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Abstract

Estimation via Sparse Approximation:

Error Bounds and Random Frame Analysis

by

Alyson Kerry Fletcher

Master of Arts in Mathematics

University of California, Berkeley

Professor F. Alberto Grünbaum, Chair

If a signal x can be represented as a linear combination of K elements from a set of vectors

Φ, then x is said to have a K-sparse representation with respect to Φ. Sparseness can be

used to remove noise in that x can be estimated from a noise-corrupted observation y by

finding the best K-sparse approximation to y. Sparse approximation-based estimation has

proven to be an effective method in many areas including wavelet image processing and

pattern recognition. However, exactly quantifying the performance of a sparse approxima-

tion estimator is, in general, difficult due to the discrete, nonlinear nature of the estimation

process.

This work considers two approaches for quantifying the performance of sparse

approximation-based estimation. The first approach provides a lower bound (Theorem 1)

on the ability to represent a Gaussian random vector sparsely with respect to a given frame

Φ. The bound applies to arbitrary frames and depends only on the signal dimension, frame

size, and sparsity. The bound shows that, for moderate-sized frames, Gaussian noise is not

well represented sparsely and thus suggests that sparse approximation will reject such noise

well. The bound is derived using rate–distortion theory and may be of independent interest

in the study of lossy source coding.
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The second approach considers frames generated randomly according to a spherically-

symmetric distribution and signals expressible with single dictionary elements. Easily-

computed estimates for the probability of selecting the correct dictionary element and the

mean-squared error are given (Theorems 3 and 4). Monte Carlo simulations demonstrate

the accuracies of these estimates. In the limit as the dimension of the space grows with-

out bound, the estimates reduce to very simple forms. The large-dimension asymptotics

(Theorems 5 and 6) reveal a critical signal-to-noise ratio threshold above which the prob-

ability of error approaches zero and below which the probability of error approaches one.

Professor F. Alberto Grünbaum
Thesis Committee Chair
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Chapter 1

Introduction

Estimating a signal from a noise-corrupted observation of the signal is a recurring task

in science and engineering. This thesis explores the limits of estimation performance in the

case where the only a priori structure on the signal x ∈ R
N is that it has known sparsity K

with respect to a given set of vectors Φ = {ϕi}M
i=1 ⊂ R

N . The set Φ is called a dictionary

and is generally a frame [22, 14]. The sparsity of K with respect to Φ means that the signal

x lies in the set

ΦK =

{
v ∈ R

N
∣∣∣ v =

M∑

i=1

αiϕi with at most K nonzero αi’s

}
. (1.1)

In many areas of computation, exploiting sparsity is motivated by reduction in com-

plexity [16]; if K ≪ N then certain computations may be more efficiently made on α than

on x. In compression, representing a signal exactly or approximately by a member of ΦK

is a common first step in efficiently representing the signal, though much more is known

when Φ is a basis or union of wavelet bases than is known in the general case [21]. Of more

direct interest here is that sparsity models are becoming prevalent in estimation problems;

see, e.g., [31, 41].

The parameters of dimension N , dictionary size M , and sparsity K determine the

importance of the sparsity model. Representative illustrations of ΦK are given in Figure 1.1.

With dimension N = 2, sparsity of K = 1 with respect to a dictionary of size M = 3
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Figure 1.1. Two sparsity models in dimension N = 2. Left: Having sparsity K = 1 with
respect to a dictionary with M = 3 elements restricts the possible signals greatly. Right:
With the dictionary size increased to M = 100, the possible signals still occupy a set of
measure zero, but a much larger fraction of signals are approximately sparse.

indicates that x lies on one of three lines, as shown in the left panel. This is a restrictive

model, even if there is some approximation error in (1.1). When M is increased, the model

stops seeming restrictive, even though the set of possible values for x has measure zero in

R
2. The reason is that, unless the dictionary has gaps, all of R

2 is nearly covered. This

thesis presents progress in explaining the value of a sparsity model for signal denoising as

a function of (N,M,K).

1.1 Denoising by Sparse Approximation with a Frame

Consider the problem of estimating a signal x ∈ R
N from the noisy observation y = x+d

where d ∈ R
N has the i.i.d. Gaussian N (0, σ2IN ) distribution. Suppose we know that x

lies in given K-dimensional subspace of R
N . Then projecting y to the given subspace

would remove a fraction of the noise without affecting the signal component. Denoting the

projection operator by P , we would have

x̂ = Py = P (x + d) = Px + Pd = x + Pd,

and Pd has only K/N fraction of the power of d.

In this thesis we consider the more general signal model x ∈ ΦK . The set ΦK defined

in (1.1) is the union of at most J =
(
M
K

)
subspaces of dimension K. We henceforth assume

M > K (thus J > 1); if not, the model reduces to the classical case of knowing a single
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subspace that contains x. The distribution of x, if available, could also be exploited to

remove noise. However, in this thesis the denoising operation is based only on the geometry

of the signal model ΦK and the distribution of d.

With the addition of the noise d, the observed vector y will (almost surely) not be

represented sparsely, i.e., not be in ΦK . Intuitively, a good estimate for x is the point

from ΦK that is closest to y in Euclidean distance. Formally, because the probability

density function of d is a strictly decreasing function of ‖d‖2, this is the maximum likelihood

estimate of x given y. The estimate is obtained by applying an optimal sparse approximation

procedure to y. We will write

x̂SA = argmin
x∈ΦK

‖y − x‖2 (1.2)

for this estimate and call it the optimal K-term approximation of y. Henceforth we omit

the subscript 2 indicating the Euclidean norm.

The main results of this thesis are bounds on the per-component mean-squared estima-

tion error 1
N E

[
‖x − x̂SA‖2

]
for denoising via sparse approximation.1 These bounds depend

on (N,M,K) but avoid further dependence on the dictionary Φ (such as the coherence of

Φ); some results hold for all Φ and others are for randomly generated Φ. To the best of our

knowledge, the results differ from any in the literature in several ways:

(a) We study mean-squared estimation error for additive Gaussian noise, which is a stan-

dard approach to performance analysis in signal processing. In contrast, analyses such

as [20] impose a deterministic bound on the norm of the noise.

(b) We concentrate on having dependence solely on dictionary size rather than more fine-

grained properties of the dictionary. In particular, most signal recovery results in the

literature are based on noise being bounded above by a function of the coherence of

the dictionary [23, 18, 35, 27, 50, 19, 51].

(c) Some of our results are for spherically-symmetric random dictionaries. The series of

papers [5, 7, 6] is superficially related because of randomness, but in these papers

1The expectation is always over the noise d and is over the dictionary Φ and signal x in some cases.
However, the estimator does not use the distribution of x.
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the signals of interest are sparse with respect to a single known, orthogonal basis

and the observations are random inner products. The natural questions include a

consideration of the number of measurements needed to robustly recover the signal.

(d) We use source coding thought experiments in bounding estimation performance. This

technique may be useful in answering other related questions, especially in sparse

approximation source coding.

Our preliminary results were first presented in [26]. Probability of error results in a rather

different framework for basis pursuit appear in a manuscript currently under review [24].

1.2 Connections to Approximation

A signal with an exact K-term representation might arise because it was generated

synthetically, for example, by a compression system. A more likely situation in practice is

that there is an underlying true signal x that has a good K-term approximation rather than

an exact K-term representation. At very least, this is the goal in designing the dictionary

Φ for a signal class of interest. It is then still reasonable to compute (1.2) to estimate x

from y, but there are trade-offs in the selections of K and M .

Let fM,K denote the squared Euclidean approximation error of the optimal K-term

approximation using an M -element dictionary. It is obvious that fM,K decreases with

increasing K, and with suitably designed dictionaries it also decreases with increasing M .

One concern of approximation theory is to study the decay of fM,K precisely. (For this

we should consider N very large or infinite.) For piecewise smooth signals, for example,

wavelet frames give exponential decay with K [10, 17, 21].

When one uses sparse approximation to denoise, the performance depends on both the

ability to approximate x and the ability to reject the noise. Approximation is improved by

increasing M and K, but noise rejection is diminished. The dependence on K is clear, as the

fraction of the original noise that remains on average is at least K/N . For the dependence

on M , note that increasing M increases the number of subspaces and thus increases the
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chance that the selected subspace is not the best one for approximating x. Loosely, when

M is very large and the dictionary elements are not too unevenly spread, there is some

subspace very close to y and thus x̂SA ≈ y. This was illustrated in Figure 1.1.

Fortunately, there are many classes of signals for which M need not grow too quickly

as a function of N to get good sparse approximations. Examples of dictionaries with good

computational properties that efficiently represent audio signals were given by Goodwin [30].

For iterative design procedures, see papers by Engan et al. [25] and Tropp et al. [52].

One initial motivation for this work was to give guidance for the selection of M . This

requires the combination of approximation results (e.g., bounds on fM,K) with results such

as ours. The results presented here do not address approximation quality.

1.3 Related Work

Computing optimal K-term approximations is generally a difficult problem. Given

ǫ ∈ R
+ and K ∈ Z

+, to determine if there exists a K-term approximation x̂ such that

‖x − x̂‖ ≤ ǫ is an NP-complete problem [15, 45]. This computational intractability of

optimal sparse approximation has prompted study of heuristics. A greedy heuristic that is

standard for finding sparse approximate solutions to linear equations [29] has been known as

matching pursuit in the signal processing literature since the work of Mallat and Zhang [42].

Also, Chen, Donoho and Saunders [9] proposed a convex relaxation of the approximation

problem (1.2) called basis pursuit.

Two related discoveries have touched off a flurry of recent research:2

(a) Stability of sparsity—Under certain conditions, the positions of the nonzero entries in

a sparse representation of a signal are stable: applying optimal sparse approximation

to a noisy observation of the signal will give a coefficient vector with the original

support. Typical results are upper bounds (functions of the norm of the signal and

2The intensity of activity in this area is reflected by the number of manuscripts currently in review that
we have cited.
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the coherence of the dictionary) on the norm of the noise that allows a guarantee of

stability [23, 35, 34, 18, 20].

(b) Effectiveness of heuristics—Both basis pursuit and matching pursuit are able to find

optimal sparse approximations, under certain conditions on the dictionary and the

sparsity of signal [18, 20, 50, 51, 37, 36].

To contrast: in this thesis we consider noise with unbounded support and thus a positive

probability of failing to satisfy a sufficient condition for stability as in (a) above; and we

do not address algorithmic issues in finding sparse approximations. It bears repeating that

finding optimal sparse approximations is presumably computationally intractable except in

the cases where a greedy algorithm or convex relaxation happens to succeed. Our results are

thus bounds on the performance of the algorithms that one would probably use in practice.

Denoising by finding a sparse approximation is similar to the concept of denoising by

compression popularized by Saito [47] and Natarajan [44]. More recent works in this area

include those by Krim et al. [39], Chang et al. [8] and Liu and Moulin [40]. All of these

works use bases rather than frames. To put the present work into a similar framework would

require a “rate” penalty for redundancy. Instead, the only penalty for redundancy comes

from choosing a subspace that does not contain the true signal (“overfitting” or “fitting the

noise”). The literature on compression with frames notably includes [3, 46, 32, 1, 43].

This thesis uses quantization and rate–distortion theory only as a proof technique;

there are no encoding rates because the problem is purely one of estimation. However,

the “negative” results on representing white Gaussian signals with frames presented here

should be contrasted with the “positive” encoding results of Goyal et al. [32]. The positive

results of [32] are limited to low rates (and hence signal-to-noise ratios that are usually

uninteresting). A natural extension of the present work is to derive negative results for

encoding. This would support the assertion that frames in compression are useful not

universally, but only when they can be designed to yield very good sparseness for the signal

class of interest.
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1.4 Preview of Results and Outline

To motivate the thesis, we present a set of numerical results from Monte Carlo simu-

lations that qualitatively reflect our main results. In these experiments, N , M , and K are

small because of the high complexity of computing optimal approximations and because a

large number of independent trials is needed to get adequate precision. Each data point

shown is the average of 100 000 trials.

Consider a true signal x ∈ R
4 (N = 4) that has an exact 1-term representation (K = 1)

with respect to M -element dictionary Φ. We observe y = x + d with d ∼ N (0, σ2I4) and

compute estimate x̂SA from (1.2). The signal is generated with unit norm so that the signal-

to-noise ratio (SNR) is 1/σ2 or −10 log10 σ2 dB. Throughout we use the following definition

for mean-squared error:

MSE =
1

N
E
[
‖x − x̂SA‖2

]
.

To have tunable M , we used dictionaries that are M maximally separated unit vectors

in R
N , where separation is measured by the minimum pairwise angle among the vectors

and their negations. These are cases of Grassmannian packings [11, 49] in the simplest case

of packing one-dimensional subspaces (lines). We used packings tabulated by Sloane with

Hardin, Smith and others [48].

Figure 1.2 shows the MSE as a function of σ for several values of M . Note that for

visual clarity, MSE /σ2 is plotted, and all of the same properties are illustrated for K = 2

in Figure 1.3. For small values of σ, the MSE is (1/4)σ2. This is an example of the general

statement that

MSE =
K

N
σ2 for small σ,

as described in detail in Chapter 2. For large values of σ, the scaled MSE approaches a

constant value:

lim
σ→∞

MSE

σ2
= gK,M ,

where gK,M is a slowly increasing function of M and limM→∞ gK,M = 1. This limiting value

makes sense because in the limit x̂SA ≈ y = x+d and each component of d has variance σ2;

7



−30 −20 −10 0 10
0

0.2

0.4

0.6

0.8

1

10 log
10

 σ2

M
S

E
 / 

σ2

M= 4
M= 5
M= 7

M=10

M=20
M=40
M=80

Figure 1.2. Performance of denoising by sparse approximation when the true signal x ∈ R
4

has an exact 1-term representation with respect to a dictionary that is an optimal M -element
Grassmannian packing.

the denoising does not do anything. The characterization of the dependence of gK,M on K

and M is the main contribution of Chapter 3.

Another apparent pattern in Figure 1.2 that we would like to explain is the transition

between low and high SNR behavior. The transition occurs at smaller values of σ for larger

values of M . Also, MSE /σ2 can exceed 1, so in fact the sparse approximation procedure

can increase the noise. We are not able to characterize the transition well for general frames.

However, in Chapter 4 we obtain results for large frames that are generated by choosing

vectors uniformly at random from the unit sphere in R
N . There we get a sharp transition

between low and high SNR behavior.
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Chapter 2

Preliminary Computations

Recall from the introduction that we are estimating a signal x ∈ ΦK ⊂ R
N from an

observation y = x + d where d ∼ N (0, σ2IN ). ΦK was defined in (1.1) as the set of vectors

that can be represented as a linear combination of K vectors from Φ = {ϕm}M
m=1. We are

studying the performance of the estimator

x̂SA = argmin
x∈ΦK

‖y − x‖.

This estimator is the maximum likelihood estimator of x in this scenario in which d has

a Gaussian density and the estimator has no probabilistic prior information on x. The

subscript SA denotes “sparse approximation” because the estimate is obtained by finding

the optimal sparse approximation of y. There are values of y such that x̂SA is not uniquely

defined. These collectively have probability zero and we ignore them.

Finding x̂SA can be viewed as a two-step procedure: first, find the subspace spanned by

K elements of Φ that contains x̂SA; then, project y to that subspace. The identification of

a subspace and the orthogonality of y − x̂SA to that subspace will be used in our analyses.

Let PK = {Pi}i be the set of the projections onto subspaces spanned by K of the M vectors

in Φ. Then PK has at most J =
(M

K

)
elements,1 and the estimate of interest is given by

x̂SA = PT y, where T = argmax
i

‖Piy‖. (2.1)

1It is possible for distinct subsets of Φ to span the same subspace.
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The distribution of the error x− x̂SA and the average performance of the estimator both

depend on the true signal x. Where there is no distribution on x, the performance measure

analyzed here is the conditional MSE

e(x) =
1

N
E
[
‖x − x̂SA‖2 | x

]
; (2.2)

one could say that showing conditioning in (2.2) is merely for emphasis.

In the case that T is independent of d, the projection in (2.1) is to a fixed K-dimensional

subspace, so

e(x) =
K

N
σ2. (2.3)

This occurs when M = K (there is just one element in PK) or in the limit of high SNR

(small σ2). In the latter case, the subspace selection is determined by x, unperturbed by d.

11



Chapter 3

Rate-Distortion Analysis and Low

SNR Bound

In this section, we establish bounds on the performance of sparse approximation denois-

ing that apply for any dictionary Φ. One such bound qualitatively explains the low-SNR

performance shown in Figures 1.2 and 1.3, i.e., the right-hand side asymptotes in these

plots.

The denoising bound depends on a performance bound for sparse approximation signal

representation developed in Section 3.1. The signal representation bound is empirically

evaluated in Section 3.2 and then related to low-SNR denoising in Section 3.3. We will also

discuss the difficulties in extending this bound for moderate SNR. To obtain interesting

results for moderate SNR, we consider randomly generated Φ in Chapter 4.

3.1 Sparse Approximation of a Gaussian Source

Before addressing the denoising performance of sparse approximation, we give an ap-

proximation result for Gaussian signals. This result is a lower bound on the MSE when

sparsely approximating a Gaussian signal; it is the basis for an upper bound on the MSE for

12



denoising when the SNR is low. These bounds are in terms of the problem size parameters

(M,N,K).

Theorem 1 Let Φ be an M -element dictionary, let J =
(M

K

)
, and let v ∈ R

N have the

distribution N (v̄, σ2IN ). If v̂ is the optimal K-sparse approximation of v with respect to Φ,

then

1

N
E
[
‖v − v̂‖2

]
≥ σ2c1

(
1 − K

N

)
(3.1)

where

c1 = J−2/(N−K)

(
K

N

)K/(N−K)

.

For v̄ = 0, the stronger bound

1

N
E
[
‖v − v̂‖2

]
≥ σ2 · c1

1 − c1
·
(

1 − K

N

)
(3.2)

also holds.

Proof: This follows from Theorem 2. See Section 6.1.

Remarks:

(i) Theorem 1 shows that for any Φ, there is an approximation error lower bound that

depends only on the frame size M , the dimension of the signal N , and the dimension

of the signal model K.

(ii) As M → ∞ with K and N fixed, c1 → 0. This is consistent with the fact that it is

possible to drive the approximation error to zero by letting the dictionary grow.

(iii) The decay of c1 as M increases is slow. To see this, define a sparsity measure α = K/N

and a redundancy factor ρ = M/N . Now using the approximation (see, e.g., [28,

p. 530]) (
ρN

αN

)
≈
( ρ

α

)αN
(

ρ

ρ − α

)(ρ−α)N

,

we can compute the limit

lim
N→∞

c1 =

[(
α

ρ

)2α(
1 − α

ρ

)2(ρ−α)

αα

]1/(1−α)

.

13



Thus the decay of the lower bound in (3.1) as ρ is increased behaves as ρ−2α/(1−α).

This is slow when α is small.

The theorem below strengthens Theorem 1 by having a dependence on the entropy

of the subspace selection random variable T in addition to the problem size parameters

(M,N,K). The entropy of T is defined as

H(T ) = −
|PK |∑

i=1

pT (i) log2 pT (i) bits

where pT (i) is the probability mass function of T .

Theorem 2 Let Φ be an M -element dictionary, and let v ∈ R
N have the distribution

N (v̄, σ2IN ). If v̂ is the optimal K-sparse approximation of v with respect to Φ and T is the

index of the subspace that contains v̂, then

1

N
E
[
‖v − v̂‖2

]
≥ σ2c2

(
1 − K

N

)
(3.3)

where

c2 = 2−2H(T )/(N−K)

(
K

N

)K/(N−K)

.

For v̄ = 0, the stronger bound

1

N
E
[
‖v − v̂‖2

]
≥ σ2 · c2

1 − c2
·
(

1 − K

N

)
(3.4)

also holds.

Proof: See Section 6.1.

3.2 Empirical Evaluation of Approximation Error Bounds

The bound in Theorem 1 does not depend on any characteristics of the dictionary other

than M and N . Thus it will be nearest to tight when the dictionary is well-suited to

representing the Gaussian signal v. That the expression (3.1) is not just a bound but also a

useful approximation is supported by the Monte Carlo simulations described in this section.

14



To empirically evaluate the tightness of the bound, we compare it to the MSE obtained

with Grassmannian frames and certain random frames. The Grassmannian frames are from

the same tabulation described in Section 1.4 [48]. The random frames are generated by

choosing M vectors uniformly at random from the surface of a unit sphere. One such

vector can be generated, for example, by drawing an i.i.d. Gaussian vector and normalizing.

Figure 3.1 shows comparisons between the bound in Theorem 1 and the simulated ap-

proximation errors as a function of M for several values of N and K. For all the simulations,

v̄ = 0; it is for v̄ = 0 that T is closest to uniformly distributed and hence the bound is

tightest. Parts (a)–(c) each cover a single value of N and combine K = 1 and K = 2.

Part (d) shows results for N = 10 and N = 100 for K = 1. In all cases, the bound holds

and gives a qualitative match in the dependence of the approximation error on K and M .

In particular, the slopes on these log-log plots correspond to the decay as a function of ρ

discussed in Remark (iii) above. We also find that the difference in approximation error

between using a Grassmannian frame or a random frame is small.

3.3 Bounds on Denoising MSE

We now return to the analysis of the performance of sparse approximation denoising as

defined in Chapter 2. We wish to bound the estimation error e(x) for a given signal x and

frame Φ.

To create an analogy between the approximation problem considered in Section 3.1 and

the denoising problem, let v̄ = x, v− v̄ = d, and v = y. These correspondences fit perfectly,

since d ∼ N (0, σ2IN ) and we apply sparse approximation to y to get x̂SA. Theorem 2 gives

the bound

1

N
E
[
‖y − x̂SA‖2 | x

]
≥ σ2c2

(
1 − K

N

)

where c2 is defined as before. As illustrated in Figure 3.2, it is as if we are attempting

to represent d by sparse approximation and we obtain d̂ = x̂SA − x. The quantity we are

interested in is e(x) = 1
N E

[
‖d̂‖2 | x

]
.

15



10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M

no
rm

al
iz

ed
 M

S
E

bound

bound

random
Grassmannian

}
K = 1

}
K = 2

10
1

10
2

10
−3

10
−2

10
−1

10
0

M

no
rm

al
iz

ed
 M

S
E bound

bound

random
Grassmannian

}
K = 1

}
K = 2

(a) N = 4, K ∈ {1, 2}, 105 trials per point (b) N = 6, K ∈ {1, 2}, 104 trials per point

10
1

10
2

10
−2

10
−1

10
0

M

no
rm

al
iz

ed
 M

S
E bound

bound

random
Grassmannian

}
K = 1

}
K = 2

10
0

10
1

10
2

10
3

10
−1

10
0

M

no
rm

al
iz

ed
 M

S
E

random
bound

}
N = 10

}N = 100

(c) N = 10, K ∈ {1, 2}, 104 trials per point (d) N ∈ {10, 100}, K = 1, 102 trials per point
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In the case that x and x̂SA are in the same subspace, d − d̂ is orthogonal to d̂ so

‖d‖2 = ‖d̂‖2 + ‖d − d̂‖2. Thus knowing E
[
‖d‖2 | x

]
= Nσ2 and having a lower bound on

E
[
‖d̂‖2 | x

]
immediately gives an upper bound on e(x).

The interesting case is when x and x̂SA are not necessarily in the same subspace. Re-

calling that T is the index of the subspace selected in sparse approximation, orthogonally

decompose d as d = dT ⊕ dT⊥ with dT in the selected subspace and similarly decompose d̂.

Then d̂T = dT and the expected squared norm of this component can be bounded above as

in the previous paragraph. Unfortunately, ‖d̂T⊥‖ can be larger than ‖dT⊥‖ in proportion

to ‖x‖, as illustrated in Figure 3.2. The worst case is for ‖d̂T⊥‖ = 2‖dT⊥‖, when y lies

equidistant from the subspace of x and the subspace of x̂SA.

From this analysis we obtain the weak bound

e(x) =
1

N
E
[
‖x − x̂SA‖2 | x

]
≤ 4σ2 (3.5)

and the limiting low SNR bound

e(0) =
1

N
E
[
‖x − x̂SA‖2 | x

]
|x=0 ≤ σ2

(
1 − c2

(
1 − K

N

))
. (3.6)
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Chapter 4

Analysis for Isotropic Random

Frames

In general, the performance of sparse approximation denoising is given by

e(x) =
1

N
E
[
‖x − x̂SA‖2

]
=

1

N

∫

RN

∥∥∥∥∥x −
(

argmin
x̂∈ΦK

‖x + η − x̂‖2

)∥∥∥∥∥

2

f(η) dη

where f(·) is the density of the noise d. While this expression does not give any fresh insight,

it does remind us that the performance depends on every element of Φ. In this section,

we improve greatly upon (3.5) with an analysis that depends on each dictionary element

being an independent random vector and on the dictionary being large. The results are

expectations over both the noise d and the dictionary itself. In addition to analyzing the

MSE, we also analyze the probability of error in the subspace selection, i.e., the probability

that x and x̂SA lie in different subspaces. In light of the simulations in Section 3.2, we

expect these analyses to qualitatively match the performance of a variety of dictionaries.

Section 4.1 delineates the additional assumptions made in this section. The probability

of error and MSE analyses are then given in Section 4.2. Estimates of the probability of

error and MSE are numerically validated in Section 4.3, and finally limits as N → ∞ are

studied in Section 4.4
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4.1 Modeling Assumptions

This section specifies the precise modeling assumptions in analyzing denoising perfor-

mance with large, isotropic random frames. Though the results are limited to the case

of K = 1, the model is described for general K. Difficulties in extending the results to

general K are described in the concluding comments of the thesis. While many practical

problems involve K > 1, the analysis of the K = 1 case presented here illustrates a number

of unexpected qualitative phenomena, some of which have been observed for higher values

of K.

The model is unchanged from earlier in the thesis except that the dictionary Φ and

signal x are random:

(a) Dictionary generation: The dictionary Φ consists of M i.i.d. random vectors uniformly

distributed on the unit sphere in R
N .

(b) Signal generation: The true signal x is a linear combination of the first K dictionary

elements so that

x =

K∑

i=1

αiϕi,

for some random coefficients {αi}. The coefficients {αi} are independent of the dic-

tionary except in that x is normalized to have ‖x‖2 = N for all realizations of the

dictionary and coefficients.

(c) Noise: The noisy signal y is given by y = x + d where, as before, d ∼ N (0, σ2IN ). d

is independent of Φ and x. We will let

γ = 1/σ2,

which is the input SNR because of the scaling of x.

(d) Estimator: The estimator x̂SA is defined as before to be the optimal K-sparse approx-

imation of y with respect to Φ. Specifically, we enumerate the J =
(M

K

)
K-element

subsets of Φ. The jth subset spans a subspace denoted Vj and Pj denotes the projec-
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tion operator onto Vj . Then

x̂SA = PT y where T = argmin
j∈{1, 2, ..., J}

‖y − Pjy‖2. (4.1)

For the special case when M and N are large and K = 1, we will estimate two quantities:

Definition 1 The subspace selection error probability perr is defined as

perr = Pr (T 6= jtrue) , (4.2)

where T is the subspace selection index and jtrue is the index of the subspace containing the

true signal x, i.e., jtrue is the index of the subset {1, 2, . . . , K}.

Definition 2 The normalized expected MSE is defined as

EMSE =
1

Nσ2
E
[
‖x − x̂SA‖2

]
=

γ

N
E
[
‖x − x̂SA‖2

]
. (4.3)

Normalized expected MSE is the per-component MSE normalized by the per-component

noise variance 1
N E

[
‖d‖2

]
= σ2. The term “expected MSE” emphasizes that the expectation

in (4.3) is over not just the noise d, but also the dictionary Φ and signal x.

We will give tractable computations to estimate both perr and EMSE. Specifically, perr

can be approximated from a simple line integral and EMSE can be computed from a double

integral.

4.2 Analyses of Subspace Selection Error and MSE

The first result shows that the subspace selection error probability can be bounded by a

double integral and approximately computed as a single integral. The integrands are simple

functions of the problem parameters M , N , K and γ. While the result is only proven for

the case of K = 1, K is left in the expressions to indicate the precise role of this parameter.

Theorem 3 Consider the model described in Section 4.1. When K = 1 and M and N are

large, the subspace selection error probability defined in (4.2) is bounded above by

perr < 1 −
∫ ∞

0

∫ ∞

0
fr(u)fs(v) exp

(
−(CG(u, v))r

1 − G(u, v)

)
1{G(u,v)≤Gmax} dv du, (4.4)
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and perr is approximated well by

p̂err(N,M,K, γ) = 1 −
∫ ∞

0
fr(u) exp

(
−
(

C(N − K)σ2u

N + (N − K)σ2u

)r)
du

= 1 −
∫ ∞

0
fr(u) exp

(
−
(

Cau

1 + au

)r)
du, (4.5)

where

G(u, v) =
au

au +

(
1 − σ

√
Kv
N

)2 (4.6)

Gmax = (rβ(r, s))1/(r−1),

C =

(
J − 1

rβ(r, s)

)1/r

, J =

(
M

K

)
(4.7)

r =
N − K

2
, s =

K

2
, (4.8)

a =
(N − K)σ2

N
=

N − K

Nγ
, (4.9)

fr(u) is the probability distribution

fr(u) = rrΓ(r)ur−1e−ru, u ∈ [0,∞), (4.10)

β(r, s) is the beta function, and Γ(r) is the Gamma function [2].

Proof: See Section 6.2.

It is interesting to evaluate p̂err in two limiting cases. First, suppose that J = 1. This

corresponds to the situation where there is only one subspace. In this case, C = 0 and (4.5)

gives p̂err = 0. This is expected, since with one subspace there is no chance of a subspace

selection error.

At the other extreme, suppose that N , K, and γ are fixed and M → ∞. Then C → ∞

and p̂err → 1. Again, this is expected since as the size of the frame increases, the number

of possible subspaces increases and the probability of error increases.

The next result approximates the normalized expected MSE with a double integral.

The integrand is relatively simple to evaluate and decays quickly as ρ → ∞ and u → ∞ so

numerically approximating the double integral is not difficult.
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Theorem 4 Consider the model described in Section 4.1. When K = 1 and M and N are

large, the normalized expected MSE defined in (4.3) is given approximately by

ÊMSE(N,M,K, γ) =
K

N
+

∫ ∞

0

∫ ∞

0
fr(u)gr(ρ)F (ρ, u) dρ du, (4.11)

where fr(u) is given in (4.10), gr(ρ) is the probability distribution

gr(ρ) = rCrrr−1 exp (−(Cρ)r) , (4.12)

F (ρ, u) =






γ(au(1 − ρ) + ρ), if ρ(1 + au) < au;

0, otherwise,
(4.13)

and C, r, and a are defined in (4.7)–(4.9).

Proof: See Section 6.3.

4.3 Numerical Examples

We now present simulation results to examine the accuracy of the approximations

in Theorems 3 and 4. Three pairs of (N,M) values were used: (5,1000), (10,100), and

(10,1000). For each integer SNR from -10 dB to 35 dB, the subspace selection and nor-

malized MSE were measured for 5× 105 independent experiments. The resulting empirical

probabilities of subspace selection error and normalized expected MSEs are shown in Fig-

ure 4.1. Plotted alongside the empirical results are the estimates p̂err and ÊMSE from (4.5)

and (4.11).

Comparing the theoretical and measured values in Figure 4.1, we see that the theo-

retical values match the simulation closely over the entire SNR range. Also note that the

bottom panel of Figure 4.1 shows qualitatively the same behavior as Figures 1.2 and 1.3

(the direction of the horizontal axis is reversed). In particular, EMSE ≈ K
N for high SNR

and the low SNR behavior depends on M and N as described by (3.6).
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with 5 × 105 independent simulations per data point. In all cases K = 1. The curve pairs
are labeled by (N,M). Simulation results are compared to the estimates from Theorems 3
and 4.
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4.4 Asymptotic Analysis

The estimates p̂err and ÊMSE are not difficult to compute numerically, but the expres-

sions (4.5) and (4.11) provide little direct insight. It is thus interesting to examine the

asymptotic behavior of p̂err and ÊMSE as N and M grow. The following theorem gives an

asymptotic expression for the limiting value of the error probability function.

Theorem 5 Consider the function p̂err(N,M,K, γ) defined in (4.5). Define the critical

SNR as a function of M , N , and K as

γcrit = C − 1 =

(
J − 1

rβ(r, s)

)1/r

− 1. (4.14)

where C, r, s and J are defined in (4.7) and (4.8). For K = 1 and any fixed γ and γcrit,

lim
N, M → ∞

γcrit constant

p̂err(N,M,K, γ) =






1, if γ < γcrit;

0, if γ > γcrit,
(4.15)

where the limit is on any sequence of M and N with γcrit constant.

Proof: See Section 6.4.

The theorem shows that, asymptotically, there is a critical SNR γcrit above which the

error probability goes to one and below which the probability is zero. Thus, even though

the frame is random, the error event asymptotically becomes deterministic.

A similar result holds for the asymptotic MSE.

