CHAPTER 2:
Supervised Learning

Learning a Class from Examples

- Class C of a "family car"
- Prediction: Is car x a family car?
- Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

- Input representation:
x_{1} : price, x_{2} : engine power

Training set \mathcal{X}

$$
\mathcal{X}=\left\{\mathbf{x}^{t}, r^{t}\right\}_{t=1}^{N}
$$

$$
r=\left\{\begin{array}{c}
1 \text { if } \mathbf{x} \text { is positive } \\
0 \text { if } \mathbf{x} \text { is negative }
\end{array}\right.
$$

Class C

Hypothesis class \mathcal{H}

False positive

S, G, and the Version Space

Margin

- Choose h with largest margin

VC Dimension

- N points can be labeled in 2^{N} ways as +/-
- \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these:
$\mathrm{VC}(\mathcal{H})=N$

An axis-aligned rectangle shatters 4 points only!

Probably Approximately Correct (PAC) Learning

- How many training examples N should we have, such that with $1-\delta, h$ has error at most ε ?
(Blumer et al., 1989)
- Each strip is at most $\varepsilon / 4$
- Pr that we miss a strip $1-\varepsilon / 4$
- Pr that N instances miss a strip $(1-\varepsilon / 4)^{N}$
- Pr that N instances miss 4 strips $4(1-\varepsilon / 4)^{N}$
- $4(1-\varepsilon / 4)^{N} \leq \delta$ and $(1-x) \leq \exp (-x)$
- $4 \exp (-\varepsilon N / 4) \leq \delta$ and $N \geq(4 / \varepsilon) \log (4 / \delta)$

x_{i}

Noise and Model Complexity

Use the simpler one because

- Simpler to use
(lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance - Occam's razor)

Multiple Classes, $C_{\mathrm{i}} \mathrm{i}=1, \ldots, \mathrm{~K}$

Regression

$$
\begin{aligned}
& \mathcal{X}=\left\{x^{t}, r^{t}\right\}_{t=1}^{N} \\
& r^{t} \in \mathfrak{R} \\
& r^{t}=f\left(x^{t}\right)+\varepsilon \\
& E(g \mid X)=\frac{1}{N} \sum_{t=1}^{N}\left[r^{t}-g\left(x^{t}\right)\right]^{2} \\
& E\left(w_{1}, w_{0} \mid X\right)=\frac{1}{N} \sum_{t=1}^{N}\left[r^{t}-\left(w_{1} x^{t}+w_{0}\right)\right]^{2} \\
& \\
&
\end{aligned}
$$

Model Selection \& Generalization

- Learning is an ill-posed problem data is not sufficient to find a unique solution
- The need for inductive bias assumptions about \mathcal{H}
- Generalization: How well a model performs on new data
- Overfitting: \mathcal{H} more complex than $\operatorname{Cor} f$
- Underfitting: \mathcal{H} less complex than \mathcal{C} or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):

1. Complexity of $\mathcal{H}, c(\mathcal{H})$,
2. Training set size, N,
3. Generalization error, E, on new data
$\square \quad$ As $N, E \downarrow$
$\square \quad \operatorname{Asc}(\mathcal{H})$, first $E \downarrow$ and then E

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
- Training set (50\%)
- Validation set (25\%)
- Test (publication) set (25\%)
- Resampling when there is few data

Dimensions of a Supervised Learner

1. Model: $g(\mathbf{x} \mid \theta)$
2. Loss function:

$$
E(\theta \mid \mathcal{X})=\sum_{t} L\left(r^{t}, g\left(\mathbf{x}^{t} \mid \theta\right)\right)
$$

3. Optimization procedure:

$$
\theta^{*}=\arg \min _{\theta} E(\theta \mid X)
$$

CHAPTER 3:

Bayesian Decision Theory

Probability and Inference

- