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Abstract

The replica method is a non-rigorous but widely-accepted technique from statis-
tical physics used in the asymptotic analysis of large, random, nonlinear prob-
lems. This paper applies the replica method to non-Gaussianmaximum a pos-
teriori (MAP) estimation. It is shown that with random linear measurements and
Gaussian noise, the asymptotic behavior of the MAP estimateof ann-dimensional
vector “decouples” asn scalar MAP estimators. The result is a counterpart to Guo
and Verdú’s replica analysis of minimum mean-squared error estimation.
The replica MAP analysis can be readily applied to many estimators used in
compressed sensing, including basis pursuit, lasso, linear estimation with thresh-
olding, and zero norm-regularized estimation. In the case of lasso estimation
the scalar estimator reduces to a soft-thresholding operator, and for zero norm-
regularized estimation it reduces to a hard-threshold. Among other benefits, the
replica method provides a computationally-tractable method for exactly comput-
ing various performance metrics including mean-squared error and sparsity pat-
tern recovery probability.

1 Introduction

Estimating a vectorx ∈ R
n from measurements of the form

y = Φx+w, (1)

whereΦ ∈ R
m×n represents a knownmeasurement matrixandw ∈ R

m represents measurement
errors or noise, is a generic problem that arises in a range ofcircumstances. One of the most basic
estimators forx is the maximum a posteriori (MAP) estimate

x̂map(y) = argmax
x∈Rn

px|y(x|y), (2)

which is defined assuming some prior onx. For most priors, the MAP estimate is nonlinear and its
behavior is not easily characterizable. Even if the priors for x andw are separable, the analysis of
the MAP estimate may be difficult since the matrixΦ couples then unknown components ofx with
them measurements in the vectory.

The primary contribution of this paper—an abridged versionof [1]—is to show that with certain
large randomΦ and Gaussianw, there is anasymptotic decouplingof (1) inton scalar MAP estima-
tion problems. Each equivalent scalar problem has an appropriate scalar prior and Gaussian noise
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with aneffective noise level. The analysis yields the asymptotic joint distribution of each component
xj of x and its corresponding estimatêxj in the MAP estimate vector̂xmap(y). From the joint
distribution, various further computations can be made, such as the mean-squared error (MSE) of
the MAP estimate or the error probability of a hypothesis test computed from the MAP estimate.

Replica Method. Our analysis is based on a powerful but non-rigorous technique from statistical
physics known as the replica method. The replica method was originally developed by Edwards and
Anderson [2] to study the statistical mechanics of spin glasses. Although not fully rigorous from the
perspective of probability theory, the technique was able to provide explicit solutions for a range of
complex problems where many other methods had previously failed [3].

The replica method was first applied to the study of nonlinearMAP estimation problems by
Tanaka [4] and Müller [5]. These papers studied the behavior of the MAP estimator of a vector
x with i.i.d. binary components observed through linear measurements of the form (1) with a large
randomΦ and Gaussianw. The results were then generalized in a remarkable paper by Guo and
Verdú [6] to vectorsx with arbitrary distributions. Guo and Verdú’s result was also able to incor-
porate a large class of minimum postulated MSE estimators, where the estimator may assume a
prior that is different from the actual prior. The main result in this paper is the corresponding MAP
statement to Guo and Verdú’s result. In fact, our result is derived from Guo and Verdú’s by taking
appropriate limits with large deviations arguments.

The non-rigorous aspect of the replica method involves a setof assumptions that include a self-
averaging property, the validity of a “replica trick,” and the ability to exchange certain limits. Some
progress has been made in formally proving these assumptions; a survey of this work can be found
in [7]. Also, some of the predictions of the replica method have been validated rigorously by other
means [8]. To emphasize our dependence on these unproven assumptions, we will refer to Guo and
Verdú’s result as the Replica MMSE Claim. Our main result, which depends on Guo and Verdú’s
analysis, will be called the Replica MAP Claim.

Applications to Compressed Sensing. As an application of our main result, we will develop a few
analyses of estimation problems that arise in compressed sensing [9–11]. Incompressed sensing,
one estimates a sparse vectorx from random linear measurements. Generically, optimal estimation
of x with a sparse prior is NP-hard [12]. Thus, most attention hasfocused on greedy heuristics such
as matching pursuit and convex relaxations such as basis pursuit [13] or lasso [14]. While successful
in practice, these algorithms are difficult to analyze precisely.

Recent compressed sensing research has provided scaling laws on numbers of measurements that
guarantee good performance of these methods [15–17]. However, these scaling laws are in general
conservative. There are, of course, notable exceptions including [18] and [19] which provide match-
ing necessary and sufficient conditions for recovery of strictly sparse vectors with basis pursuit and
lasso. However, even these results only consider exact recovery and are limited to measurements
that are noise-free or measurements with a signal-to-noiseratio (SNR) that scales to infinity.

Many common sparse estimators can be seen as MAP estimators with certain postulated priors.
Most importantly, lasso and basis pursuit are MAP estimators assuming a Laplacian prior. Other
commonly-used sparse estimation algorithms, including linear estimation with and without thresh-
olding and zero norm-regularized estimators, can also be seen as MAP-based estimators. For these
algorithms, the replica method provides—under the assumption of the replica hypotheses—not just
bounds, but the exact asymptotic behavior. This in turns permits exact expressions for various per-
formance metrics such as MSE or fraction of support recovery. The expressions apply for arbitrary
ratiosk/n, n/m andSNR.

2 Estimation Problem and Assumptions

Consider the estimation of a random vectorx ∈ R
n from linear measurements of the form

y = Φx+w = AS1/2x+w, (3)

wherey ∈ R
m is a vector of observations,Φ = AS1/2, A ∈ R

m×n is a measurement matrix,S is
a diagonal matrix of positive scale factors,

S = diag (s1, . . . , sn) , sj > 0, (4)
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andw ∈ R
m is zero-mean, white Gaussian noise. We consider a sequence of such problems indexed

byn, with n → ∞. For eachn, the problem is to determine an estimatex̂ of x from the observations
y knowing the measurement matrixA and scale factor matrixS.

The componentsxj of x are modeled as zero mean and i.i.d. with some prior probability distribution
p0(xj). The per-component variance of the Gaussian noise isE|wj |2 = σ2

0 . We use the subscript
“0” on the prior and noise level to differentiate these quantities from certain “postulated” values to
be defined later.

In (3), we have factoredΦ = AS1/2 so that even with the i.i.d. assumption onxjs above and an
i.i.d. assumption on entries ofA, the model can capture variations in powers of the components of
x that are knowna priori at the estimator. Variations in the power ofx that are not known to the
estimator should be captured in the distribution ofx.

We summarize the situation and make additional assumptionsto specify the problem precisely as
follows:

(a) The number of measurementsm = m(n) is a deterministic quantity that varies withn and
satisfies

lim
n→∞

n/m(n) = β

for someβ ≥ 0. (The dependence ofm onn is usually omitted for brevity.)

(b) The componentsxj of x are i.i.d. with probability distributionp0(xj).

(c) The noisew is Gaussian withw ∼ N (0, σ2
0Im).

(d) The components of the matrixA are i.i.d. zero mean with variance1/m.

(e) The scale factorssj are i.i.d. and satisfysj > 0 almost surely.

(f) The scale factor matrixS, measurement matrixA, vectorx and noisew are independent.

3 Review of the Replica MMSE Claim

We begin by reviewing the Replica MMSE Claim of Guo and Verdú[6]. Suppose one is given a
“postulated” prior distributionppost and a postulated noise levelσ2

post that may be different from
the true valuesp0 andσ2

0 . We define theminimum postulated MSE (MPMSE)estimate ofx as

x̂mpmse(y) = E
(
x | y ; ppost, σ

2
post

)
=

∫
xpx|y(x | y ; ppost, σ

2
post) dx,

wherepx|y(x | y ; q, σ2) is the conditional distribution ofx giveny under thex distribution and
noise variance specified as parameters after the semicolon:

px|y(x | y ; q, σ2) = C−1 exp

(
− 1

2σ2
‖y −AS1/2x‖2

)
q(x), q(x) =

n∏

j=1

q(xj), (5)

whereC is a normalization constant.

The Replica MMSE Claim describes the asymptotic behavior ofthe postulated MMSE estimator via
an equivalent scalar estimator. Letq(x) be a probability distribution defined on some setX ⊆ R.
Givenµ > 0, let px|z(x | z ; q, µ) be the conditional distribution

px|z(x | z ; q, µ) =
[∫

x∈X

φ(z − x ; µ)q(x) dx

]−1

φ(z − x ; µ)q(x) (6)

whereφ(·) is the Gaussian distribution

φ(v ; µ) =
1√
2πµ

e−|v|2/(2µ). (7)

The distributionpx|z(x|z ; q, µ) is the conditional distribution of the scalar random variable x ∼
q(x) from an observation of the form

z = x+
√
µv, (8)
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wherev ∼ N (0, 1). Using this distribution, we can define the scalar conditional MMSE estimate,

x̂mmse
scalar(z ; q, µ) =

∫

x∈X

xpx|z(x|z ; µ) dx. (9)

Also, given two distributions,p0(x) andp1(x), and two noise levels,µ0 > 0 andµ1 > 0, define

mse(p1, p0, µ1, µ0, z) =

∫

x∈X

|x− x̂mmse
scalar(z ; p1, µ1)|2px|z(x | z ; p0, µ0) dx, (10)

which is the mean-squared error in estimating the scalarx from the variablez in (8) whenx has a
true distributionx ∼ p0(x) and the noise level isµ = µ0, but the estimator assumes a distribution
x ∼ p1(x) and noise levelµ = µ1.

Replica MMSE Claim [6]. Consider the estimation problem in Section 2. Letx̂mpmse(y) be the
MPMSE estimator based on a postulated priorppost and postulated noise levelσ2

post. For each
n, let j = j(n) be some deterministic component index withj(n) ∈ {1, . . . , n}. Then there exist
effective noise levelsσ2

eff andσ2
p−eff such that:

(a) Asn → ∞, the random vectors(xj , sj , x̂
mpmse
j ) converge in distribution to the random

vector(x, s, x̂) wherex, s, andv are independent withx ∼ p0(x), s ∼ pS(s), v ∼ N (0, 1),
and

x̂ = x̂mmse
scalar(z ; ppost, µp), z = x+

√
µv. (11)

whereµ = σ2
eff/s andµp = σ2

p−eff/s.

(b) The effective noise levels satisfy the equations

σ2
eff = σ2

0 + βE [smse(ppost, p0, µp, µ, z)] (12a)

σ2
p−eff = σ2

post + βE [smse(ppost, ppost, µp, µp, z)] , (12b)

where the expectations are taken overs ∼ pS(s) andz generated by (11).

The Replica MMSE Claim asserts that the asymptotic behaviorof the joint estimation of then-
dimensional vectorx can be described byn equivalent scalar estimators. In the scalar estimation
problem, a componentx ∼ p0(x) is corrupted by additive Gaussian noise yielding a noisy mea-
surementz. The additive noise variance isµ = σ2

eff/s, which is the effective noise divided by the
scale factors. The estimate of that component is then described by the (generally nonlinear) scalar
estimator̂x(z ; ppost, µp).

The effective noise levelsσ2
eff andσ2

p−eff are described by the solutions to fixed-point equations
(12). Note thatσ2

eff andσ2
p−eff appear implicitly on the left- and right-hand sides of theseequations

via the termsµ andµp. When there are multiple solutions to these equations, the true solution is the
minimizer of a certain Gibbs’ function [6].

4 Replica MAP Claim

We now turn to MAP estimation. LetX ⊆ R be some (measurable) set and consider an estimator of
the form

x̂map(y) = argmin
x∈Xn

1

2γ
‖y−AS1/2x‖22 +

n∑

j=1

f(xj), (13)

whereγ > 0 is an algorithm parameter andf : X → R is some scalar-valued, non-negative cost
function. We will assume that the objective function in (13)has a unique essential minimizer for
almost ally.

The estimator (13) can be interpreted as a MAP estimator. Specifically, for anyu > 0, it can be
verified thatx̂map(y) is the MAP estimate

x̂map(y) = argmax
x∈Xn

px|y(x | y ; pu, σ
2
u),
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wherepu(x) andσ2
u are the prior and noise level

pu(x) =

[∫

x∈Xn

exp(−uf(x))dx

]−1

exp(−uf(x)), σ2
u = γ/u, (14)

wheref(x) =
∑

j f(xj). To analyze this MAP estimator, we consider a sequence of MMSE
estimators

x̂u(y) = E
(
x | y ; pu, σ

2
u

)
. (15)

The proof of the Replica MAP Claim below (see [1]) uses a standard large deviations argument to
show that

lim
u→∞

x̂u(y) = x̂map(y)

for all y. Under the assumption that the behaviors of the MMSE estimators are described by the
Replica MMSE Claim, we can then extrapolate the behavior of the MAP estimator.

To state the claim, define the scalar MAP estimator

x̂map
scalar(z ; λ) = argmin

x∈X
F (x, z, λ), F (x, z, λ) =

1

2λ
|z − x|2 + f(x). (16)

where, again, we assume that (16) has a unique essential minimizer for almost allλ and almost all
z. We also assume that the limit

σ2(z, λ) = lim
x→x̂

|x− x̂|2
2(F (x, z, λ)− F (x̂, z, λ))

, (17)

exists wherêx = x̂map
scalar(z;λ). We make the following additional assumptions:

Assumption 1 Consider the MAP estimator (13) applied to the estimation problem in Section 2.
Assume:

(a) For all u > 0 sufficiently large, assume the postulated priorpu and noise levelσ2
u satisfy

the Replica MMSE Claim. Also, assume that for the corresponding effective noise levels,
σ2
eff(u) andσ2

p−eff(u), the following limits exists:

σ2
eff,map = lim

u→∞
σ2
eff(u), γp = lim

u→∞
uσ2

p−eff(u).

(b) Suppose for eachn, x̂u
j (n) is the MMSE estimate of the componentxj for some index

j ∈ {1, . . . , n} based on the postulated priorpu and noise levelσ2
u. Then, assume that the

following limits can be interchanged:

lim
u→∞

lim
n→∞

x̂u
j (n) = lim

n→∞
lim
u→∞

x̂u
j (n),

where the limits are in distribution.

(c) Assume thatf(x) is non-negative and satisfiesf(x)/ log |x| → ∞ as|x| → ∞.

Item (a) is stated to reiterate that we are assuming the Replica MMSE Claim is valid. See [1, Sect.
IV] for additional discussion of technical assumptions.

Replica MAP Claim [1]. Consider the estimation problem in Section 2. Letx̂map(y) be the MAP
estimator (13) defined for somef(x) andγ > 0 satisfying Assumption 1. For eachn, let j = j(n)
be some deterministic component index withj(n) ∈ {1, . . . , n}. Then:

(a) Asn → ∞, the random vectors(xj , sj , x̂
map
j ) converge in distribution to the random

vector(x, s, x̂) wherex, s, andv are independent withx ∼ p0(x), s ∼ pS(s), v ∼ N (0, 1),
and

x̂ = x̂map
scalar(z, λp), z = x+

√
µv, (18)

whereµ = σ2
eff,map/s andλp = γp/s.
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(b) The limiting effective noise levelsσ2
eff,map andγp satisfy the equations

σ2
eff,map = σ2

0 + βE
[
s|x− x̂|2

]
(19a)

γp = γ + βE
[
sσ2(z, λp)

]
, (19b)

where the expectations are taken overx ∼ p0(x), s ∼ pS(s), andv ∼ N (0, 1), with x̂ and
z defined in (18).

Analogously to the Replica MMSE Claim, the Replica MAP Claimasserts that asymptotic behavior
of the MAP estimate of any single component ofx is described by a simple equivalent scalar esti-
mator. In the equivalent scalar model, the component of the true vectorx is corrupted by Gaussian
noise and the estimate of that component is given by a scalar MAP estimate of the component from
the noise-corrupted version.

5 Analysis of Compressed Sensing

Our results thus far hold for any separable distribution forx and under mild conditions on the cost
functionf . The role off is to determine the estimator. In this section, we first consider choices of
f that yield MAP estimators relevant to compressed sensing. We then additionally impose a sparse
prior for x for numerical evaluations of asymptotic performance.

Lasso Estimation. We first consider the lasso or basis pursuit estimate [13,14]given by

x̂lasso(y) = argmin
x∈Rn

1

2γ
‖y −AS1/2x‖22 + ‖x‖1, (20)

whereγ > 0 is an algorithm parameter. This estimator is identical to the MAP estimator (13) with
the cost function

f(x) = |x|.
With this cost function, the scalar MAP estimator in (16) is given by

x̂map
scalar(z ; λ) = T soft

λ (z), (21)

whereT soft
λ (z) is the soft thresholding operator

T soft
λ (z) =

{
z − λ, if z > λ;

0, if |z| ≤ λ;
z + λ, if z < −λ.

(22)

The Replica MAP Claim now states that there exists effectivenoise levelsσ2
eff,map andγp such that

for any component indexj, the random vector(xj , sj , x̂j) converges in distribution to the vector
(x, s, x̂) wherex ∼ p0(x), s ∼ pS(s), andx̂ is given by

x̂ = T soft
λp

(z), z = x+
√
µv, (23)

wherev ∼ N (0, 1), λp = γp/s, andµ = σ2
eff,map/s. Hence, the asymptotic behavior of lasso

has a remarkably simple description: the asymptotic distribution of the lasso estimatêxj of the
componentxj is identical toxj being corrupted by Gaussian noise and then soft-thresholded to
yield the estimatêxj .

To calculate the effective noise levels, one can perform a simple calculation to show thatσ2(z, λ) in
(17) is given by

σ2(z, λ) =

{
λ, if |z| > λ;
0, if |z| ≤ λ.

(24)

Hence,
E
[
sσ2(z, λp)

]
= E [sλp Pr(|z| > λp)] = γp Pr(|z| > γp/s) (25)

where we have use the fact thatλp = γp/s. Substituting (21) and (25) into (19), we obtain the
fixed-point equations

σ2
eff,map = σ2

0 + βE
[
s|x− T soft

λp
(z)|2

]
(26a)

γp = γ + βγp Pr(|z| > γp/s), (26b)
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where the expectations are taken with respect tox ∼ p0(x), s ∼ pS(s), andz in (23). Again, while
these fixed-point equations do not have a closed-form solution, they can be relatively easily solved
numerically given distributions ofx ands.

Zero Norm-Regularized Estimation. Lasso can be regarded as a convex relaxation of zero norm-
regularized estimation

x̂zero(y) = argmin
x∈Rn

1

2γ
‖y −AS1/2x‖22 + ‖x‖0, (27)

where‖x‖0 is the number of nonzero components ofx. For certain strictly sparse priors, zero
norm-regularized estimation may provide better performance than lasso. Whilecomputingthe zero
norm-regularized estimate is generally very difficult, we can use the replica analysis to provide a
simple characterization of itsperformance. This analysis can provide a bound on the performance
achievable by practical algorithms.

The zero norm-regularized estimator is identical to the MAPestimator (13) with the cost function

f(x) =

{
0, if x = 0;
1, if x 6= 0.

(28)

Technically, this cost function does not satisfy the conditions of the Replica MAP Claim. To avoid
this problem, we can consider an approximation of (28),

fδ,M (x) =

{
0, if |x| < δ;
1, if |x| ∈ [δ,M ],

which is defined on the setX = {x : |x| ≤ M}. We can then take the limitsδ → 0 andM → ∞.
To simplify the presentation, we will just apply the ReplicaMAP Claim withf(x) in (28) and omit
the details in taking the appropriate limits.