Theorem 6 Consider the function ÊMSE(M,N,K, γ) defined in (4.11) and the critical

SNR γcrit defined in (4.14). For K = 1 and any fixed γ and γcrit,

lim
N, M → ∞

γcrit constant

ÊMSE(M,N,K, γ) =






Êlim(γ), if γ < γcrit;

0, if γ > γcrit,
(4.16)

where the limit is on any sequence of M and N with γcrit constant, and

Êlim(γ) =
γ + γcrit

1 + γcrit
.
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Proof: See Section 6.5.

Remarks:

(i) Theorems 5 and 6 hold for any values of K. They are stated for K = 1 because the

significance of p̂err(N,M,K, γ) and ÊMSE(M,N,K, γ) is proven only for K = 1.

(ii) Both Theorems 5 and 6 involve limits with γcrit constant. It is useful to examine how

M , N and K must be related asymptotically for this condition to hold. One can use

the definition of the beta function, β(r, s) = Γ(r)Γ(s)/Γ(r + s), along with Stirling’s

approximation, to show that when K ≪ N ,

(rβ(r, s))1/r ≈ 1. (4.17)

Substituting (4.17) into (4.14), we see that γcrit ≈ J1/r − 1. Also, for K ≪ N and

K ≪ M ,

J1/r =

(
M

K

)2/(N−K)

≈ (M/K)2K/N ,

so that

γcrit ≈ (M/K)2K/N − 1

for small K and large M and N . Therefore, for γcrit to be constant, (M/K)2K/N must

be constant. Equivalently, the dictionary size M must grow as K(1 + γcrit)
N/(2K),

which is exponential in the inverse sparsity N/K.

The asymptotic normalized MSE is plotted in Figure 4.2 for various values of the critical

SNR γcrit. When γ > γcrit, the normalized MSE is zero. This is expected: from Theorem 5,

when γ > γcrit, the estimator will always pick the correct subspace. We know that for a

fixed subspace estimator, the normalized MSE is K/N . Thus, as N → ∞, the normalized

MSE approaches zero.

What is perhaps surprising is the behavior for γ < γcrit. In this regime, the normalized

MSE actually increases with increasing SNR. At the critical level, γ = γcrit, the normalized

MSE approaches its maximum value

max Êlim =
2γcrit

1 + γcrit
.
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Figure 4.2. Asymptotic normalized MSE as N → ∞ (from Theorem 6) for various critical
SNRs γcrit.

When γcrit > 1, the limit of the normalized MSE Êlim(γ) satisfies Êlim(γ) > 1. Consequently,

the sparse approximation results in noise amplification instead of noise reduction. In the

worst case, as γcrit → ∞, Êlim(γ) → 2. Thus, sparse approximation can result in a noise

amplification by a factor as large as 2. Contrast this with the factor of 4 in (3.5), which

seems to be a very weak bound.
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Chapter 5

Comments and Conclusions

This thesis has addressed properties of denoising by sparse approximation that are

geometric in that the signal model is membership in a specified union of subspaces, without

a probability density on that set. The denoised estimate is the feasible signal closest to the

noisy observed signal.

The first main result (Theorems 1 and 2) is a bound on the performance of sparse

approximation applied to a Gaussian signal. This lower bound on mean-squared approx-

imation error is used to determine an upper bound on denoising MSE in the limit of low

input SNR.

The remaining results apply to the expected performance when the dictionary itself is

random with i.i.d. entries selected according to an isotropic distribution. Easy-to-compute

estimates for the probability that the subspace containing the true signal is not selected

and for the MSE are given (Theorems 3 and 4). The accuracy of these estimates is verified

through simulations. Unfortunately, these results are proven only for the case of K = 1.

The main technical difficulty in extending these results to general K is that the distances

to the various subspaces are not mutually independent. (Though Lemma 2 does not extend

to K > 1, we expect that a relation similar to (6.11) holds.)

Asymptotic analysis (N → ∞) of the situation with a random dictionary reveals a

critical value of the SNR (Theorems 5 and 6). Below the critical SNR, the probability of
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selecting the subspace containing the true signal approaches zero and the expected MSE

approaches a constant with a simple, closed form; above the critical SNR, the probability

of selecting the subspace containing the true signal approaches one and the expected MSE

approaches zero.

Sparsity with respect to a randomly generated dictionary is a strange model for

naturally-occurring signals. However, most indications are that a variety of dictionaries

lead to performance that is qualitatively similar to that of random dictionaries. Also, spar-

sity with respect to randomly generated dictionaries occurs when the dictionary elements

are produced as the random instantiation of a communication channel. Both of these ob-

servations require further investigation.
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Chapter 6

Proofs

6.1 Proof of Theorems 1 and 2

We begin with a proof of Theorem 2; Theorem 1 will follow easily. The proof is based on

analyzing an idealized encoder for v. Note that despite the idealization and use of source

coding theory, the bounds hold for any values of (N,M,K)—the results are not merely

asymptotic. Readers unfamiliar with the basics of source coding theory are referred to any

standard text, such as [4, 13, 33], though the necessary facts are summarized below.

Consider the encoder for v shown in Figure 6.1. The encoder operates by first finding

the optimal sparse approximation of v, which is denoted by v̂. The subspaces in ΦK are

assumed to be numbered, and the index of the subspace containing v̂ is denoted by T . v̂

is then quantized with a K-dimensional, b-bit quantizer represented by the box “Q” to

produce the encoded version of v, which is denoted by v̂Q.

The subspace selection T is a discrete random variable that depends on v. The average

number of bits needed to communicate T to a receiver that knows the probability mass

function of T is given by the entropy of T , which is denoted H(T ) [13]. In analyzing the

encoder for v, we assume that a large number of independent realizations of v are encoded

at once. This allows b to be an arbitrary real number (rather than an integer) and allows

the average number of bits used to represent T to be arbitrarily close to H(T ). The encoder
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Figure 6.1. The proof of Theorem 2 is based on the analysis of a hypothetical encoder for
v. The sparse approximation box “SA” finds the optimal K-sparse approximation of v,
denoted v̂, by computing v̂ = PT v. The subspace selection T can be represented with H(T )
bits. The quantizer box “Q” quantizes v̂ with b bits, with knowledge of T . The overall
output of the encoder is denoted v̂Q.

of Figure 6.1 can thus be considered to use H(T ) + b bits to represent v approximately as

v̂Q.

The crux of the proof is to represent the squared error that we are interested in, ‖v−v̂‖2,

in terms of squared errors of the overall encoder v 7→ v̂Q and the quantizer v̂ 7→ v̂Q. We

will show the orthogonality relationship below and bound both terms:

E
[
‖v − v̂‖2

]
= E

[
‖v − v̂Q‖2

]
︸ ︷︷ ︸

bounded below using fact (a)

− E
[
‖v̂ − v̂Q‖2

]
︸ ︷︷ ︸

bounded above using fact (b)

.

The two facts we need from rate–distortion theory are [4, 13, 33]:

(a) The lowest possible per-component MSE for encoding an i.i.d. Gaussian source with

per-component variance σ2 with R bits per component is σ22−2R.

(b) Any source with per-component variance σ2 can be encoded with R bits per compo-

nent to achieve per-component MSE σ22−2R.

(The combination of facts (a) and (b) tells us that Gaussian sources are the hardest to

represent when distortion is measured by MSE.)

Applying fact (a) to the v 7→ v̂Q encoding, we get

1

N
E
[
‖v − v̂Q‖2

]
≥ σ22−2(H(T )+b)/N . (6.1)

Now we would like to define the quantizer “Q” in Figure 6.1 to get the smallest possible

upper bound on E
[
‖v̂ − v̂Q‖2

]
.
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Since the distribution of v̂ does not have a simple form (e.g., it is not Gaussian), we have

no better tool than fact (b), which requires us only to find (or upper bound) the variance

of the input to a quantizer. Consider a two-stage quantization process for v̂. The first stage

(with access to T ) applies an affine, length-preserving transformation to v̂ such that the

result has mean zero and lies in a K-dimensional space. The output of the first stage is

passed to an optimal b-bit quantizer. Using fact (b), the performance of such a quantizer

must satisfy

1

K
E
[
‖v̂ − v̂Q‖2

]
≤ σ2

v̂|T2−2b/K , (6.2)

where σ2
v̂|T is the per-component conditional variance of v̂, in the K-dimensional space,

conditioned on T .

From here on we have slightly different reasoning for the v̄ = 0 and v̄ 6= 0 cases. For

v̄ = 0, we get an exact expression for the desired conditional variance; for v̄ 6= 0, we use an

upper bound.

