) ≥

1

1 + ǫ
,

which shows thatpFA → 0.
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