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Abstract

Many functional descriptions of spiking neurons assume a cascade structure where
inputs are passed through an initial linear filtering stage that produces a low-
dimensional signal that drives subsequent nonlinear stages. This paper presents a
novel and systematic parameter estimation procedure for such models and applies
the method to two neural estimation problems: (i) compressed-sensing based neu-
ral mapping from multi-neuron excitation, and (ii) estimation of neural receptive
fields in sensory neurons. The proposed estimation algorithm models the neu-
rons via a graphical model and then estimates the parameters in the model using
a recently-developed generalized approximate message passing (GAMP) method.
The GAMP method is based on Gaussian approximations of loopy belief propa-
gation. In the neural connectivity problem, the GAMP-based method is shown
to be computational efficient, provides a more exact modeling of the sparsity,
can incorporate nonlinearities in the output and significantly outperforms previ-
ous compressed-sensing methods. For the receptive field estimation, the GAMP
method can also exploit inherent structured sparsity in the linear weights. The
method is validated on estimation of linear nonlinear Poisson (LNP) cascade mod-
els for receptive fields of salamander retinal ganglion cells.

1 Introduction

Fundamental to describing the behavior of neurons in response to sensory stimuli or to inputs from
other neurons is the need for succinct models that can be estimated and validated with limited data.
Towards this end, many functional models assume a cascade structure where an initial linear stage
combines inputs to produce a low-dimensional output for subsequent nonlinear stages. For example,
in the widely-used linear nonlinear Poisson (LNP) model for retinal ganglion cells (RGCs) [1,2], the
time-varying input stimulus vector is first linearly filtered and summed to produce a low (typically
one or two) dimensional output, which is then passed through a memoryless nonlinear function that
outputs the neuron’s instantaneous Poisson spike rate. An initial linear filtering stage also appears
in the well-known integrate-and-fire model [3]. The linear filtering stage in these models reduces
the dimensionality of the parameter estimation problem and provides a simple characterization of a
neuron’s receptive field or connectivity.

However, even with the dimensionality reduction from assuming such linear stages, parameter esti-
mation may be difficult when the stimulus is high-dimensional or the filter lengths are large. Com-
pressed sensing methods have been recently proposed [4] to reduce the dimensionality further. The
key insight is that although most experiments for mapping, say visual receptive fields, expose the
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Figure 1: Linear nonlinear Poisson (LNP) model for a neuron with n stimuli.

neural system under investigation to a large number of stimulus components, the overwhelming ma-
jority of the components do not affect the instantaneous spiking rate of any one particular neuron due
to anatomical sparsity [5, 6]. As a result, the linear weights that model the response to these stimu-
lus components will be sparse; most of the coefficients will be zero. For the retina, the stimulus is
typically a large image, whereas the receptive field of any individual neuron is usually only a small
portion of that image. Similarly, for mapping cortical connectivity to determine the connectome,
each neuron is typically only connected to a small fraction of the neurons under test [7]. Due to the
sparsity of the weights, estimation can be performed via sparse reconstruction techniques similar to
those used in compressed sensing (CS) [8–10].

This paper presents a CS-based estimation of linear neuronal weights via a recently-developed gen-
eralized approximate message passing (GAMP) methods from [11] and [12]. GAMP, which builds
upon earlier work in [13, 14], is a Gaussian approximation of loopy belief propagation. The ben-
efits of the GAMP method for neural mapping are that it is computationally tractable with large
sums of data, can incorporate very general graphical model descriptions of the neuron and provides
a method for simultaneously estimating the parameters in the linear and nonlinear stages. In con-
trast, methods such as the common spike-triggered average (STA) perform separate estimation of the
linear and nonlinear components. Following the simulation methodology in [4], we show that the
GAMP method offers significantly improved reconstruction of cortical wiring diagrams over other
state-of-the-art CS techniques.

We also validate the GAMP-based sparse estimation methodology in the problem of fitting LNP
models of salamander RGCs. LNP models have been widely-used in systems modeling of the retina,
and they have provided insights into how ganglion cells communicate to the lateral geniculate nu-
cleus, and further upstream to the visual cortex [15]. Such understanding has also helped clarify the
computational purpose of cell connectivity in the retina. The filter shapes estimated by the GAMP
algorithm agree with other findings on RGC cells using STA methods, such as [16]. What is impor-
tant here is that the filter coefficients can be estimated accurately with a much smaller number of
measurements. This feature suggests that GAMP-based sparse modeling may be useful in the future
for other neurons and more complex models.