When v̄ = 0, symmetry dictates that E [v̂ | T ] = 0 for all T and E [v̂] = 0. Thus the

conditional variance σ2
v̂|T and unconditional variance σ2

v̂ are equal. Taking the expectation

of

‖v‖2 = ‖v̂‖2 + ‖v − v̂‖2

gives

Nσ2 = Kσ2
v̂ + E

[
‖v − v̂‖2

]
.

Thus

σ2
v̂|T = σ2

v̂ =
1

K

(
Nσ2 − E

[
‖v − v̂‖2

])
=

N

K
(σ2 − DSA), (6.3)

where we have used DSA to denote 1
N E

[
‖v − v̂‖2

]
—which is the quantity we are bounding

in the theorem. Substituting (6.3) into (6.2) now gives

1

K
E
[
‖v̂ − v̂Q‖2

]
≤ N(σ2 − DSA)

K
2−2b/K . (6.4)

To usefully combine (6.1) and (6.4), we need one more orthogonality fact. Since the

quantizer Q operates in subspace T , its quantization error is also in subspace T . On the
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other hand, because v̂ is produced by orthogonal projection to subspace T , v−v̂ is orthogonal

to subspace T . So

‖v − v̂Q‖2 = ‖v̂ − v̂Q‖2 + ‖v − v̂‖2.

Taking expectations, rearranging, and substituting (6.1) and (6.4) gives

E
[
‖v − v̂‖2

]
= E

[
‖v − v̂Q‖2

]
− E

[
‖v̂ − v̂Q‖2

]
(6.5)

≥ Nσ22−2(H(T )+b)/N − N(σ2 − DSA)2−2b/K .

Recalling that the left-hand side of (6.5) is NDSA and rearranging gives

DSA ≥ σ2

(
2−2(H(T )+b)/N − 2−2b/K

1 − 2−2b/K

)
. (6.6)

Since this bound must be true for all b ≥ 0, one can maximize with respect to b to obtain

the strongest bound. This maximization is messy; however, maximizing the numerator is

easier and gives almost as strong a bound. The numerator is maximized when

b =
K

N − K

(
H(T ) +

N

2
log2

N

K

)
,

and substituting this value of b in (6.6) gives

DSA ≥ σ2 · 2−2H(T )/(N−K)
(
1 − K

N

) (
K
N

)K/(N−K)

1 − 2−2H(T )/(N−K)
(

K
N

)N/(N−K)
.

We have now completed the proof of Theorem 2 for v̄ = 0.

For v̄ 6= 0, there is no simple expression for σ2
v̂|T that does not depend on the geometry

of the dictionary, such as (6.3), to use in (6.2). Instead, use

σ2
v̂|T ≤ σ2

v̂ ≤ N

K
σ2,

where the first inequality holds because conditioning cannot increase variance and the second

follows from fact that the orthogonal projection of v cannot increase its variance, even if

the choice of projection depends on v. Now following the same steps as for the v̄ = 0 case

yields

DSA ≥ σ2
(
2−2(H(T )+b)/N − 2−2b/K

)
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in place of (6.6). The bound is optimized over b to obtain

DSA ≥ σ2 · 2−2H(T )/(N−K)
(
1 − K

N

) (
K
N

)K/(N−K)
.

The proof of Theorem 1 now follows directly: since T is a discrete random variable that

can take at most J values, H(T ) ≤ log2 J .

6.2 Proof of Theorem 3

Using the notation of Section 4.1, let Vj, j = 1, 2, . . . , , J , be the subspaces spanned

by the J possible K-element subsets of the dictionary Φ. Let Pj be the projection operator

onto Vj , and let T be index of the subspace closest to y. Let jtrue be the index of the

subspace containing the true signal x, so that the probability of error is

perr = Pr(T 6= jtrue).

For each j, let x̂j = Pjy, so that the estimator, x̂SA in (4.1) can be rewritten as x̂SA = x̂T .

Also, define random variables

ρj = ‖y − x̂j‖2/‖y‖2, j = 1, 2, . . . , J

to represent the normalized distances between y and the Vj ’s. Henceforth, the ρj’s will be

called angles, since ρj = sin2 θj where θj is the angle between y and Vj . The angles are well

defined since ‖y‖2 > 0 with probability one.

Lemma 1 For all j 6= jtrue, the angle ρj is independent of x and d.

Proof: Given a subspace V and vector y, define the function

R(y, V ) = ‖y − PV y‖2/‖y‖2, (6.7)

where PV is the projection operator onto the subspace y. Thus, R(y, V ) is the angle between

y and V . With this notation, ρj = R(y, Vj). Since ρj is a deterministic function of y and

Vj and y = x + d, to show ρj is independent of x and d, it suffices to prove that ρj is
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independent of y. Equivalently, we need to show that for any function G(ρ) and vectors y0

and y1,

E [G(ρj) | y = y0] = E [G(ρj) | y = y1] .

This property can be proven with the following symmetry argument: Let U be any orthog-

onal transformation. Since U is orthogonal, PUV (Uy) = UPV y for all subspaces V and

vectors y. Combining this with the fact that ‖Uv‖ = ‖v‖ for all v, we see that

R(Uy,UV ) = ‖Uy − PUV (Uy)‖2/‖Uy‖2 = ‖U(y − PV (y))‖2/‖Uy‖2

= ‖y − PV (y)‖2/‖y‖2 = R(y, V ). (6.8)

Also, for any scalar α > 0, it can be verified that R(αy, V ) = R(y, V ).

Now, let y0 and y1 be any two possible non-zero values for the vector y. Then, there

exists an orthogonal transformation U and scalar α > 0 such that y1 = αUy0. Since

j 6= jtrue and K = 1, the subspace Vj is spanned by vectors ϕi, independent of the vector

y. Therefore

E [G(ρj) | y = y1] = E [G(R(y1, Vj))] = E [G(R(αUy0, Vj))]

= E [G(R(Uy0, Vj))] . (6.9)

Now since the elements of Φ are distributed uniformly on the unit sphere, the subspace UVj

is identically distributed to Vj . Combining this with (6.8) and (6.9),

E [G(ρj) | y = y1] = E [G(R(Uy0, Vj))] = E [G(R(Uy0, UVj))]

= E [G(R(y0, Vj))] = E [G(ρj) | y = y0]

and this completes the proof. �

Lemma 2 The random angles ρj, j 6= jtrue are i.i.d., each with a probability density func-

tion given by the beta distribution,

pρ(ρ) =
1

β(r, s)
ρr−1(1 − ρ)s−1, 0 ≤ ρ ≤ 1, (6.10)

where r = (N − K)/2 and s = K/2 as defined in (4.8).
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Proof: Since K = 1, each of the subspaces Vj for j 6= jtrue is spanned by a single, unique

vector in Φ. Since the vectors in Φ are independent and the random variables ρj are the

angles between y and the spaces Vj, the angles are independent.

Now consider a single angle ρj for j 6= jtrue. The angle ρj is the angle between y and a

random subspace Vj . Since the distribution of the random vectors defining Vj is spherically

symmetric and ρj is independent of y, ρj is identically distributed to the angle between

any fixed subspace V and a random vector z uniformly distributed on the unit sphere.

One way to create such a random vector z is to take z = w/‖w‖, where w ∼ N (0, IN ). Let

w1, w2, . . . , wK be the components of w in V , and wK+1, wK+2, . . . , wN be the components

in the orthogonal complement to V . If we define

X =
K∑

i=1

w2
i and Y =

N∑

i=K+1

w2
i ,

then the angle between z and V is ρ = Y/(X + Y ). Since X and Y are the sums of K and

N − K i.i.d. squared Gaussian random variables, they are Chi-squared random variables

with K and N − K degrees of freedom, respectively [38]. Now, a well-known property of

Chi-squared random variables is that if X and Y are Chi-squared random variables with m

and n degrees of freedom, Y/(X + Y ) will have the beta distribution with parameters m/2

and n/2. Thus, ρ = Y/(X + Y ) has the beta distribution, with parameters r and s defined

in (4.8). The probability density function for the beta distribution is given in (6.10). �

Lemma 3 Let ρmin = minj 6=jtrue
ρj. Then ρmin is independent of x and d and has the

approximate distribution

Pr(ρmin > ǫ) ≈ exp (−(Cǫ)r) (6.11)

for small ǫ, where C is given in (4.7). More precisely,

Pr(ρmin > ǫ) < exp(−(Cǫ)r(1 − ǫ)s−1) for all ǫ ∈ (0, 1) (6.12)

and

Pr(ρmin > ǫ) > exp(−(Cǫ)r/(1 − ǫ)) for 0 < ǫ < (rβ(r, s))1/(r−1) . (6.13)
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Proof: Since Lemma 1 shows that each ρj is independent of x and d, it follows that ρmin

is independent of x and d as well. Also, for any j 6= jtrue, by bounding the integrand of