With f(x) given by (28), the scalar MAP estimator in (16) is given by

x̂map
scalar(z ; λ) = T hard

t (z), t =
√
2λ, (29)

whereT hard
t is the hard thresholding operator,

T hard
t (z) =

{
z, if |z| > t;
0, if |z| ≤ t.

(30)

Now, similar to the case of lasso estimation, the Replica MAPClaim states there exists effective
noise levelsσ2

eff,map andγp such that for any component indexj, the random vector(xj , sj, x̂j)

converges in distribution to the vector(x, s, x̂) wherex ∼ p0(x), s ∼ pS(s), andx̂ is given by

x̂ = T hard
t (z), z = x+

√
µv, (31)

wherev ∼ N (0, 1), λp = γp/s, µ = σ2
eff,map/s, and

t =
√
2λp =

√
2γp/s. (32)

Thus, the zero norm-regularized estimation of a vectorx is equivalent ton scalar components cor-
rupted by some effective noise levelσ2

eff,map and hard-thresholded based on a effective noise level
γp.

The fixed-point equations for the effective noise levelsσ2
eff,map andγp can be computed similarly to

the case of lasso. Specifically, one can verify that (24) and (25) are both satisfied for the hard thresh-
olding operator as well. Substituting (25) and (29) into (19), we obtain the fixed-point equations

σ2
eff,map = σ2

0 + βE
[
s|x− T hard

t (z)|2
]
, (33a)

γp = γ + βγp Pr(|z| > t), (33b)

where the expectations are taken with respect tox ∼ p0(x), s ∼ pS(s), z in (31), andt given by
(32). These fixed-point equations can be solved numerically.
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Figure 1: MSE performance prediction with the Replica MAP Claim. Plotted is the median nor-
malized SE for various sparse recovery algorithms: linear MMSE estimation, lasso, zero norm-
regularized estimation, and optimal MMSE estimation. Solid lines show the asymptotic predicted
MSE from the Replica MAP Claim. For the linear and lasso estimators, the circles and triangles
show the actual median SE over 1000 Monte Carlo simulations.

Numerical Simulation. To validate the predictive power of the Replica MAP Claim forfinite
dimensions, we performed numerical simulations where the components ofx are a zero-mean
Bernoulli–Gaussian process. Specifically,

xj ∼
{

N (0, 1), with prob.0.1;
0, with prob.0.9.

We took the vectorx to haven = 100 i.i.d. components, and we used ten values ofm to varyβ =
n/m from 0.5 to 3. For each problem size, we simulated the lasso and linear MMSE estimators over
1000 independent instances with noise levels chosen such that the SNR with perfect side information
is 10 dB. Each set of trials is represented by its median squared error in Fig. 1.

The simulated performance is matched very closely by the asymptotic values predicted by the replica
analysis. (Analysis of the linear MMSE estimator using the Replica MAP Claim is detailed in [1];
the Replica MMSE Claim is also applicable to this estimator.) In addition, the replica analysis can be
applied to zero norm-regularized and optimal MMSE estimators that are computationally infeasible
for large problems. These results are also shown in Fig. 1, illustrating the potential of the replica
method to quantify the precise performance losses of practical algorithms.

Additional numerical simulations in [1] illustrate convergence to the replica MAP limit, applicability
to discrete distributions forx, effects of power variations in the components, and accurate prediction
of the probability of sparsity pattern recovery.

6 Conclusions

We have shown that the behavior of vector MAP estimators withlarge random measurement matri-
ces and Gaussian noise asymptotically matches that of a set of decoupled scalar estimation problems.
We believe that this equivalence to a simple scalar model will open up numerous doors for analysis,
particularly in problems of interest in compressed sensing. One can use the model to dramatically
improve upon existing performance analyses for sparsity pattern recovery and MSE. Also, the tech-
nique is sufficiently general to study effects of dynamic range.
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