2 Linear Nonlinear Poisson Model

2.1 Mathematical Model

We consider the following simple LNP model for the spiking output of a single neuron under n
stimulus components shown in Fig. 1, cf. [1, 2]. Inputs and outputs are measured in uniform time
intervals t = 0, 1, . . . , T − 1, and we let uj [t] denote the jth stimulus input in the tth time interval,
j = 1, . . . , n. For example, if the stimulus is a sequence of images, n would be the number of pixels
in each image and uj [t] would be the value of the jth pixel over time. We let y[t] denote the number
of spikes in the tth time interval, and the general problem is to find a model that explains the relation
between the stimuli uj [t] and spike outputs y[t].

As the name suggests, the LNP model is a cascade of three stages: linear, nonlinear and Poisson. In
the first (linear) stage, the input stimulus is passed through a set of n linear filters and then summed
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to produce the scalar output z[t] given by

z[t] =

n∑
j=1

(wj ∗ uj)[t] =
n∑
j=1

L−1∑
`=0

wj [`]uj [t− `], (1)

where wj [·] is the linear filter applied to the jth stimulus component and (wj ∗ uj)[t] is the convo-
lution of the filter with the input. We assume the filters have finite impulse response (FIR) with L
taps, wj [`], ` = 0, 1, . . . , L− 1. In the second (nonlinear) stage of the LNP model, the scalar linear
output z[t] passes through a memoryless nonlinear random function to produce a spike rate λ[t]. We
assume a nonlinear mapping of the form

λ[t] = f(v[t]) = log
[
1 + exp

(
φ(v[t];α)

)]
, (2a)

v[t] = z[t] + d[t], d[t] ∼ N (0, σ2
d), (2b)

where d[t] is Gaussian noise to account for randomness in the spike rate and φ(v;α) is the ν-th
order polynomial,

φ(v;α) = α0 + α1v + · · ·+ ανv
ν . (3)

The form of the function in (2b) ensures that the spike rate λ[t] is always positive. In the third and
final stage of the LNP model, the number of spikes is modeled as a Poisson process with mean λ[t].
That is,

Pr
(
y[t] = k

∣∣∣λ[t]) = e−λ[t]λ[t]k/k!, k = 0, 1, 2, . . . (4)

This LNP model is sometimes called a one-dimensional model since z[t] is a scalar.

2.2 Conventional Estimation Methods

The parameters in the neural model can be written as the vector θ = (w,α, σ2
d), where w is the nL-

dimensional vector of the filter coefficients, the vector α contains the ν + 1 polynomial coefficients
in (3) and σ2

d is the noise variance. The basic problem is to estimate the parameters θ from the
input/output data uj [t] and y[t]. We briefly summarize three conventional methods: spike-triggered
average (STA), reverse correlation (RC) and maximum likelihood (ML), all described in several
texts including [1].

The STA and RC methods are based on simple linear regression. The vector z of linear filter outputs
z[t] in (1) can be written as z = Aw, where A is a known block Toeplitz matrix with the input
data uj [t]. The STA and RC methods then both attempt to find a w such that output z has high
linear correlation with measured spikes y. The RC method finds this solution with the least squares
estimate

ŵRC = (A∗A+ σ2I)−1A∗y, (5)

for some parameter σ2, and the STA is an approximation given by

ŵSTA =
1

T
A∗y. (6)

The statistical properties of the estimates are discussed in [17, 18].

Once the estimate ŵ = ŵSTA or ŵRC has been computed, one can compute an estimate ẑ = Aŵ
for the linear output z and then use any scalar estimation method to find a nonlinear mapping from
z[t] to λ[t] based on the outputs y[t].

A shortcoming of the STA and RC methods is that the filter coefficients w are selected to maximize
the linear correlation and may not work well when there is a strong nonlinearity. A maximum
likelihood (ML) estimate may overcome this problem by jointly optimizing over nonlinear and linear
parameters. To describe the ML estimate, first fix parameters α and σ2

d in the nonlinear stage. Then,
given the vector output z from the linear stage, the spike count components y[t] are independent:

Pr
(
y
∣∣∣z,α, σ2

d

)
=

T−1∏
t=0

Pr
(
y[t]
∣∣∣z[t],α, σ2

d

)
(7)
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where the component distributions are given by

P
(
y[t]
∣∣∣z[t],α, σ2

d

)
=

∫ ∞
0

Pr
(
y[t]
∣∣∣λ[t])p(λ[t] ∣∣z[t],α, σ2

d

)
dλ[t], (8)

and p
(
λ[t]

∣∣ z[t],α, σ2
d

)
can be computed from the relation (2b) and Pr

(
y[t]

∣∣ λ[t]) is the Poisson
distribution (4). The ML estimate is then given by the solution to the optimization

θ̂ML := argmax
(w,α,σ2

d)

T−1∏
t=0

Pr
(
y[t]
∣∣∣z[t],α, σ2

d

)
, z = Aw. (9)

In this way, the ML estimate attempts to maximize the goodness of fit by simultaneously searching
over the linear and nonlinear parameters.