Pr(ρj < ǫ) =
1

β(r, s)

∫ ǫ

0
ρr−1(1 − ρ)s−1 dρ

from above and below we obtain the bounds

(1 − ǫ)s−1

β(r, s)

∫ ǫ

0
ρr−1 dρ < Pr(ρj < ǫ) <

1

β(r, s)

∫ ǫ

0
ρr−1 dρ,

which simplifies to

(1 − ǫ)s−1ǫr

rβ(r, s)
< Pr(ρj < ǫ) <

ǫr

rβ(r, s)
. (6.14)

Now, there are J − 1 subspaces Vj where j 6= jtrue, and, by Lemma 2, the ρj’s are

mutually independent. Consequently, if we apply the upper bound of (6.14) and 1 − δ >

exp(−δ/(1 − δ)) for δ ∈ (0, 1), with δ = ǫr/(rβ(r, s)), we obtain

Pr(ρmin > ǫ) =
∏

j 6=jtrue

Pr(ρj > ǫ) >

(
1 − ǫr

rβ(r, s)

)J−1

> exp

(
− ǫr(J − 1)

rβ(r, s)(1 − δ)

)
for 0 < ǫ < (rβ(r, s))1/r

> exp

(
− ǫr(J − 1)

rβ(r, s)(1 − ǫ)

)
for 0 < ǫ < (rβ(r, s))1/(r−1) .

Similarly, using the lower bound of (6.14), we obtain

Pr(ρmin > ǫ) =
∏

j 6=jtrue

Pr(ρj > ǫ) <

(
1 − (1 − ǫ)s−1ǫr

rβ(r, s)

)J−1

< exp

(
−(1 − ǫ)s−1ǫr(J − 1)

rβ(r, s)

)
.

�

Proof of Theorem 3: Let Vtrue be the “correct” subspace, i.e., Vtrue = Vj for j = jtrue.

Let Dtrue be the squared distance from y to Vtrue, and let Dmin be the minimum of the

squared distances from y to the “incorrect” subspaces, Vj, j 6= jtrue. Since the estimator

selects the closest subspace, there is an error if and only if Dmin ≤ Dtrue. Thus,

perr = Pr(Dmin ≤ Dtrue). (6.15)
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To estimate this quantity, we will approximate the probability distributions of Dmin and

Dtrue.

First consider Dtrue. Write the noise vector d as d = d0 +d1, where d0 is the component

in Vtrue and d1 is in V ⊥
true. Let D0 = ‖d0‖2 and D1 = ‖d1‖2. Since y = x + d and x ∈ Vtrue,

the squared distance from y to Vtrue is D1. Thus,

Dtrue = D1. (6.16)

Now consider Dmin. For any j, x̂j is the projection of y onto Vj . Thus, the squared

distance from y to any space Vj is ‖y − x̂j‖2 = ρj‖y‖2. Hence, the minimum of the squared

distances from y to the spaces Vj , j 6= jtrue is

Dmin = ρmin‖y‖2. (6.17)

We will bound and approximate ‖y‖2 to obtain the bound and approximation of the theo-

rem. Notice that y = x + d = x + d0 + d1 where x + d0 ∈ Vtrue and d1 ∈ V ⊥
true. Using this

orthogonality and the triangle inequality we obtain the bound

‖y‖2 = ‖x + d0‖2 + ‖d1‖2 ≥ (‖x‖ − ‖d0‖)2 + ‖d1‖2

= (
√

N −
√

D0)
2 + D1. (6.18)

For an accurate approximation, note that since d0 is the component of d in the K-

dimensional space Vtrue, we have D0 ≪ N unless the SNR is very low. Thus

‖y‖2 ≈ N + D1. (6.19)

Combining (6.15), (6.16), and (6.17) gives

perr = Pr (Dmin ≤ Dtrue) = Pr
(
ρmin‖y‖2 ≤ D1

)
= Pr

(
ρmin ≤ D1/‖y‖2

)
. (6.20)

Note that by Lemma 3, ρmin is independent of x and d. Therefore, ρmin is independent

of D0 and D1. We can now obtain a bound and an approximation from (6.20) by taking

expectations over D0 and D1.
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To obtain a bound, combine the lower bound on Pr(ρmin > ǫ) from (6.13) with (6.18):

perr < Pr

(
ρmin ≤ D1

D1 + (
√

N −√
D0)2

)

= Pr

(
ρmin ≤ σ2(N − K)U

σ2(N − K)U + (
√

N − σ
√

KV )2

)

= Pr




ρmin ≤ aU

aU +

(
1 − σ

√
KV
N

)2





= Pr (ρmin ≤ G(U, V ))

≤ E

[
1 − exp

(
−(CG(U, V ))r

1 − G(U, V )
1{G(U,V )≤Gmax}

)]
,

where we have started with (6.18) substituted in (6.20); the first equality uses U = D1/((N−

K)σ2), which is a normalized Chi-squared random variable with N − K = 2r degrees of

freedom and V = D0/(Kσ2), which is a normalized Chi-squared random variable with

K = 2s degrees of freedom [38]; the last equality uses the definition of G from the statement

of the theorem; and the final inequality is an application of Lemma 3. This yields (4.4).

To obtain an approximation, combine the approximation of Pr(ρmin > ǫ) from (6.11)

with (6.19):

perr ≈ Pr

(
ρmin ≤ D1

N + D1

)

= Pr

(
ρmin ≤ σ2(N − K)U

N + σ2(N − K)U

)

= Pr

(
ρmin ≤ aU

1 + aU

)

≈ E

[
1 − exp

(
−
(

C
aU

1 + aU

)r)]
,

which yields (4.5). This completes the proof.

6.3 Proof of Theorem 4

We will continue with the notation of the proof of Theorem 3. To approximate the

MSE, we will need yet another property of the random angles ρj.
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Lemma 4 For any subspace j 6= jtrue, E [x̂j | ρj, y] = (1 − ρj)y.

Proof: Define the random variable wj = x̂j − (1 − ρj)y, and let µj = E [wj | ρj, y]. Then

E [x̂j | ρj , y] = (1 − ρj)y + µj .

So the lemma will be proven if we can show µj = 0. To this end, first observe that since x̂j

is the projection of y onto the space Vj , x̂j − y is orthogonal to x̂j. Using this fact along

with the definition of ρj ,

w′
jy = (x̂j − (1 − ρj)y)′y = x̂′

jy − ‖y‖2 + ρj‖y‖2

= x̂′
jy − ‖y‖2 + ‖x̂j − y‖2 = x̂′

j(x̂j − y) = 0.

That is, wj is orthogonal to y. Consequently, µj = E [wj | ρj, y] is orthogonal to y as well.

We can now show µj = 0 from a symmetry argument similar to that used in the proof

of Lemma 1. For any vector y and subspace V , define the function

W (y, V ) = PV y − (1 − R(y, V ))y,

where, as in the proof of Lemma 1, PV is the projection operator onto V , and R(y, V ) is

given in (6.7). Since ρj = R(y, Vj), we can rewrite wj as

wj = x̂j − ρjy = PVj
y − (1 − R(y, Vj))y = W (y, Vj).

The proof of Lemma 1 showed that, for any orthogonal transformation U , PUV (Uy) = UPV y

and R(Uy,UV ) = R(y, V ). Therefore,

W (Uy,UV ) = PUV (Uy) − (1 − R(Uy,UV ))(Uy)

= UPV y − U(1 − R(y, V ))y = U(PV y − (1 − R(y, V ))y) = UW (y, V ).(6.21)

Now, fix y and let U be any fixed orthogonal transformation of R
N with the property that

Uy = y. Since U is orthogonal and the space Vj is generated by random vectors with a

spherically symmetric distribution, UVj is identically distributed to Vj . Combining this
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with (6.21) and the fact that Uy = y gives

µj = E [wj | ρj, y] = E [W (y, Vj) | ρj, y]

= E [W (Uy, Vj) | ρj , y] (since Uy = y)

= E [W (Uy,UVj) | ρj , y] (since UVj is distributed identically to Vj)

= E [UW (y, Vj) | ρj , y] = Uµj.

Therefore, µj = Uµj for all orthogonal transformations U such that Uy = y. Hence, µj

must be spanned by y. But, we showed above that µj is orthogonal to y. Thus µj = 0, and

this proves the lemma. �

Proof of Theorem 4: As in the proof of Theorem 3, let D0 and D1 be the squared

norms of the components of d on the spaces Vtrue and V ⊥
true respectively. Also, let U =

D1/((N − K)σ2). Define the random variable

E0 =
1

Nσ2
(‖x − x̂SA‖2 − D0)

and its conditional expectation

F0(ρ, u) = E [E0 | ρmin = ρ, U = u] .

Differentiating the approximate cumulative distribution function of ρmin in Lemma 3, we

see that ρmin has an approximate probability density function of fr(ρ). Also, as argued in

the proof of Theorem 3, U has the probability density function given by gr(u). Therefore

EMSE =
1

Nσ2
E
[
‖x − x̂SA‖2

]

≈ 1

Nσ2

∫ ∞

0

∫ ∞

0
fr(ρ)gr(u)E

[
‖x − x̂SA‖2 | ρmin = ρ, U = u

]
du dρ

=

∫ ∞

0

∫ ∞

0
fr(ρ)gr(u)

(
F0(ρ, u) +

1

Nσ2
E [D0 | ρmin = ρ, U = u]

)
du dρ

=
1

Nσ2
E [D0] +

∫ ∞

0

∫ ∞

0
fr(ρ)gr(u)F0(ρ, u) du dρ

=
K

N
+

∫ ∞

0

∫ ∞

0
fr(ρ)gr(u)F0(ρ, u) du dρ. (6.22)

In the last step, we have used the fact that D0 = ‖d0‖2, where d0 is the projection of d onto

the K-dimensional subspace Vtrue. Since d has variance σ2 per dimension, E [D0] = Kσ2.
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Comparing (6.22) with (4.11), the theorem will be proven if we can show that

F0(ρ, u) ≈ F (ρ, u),

where F (ρ, u) is given in (4.13).

We consider two cases: when T = jtrue and T 6= jtrue. First, consider the case T = jtrue.

In this case, x̂SA is the projection of y onto the true subspace Vtrue. The error x− x̂SA will

be precisely d0, the component of the noise d on Vtrue. Thus,

‖x − x̂SA‖2 = ‖d0‖2 = D0.

Consequently, when T = jtrue,

E0 =
1

Nσ2
(‖x − x̂SA‖2 − D0) = 0.

Taking the conditional expectation with respect to ρmin, U and the event that T = jtrue,

E [E0 | T = jtrue, ρmin, U ] = 0. (6.23)

Next consider the case T 6= jtrue. In this case, we divide the approximation error into

three terms:

‖x − x̂SA‖2 = ‖y − x‖2 + ‖y − x̂SA‖2 − 2(y − x)′(y − x̂SA). (6.24)

We take the conditional expectation of the three terms in (6.24) given T 6= jtrue, D0, D1

and ρmin.

For the first term in (6.24), observe that since y − x = d, and ‖d‖2 = D0 + D1,

‖y − x‖2 = ‖d‖2 = D0 + D1.

Therefore, since ρmin is independent of d,

E
[
‖y − x‖2 | T 6= jtrue,D0,D1, ρmin

]
= D0 + D1. (6.25)

For the second term in (6.24), let x̂j be the projection of y onto the jth subspace Vj .

By the definition of ρj,

‖y − x̂j‖2 = ρj‖y‖2.
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Therefore, when T 6= jtrue,

‖y − x̂SA‖2 = ρmin‖y‖2.

Using the approximation in the proof of Theorem 3 that ‖y‖2 ≈ N + D1,

‖y − x̂SA‖2 ≈ ρmin(N + D1).

Hence,

E
[
‖y − x̂SA‖2 | T 6= jtrue, ρmin,D0,D1

]
≈ ρmin(N + D1). (6.26)

Evaluating the last term in (6.24) with Lemma 4 we obtain

E
[
(y − x)′(y − x̂j) | x, d, ρj

]
= E

[
d′(y − x̂j) | x, d, ρj

]

= d′y − d′E [x̂j | x, d, ρj ] = d′y − (1 − ρj)d
′y = ρjd

′y = ρjd
′(x + d).

Therefore,

E
[
(y − x)′(y − x̂SA) | T 6= jtrue, x, d, ρj

]
= ρmind

′(x + d).

Since d is independent of x and d′d = ‖d‖2 = D0 + D1,

E
[
(y − x)′(y − x̂SA) | T 6= jtrue, ρmin,D0,D1

]
= ρmin(D0 + D1) ≈ ρminD1 (6.27)

since D1 ≫ D0. Substituting (6.25), (6.26) and (6.27) into (6.24),

E
[
‖x − x̂SA‖2 | T 6= jtrue,D0,D1, ρmin

]
≈ D0 + D1 + ρmin(N + D1) − 2ρminD1

= D0 + D1(1 − ρmin) + ρminN.

Combining this with the definitions U = D1/σ
2(N − K), a = (N − K)/Nγ, and γ = 1/σ2,

E [E0 | T 6= jtrue,D0,D1, ρmin] =
1

Nσ2
E
[
‖x − x̂SA‖2 − D0 | T 6= jtrue,D0,D1, ρmin

]

=
1

Nσ2
(D1(1 − ρmin) + Nρmin)

= γ (aU(1 − ρmin) + ρmin) .

Hence,

E [E0 | T 6= jtrue, U, ρmin] ≈ γ (aU(1 − ρmin) + ρmin) . (6.28)
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Now, from the proof of Theorem 3, we saw that T 6= jtrue is approximately equivalent

to the condition that

ρmin < D1/(N + D1) = aU/(1 + aU).

Combining this with (6.23) and (6.28),

F0(ρ, u) = E [E0 | ρmin = ρ, U = u]

≈






γ(au(1 − ρ) + ρ), if ρ < au/(1 + au);

0, otherwise

= F (ρ, u)

This shows that F0(ρ, u) ≈ F (ρ, u) and completes the proof.

6.4 Proof of Theorem 5

The function gr(u) is the p.d.f. of a normalized Chi-squared random variable with 2r

degrees of freedom [38]. That is, gr(u) is the p.d.f. of a variable of the form

Ur =
1

2r

2r∑

i=1

X2
i ,

where the Xi’s are i.i.d. Gaussian random variables with zero mean and unit variance.

Therefore, we can rewrite p̂err as

p̂err = 1 − E

[
exp

(
−
(

aCUr

1 + aUr

)r)]
,

where the expectation is over the variable Ur. Now, by the strong law of large numbers,

lim
r→∞

Ur = 1, a.s.

Also, if K = 1 and γ are fixed,

lim
N→∞

a = lim
N→∞

N − K

γN
= γ−1. (6.29)
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Taking the limit N,M → ∞, with K = 1 and C constant,

lim
N,M→∞

p̂err = lim
r→∞

[
1 − exp

(
−
(

C

1 + γ

)r)]

=






1, if γ + 1 < C;

0, if γ + 1 > C

=






1, if γ < γcrit;

0, if γ > γcrit.

6.5 Proof of Theorem 6

As in the proof of Theorem 5, let Ur be a normalized Chi-squared variable with p.d.f.

gr(u). Also let ρr be a random variable with p.d.f. fr(ρ). Then, we can write ÊMSE as

ÊMSE = K/N + E [F (ρr, Ur)] , (6.30)

where the expectation is over the random variables Ur and ρr. As in the proof of Theorem

5, we saw Ur → 1 almost surely as r → ∞. Integrating the p.d.f. fr(ρ), we have the c.d.f.

Pr(ρr < x) = exp(−(Cx)r).

Therefore,

lim
r→∞

Pr(ρr < x) =






1, if x < 1/C;

0, if x > 1/C.

Hence, ρr → 1/C in distribution. Therefore, taking the limit of (6.30) with K = 1 and C

constant, and N,M → ∞,

lim
N,M→∞

ÊMSE = lim
N,M→∞

K
N + F ( 1

C , 1)

= lim
N,M→∞






γ(a(1 − 1/C) + 1/C), if (1 + a)/C < a;

0, if (1 + a)/C > a.

Now, using the limit (6.29) and the definition γcrit = C − 1,

lim
N,M→∞

γ(a(1 − 1/C) + 1/C) = (1 − 1/C) + γ/C = (C − 1 + γ)/C

= (γcrit + γ)/(γcrit + 1) = Êlim(γ).
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Also, as in the proof of Theorem 5, in the limit as N → ∞, (1 + a)/C < a is equivalent to

γ < γcrit. Therefore,

lim
N,M→∞

ÊMSE =






Êlim(γ), if γ < γcrit;

0, if γ > γcrit.
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