3 Estimation via Compressed Sensing

3.1 Bayesian Model with Group Sparsity

A difficulty in the above methods is that the number, Ln, of filter coefficients in w may be large and
require an excessive number of measurements to estimate accurately. As discussed above, the key
idea in this work is that most stimulus components have little effect on the spiking output. Most of
the filter coefficientswj [`] will be zero and exploiting this sparsity may be able to reduce the number
of measurements while maintaining the same estimation accuracy.

The sparse nature of the filter coefficients can be modeled with the following group sparsity struc-
ture: Let ξj be a binary random variable with ξj = 1 when stimulus j is in the receptive field of the
neuron and ξj = 0 when it is not. We call the variables ξj the receptive field indicators, and model
these indicators as i.i.d. Bernoulli variables with

Pr(ξj = 1) = 1− Pr(ξj = 0) = ρ, (10)

where ρ ∈ [0, 1] is the average fraction of stimuli in the receptive field. We then assume that,
given the vector ξ of receptive field indicators, the filter weight coefficients are independent with
distribution

p
(
wj [`]

∣∣∣ξ) = p
(
wj [`]

∣∣∣ξj) =

{
0 if ξj = 0
N (0, σ2

x) if ξj = 1.
(11)

That is, the linear weight coefficients are zero outside the receptive field and Gaussian within the
receptive field. Since our algorithms are general, other distributions can also be used—we use the
Gaussian for illustration. The distribution on w defined by (10) and (11) is often called a group
sparse model, since the components of the vector w are zero in groups.

Estimation with this sparse structure leads naturally to a compressed sensing problem. Specifically,
we are estimating a sparse vector w through a noisy version y of a linear transform z = Aw, which
is precisely the problem of compressed sensing [8–10]. With a group structure, one can employ a
variety of methods including the group Lasso [19–21] and group orthogonal matching pursuit [22].
However, these methods are designed for either AWGN or logistic outputs. In the neural model, the
spike count y[t] is a nonlinear, random function of the linear output z[t] described by the probability
distribution in (8).

3.2 GAMP-Based Sparse Estimation

To address the nonlinearities in the outputs, we use the generalized approximate message passing
(GAMP) algorithm [11] with extensions in [12]. The GAMP algorithm is a general approximate
inference method for graphical models with linear mixing. To place the neural estimation problem
in the GAMP framework, first fix the stimulus input vector u, nonlinear output parameters α and
σ2
d. Then, the conditional joint distribution of the outputs y, linear filter weights w and receptive

field indicators ξ factor as

p
(
y, ξ,w

∣∣∣u,α, σ2
d

)
=

n∏
j=1

[
Pr(ξj)

L−1∏
`=0

p
(
wj [`]

∣∣ξj)] T−1∏
t=0

Pr
(
y[t]
∣∣∣z[t],α, σ2

d

)
,

z = Aw. (12)
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Figure 2: The neural estima-
tion problem represented as a
graphical model with linear mix-
ing. Solid circles are unknown
variables, dashed circles are ob-
served variables (in this case,
spike counts) and squares are fac-
tors in the probability distribu-
tion. The linear mixing compo-
nent of the graph indicates the
constraints that z = Aw.

Similar to standard graphical model estimation [23], GAMP is based on the first representing the
distribution in (12) via a factor graph as shown in Fig. 2. In the factor graph, the solid circles
represent the components of the unknown vectors w, ξ, . . ., and the dashed circles the components
of the observed or measured variables y. Each square corresponds to one factor in the distribution
(12). What is new for the GAMP methodology, is that the factor graph also contains a component
to indicate the linear constraints that z = Aw, which would normally be represented by a set of
additional factor nodes.

Inference on graphical models is often performed by some variant of loopy belief propagation (BP).
Loopy BP attempts to reduce the joint estimation of all the variables to a sequence of lower dimen-
sional estimation problems associated with each of the factors in the graph. Estimation at the factor
nodes is performed iteratively, where after each iteration, “beliefs” of the variables are passed to the
factors to improve the estimates in the subsequent iterations. Details can be found in [23].

However, exact implementation of loopy BP is intractable for the neural estimation problem: The
linear constraints z = Aw create factor nodes that connect each of the variables z[t] to all the
variables wj [`] where uj [t − `] is non-zero. In the RGC experiments below, the pixels value uj [t]
are non-zero 50% of the time, so each variable z[t] will be connected to, on average, half of the Ln
filter weight coefficients through these factor nodes. Since exact implementation of loopy BP grows
exponentially in the degree of the factor nodes, loopy BP would be infeasible for the neural problem,
even for moderate values of Ln.

The GAMP method reduces the complexity of loopy BP by exploiting the linear nature of the rela-
tions between the variables w and z. Specifically, it is shown that when each term z[t] is a linear
combination of a large number of terms wj [`], the belief messages across the factor node for the
linear constraints can be approximated as Gaussians and the factor node updates can be computed
with a central limit theorem approximation. Details are in [11] and [12].

4 Receptive Fields of Salamander Retinal Ganglion Cells

The sparse LNP model with GAMP-based estimation was evaluated on data from recordings of
neural spike trains from salamander retinal ganglion cells exposed to random checkerboard images,
following the basic methods of [24].1 In the experiment, spikes from individual neurons were mea-
sured over an approximately 1900s period at a sampling interval of 10ms. During the recordings,
the salamander was exposed to 80× 60 pixel random black-white binary images that changed every
3 to 4 sampling intervals. The pixels of each image were i.i.d. with a 50-50 black-white probability.

We compared three methods for fitting an L = 30 tap one-dimensional LNP model for the RGC
neural responses: (i) truncated STA, (ii) approximate ML, and (iii) GAMP estimation with the
sparse LNP model. Methods (i) and (ii) do not exploit sparsity, while method (iii) does.

The truncated STA method was performed by first computing a linear filter estimate as in (6) for the
entire 80 × 60 image and then setting all coefficients outside an 11 × 11 pixel subarea around the
pixel with the largest estimated response to zero. The 11× 11 size was chosen since it is sufficiently
large to contain these neurons’ entire receptive fields. This truncation significantly improves the
STA estimate by removing spurious estimates that anatomically cannot have relation to the neural

1Data from the Leonardo Laboratory at the Janelia Farm Research Campus.
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Figure 3: Estimated filter responses and visual receptive field for salamander RGCs using a non-
sparse LNP model with STA estimation and a sparse LNP model with GAMP estimation.

responses; this provides a better comparison to test other methods. From the estimate ŵSTA of the
linear filter coefficients, we compute an estimate ẑ = Aŵ of the linear filter output. The output
parameters α and σ2

d are then fit by numerical maximization of likelihood P (y|ẑ,α, σ2
d) in (7).

We used a (ν = 1)-order polynomial, since higher orders did not improve the prediction. The
fact that only a linear polynomial was needed in the output is likely due to the fact that random
checkerboard images rarely align with the neuron’s filters and therefore do not excite the neural
spiking into a nonlinear regime. An interesting future experiment would be to re-run the estimation
with swatches of natural images as in [25]. We believe that under such experimental conditions, the
advantages of the GAMP-based nonlinear estimation would be even larger.

The RC estimate (5) was also computed, but showed no appreciable difference from the STA esti-
mate for this matrix A. As a result, we discuss only STA results below.

The GAMP-based sparse estimation used the STA estimate for initialization to select the 11 × 11
pixel subarea and the variances σ2

x in (11). As in the STA case, we used only a (ν = 1)-order linear
polynomial in (3). The linear coefficient α1 was set to 1 since other scalings could be absorbed into
the filter weights w. The constant term α0 was incorporated as another linear regression coefficient.

For a third algorithm, we approximately computed the ML estimate (9) by running the GAMP
algorithm, but with all the factors for the priors on the weights w removed.

To illustrate the qualitative differences between the estimates, Fig. 3 shows the estimated responses
for the STA and GAMP-based sparse LNP estimates for one neuron using three different lengths of
training data: 400, 600 and 1000 seconds of the total 1900 second training data. For brevity, the
approximate ML estimate is omitted, but is similar to the STA estimate. The estimated responses in
Fig. 3(a) are displayed as 11 × 11 = 121 curves, each curve representing the linear filter response
withL = 30 taps over the 30×10 = 300ms response. Fig. 3(b) shows the estimated spatial receptive
fields plotted as the total magnitude of the 11× 11 filters. One can immediately see that the GAMP
based sparse estimate is significantly less noisy than the STA estimate, as the smaller, unreliable
responses are zeroed out in the GAMP-based sparse LNP estimate.

The improved accuracy of the GAMP-estimation with the sparse LNP model was verified in the
cross validation, as shown in Fig. 4. In this plot, the length of the training data was varied from 200
to 1000 seconds, with the remaining portion of the 1900 second data used for cross-validation. At
each training length, each of the three methods—STA, GAMP-based sparse LNP and approximate
ML—were used to produce an estimate θ̂ = (ŵ, α̂, σ̂2

d). Fig. 4 shows, for each of these methods,
the cross-validation scores P (y|ẑ, α̂, σ̂2

d)
1/T , which is the geometric mean of the likelihood in (7).

It can be seen that the GAMP-based sparse LNP estimate significantly outperforms the STA and
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Figure 5: Comparison of reconstruction meth-
ods on cortical connectome mapping with
multi-neuron excitation based on simulation
model in [4]. In this case, connectivity from
n = 500 potential pre-synaptic neurons are
estimated from m = 300 measurements with
40 neurons excited in each measurement. In
the simulation, only 6% of the n potential
neurons are actually connected to the post-
synaptic neuron under test.

approximate ML estimates that do not assume any sparse structure. Indeed, by the measure of the
cross-validation score, the sparse LNP estimate with GAMP after only 400 seconds of data was as
accurate as the STA estimate with 1000 seconds of data. Interestingly, the approximate ML estimate
is actually worse than the STA estimate, presumably since it overfits the model.

5 Neural Mapping via Multi-Neuron Excitation

The GAMP methodology was also applied to neural mapping from multi-neuron excitation, orig-
inally proposed in [4]. A single post-synaptic neuron has connections to n potential pre-synaptic
neurons. The standard method to determine which of the n neurons are connected to the post-
synaptic neurons is to excite one neuron at a time. This process is wasteful, since only a small
fraction of the neurons are typically connected. In the method of [4], multiple neurons are excited
in each measurement. Then, exploiting the sparsity in the connectivity, compressed sensing tech-
niques can be used to recover the mapping from m < n measurements. Unfortunately, the output
stage of spiking neurons is often nonlinear and most CS methods cannot directly incorporate such
nonlinearities into the estimation. The GAMP methodology thus offers the possibility of improved
performance for reconstruction.

To validate the methodology, we compared the performance of GAMP to various reconstruction
methods following a simulation of mapping of cortical neurons with multi-neuron excitation in [4].
The simulation assumes an LNP model of Section 2.1, where the inputs uj [t] are 1 or 0 depending
on whether the jth pre-synaptic input is excited in tth measurement. The filters have a single tap (i.e.
L=1), which are modeled as a Bernoulli-Weibull distribution with a probability ρ = 0.06 of being
on (the neuron is connected) or 1− ρ of being zero (the neuron is not connected). The output has a
strong nonlinearity including a thresholding and saturation – the levels of which must be estimated.
Connectivity detection amounts to determining which of the n pre-synaptic neurons have non-zero
weights.

Fig. 5 plots the missed detection vs. false alarm rate of the various detectors. It can be seen that the
GAMP-based connectivity detection significantly outperforms both non-sparse RC reconstruction
as well as a state-of-the-art greedy sparse method CoSaMP [26, 27].
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6 Conclusions and Future Work

A general method for parameter estimation in neural models based on generalized approximate
message passing was presented. The GAMP methodology is computationally tractable for large
data sets, can exploit sparsity in the linear coefficients and can incorporate a wide range of nonlinear
modeling complexities in a systematic manner. Experimental validation of the GAMP-based esti-
mation of a sparse LNP model for salamander RGC cells shows significantly improved prediction in
cross-validation over simple non-sparse estimation methods such as STA. Benefits over state-of-the-
art sparse reconstruction methods are also apparent in simulated models of cortical mapping with
multi-neuron excitation.

Going forward, the generality offered by the GAMP model will enable accurate parameter estima-
tion for other complex neural models. For example, the GAMP model can incorporate other prior
information such as a correlation between responses in neighboring pixels. Future work may also
include experiments with integrate-and-fire models [3]. An exciting future possibility for cortical
mapping is to decode memories, which are thought to be stored as the connectome [7, 28].

Throughout this paper, we have presented GAMP as an experimental data analysis method.
One might wonder, however, whether the brain itself might use compressive representations and
message-passing algorithms to make sense of the world. There have been several previous sug-
gestions that visual and general cortical regions of the brain may use belief propagation-like algo-
rithms [29, 30]. There have also been recent suggestions that the visual system uses compressive
representations [31]. As such, we assert the biologically plausibility of the brain itself using the
algorithms presented herein for receptive field and memory decoding.
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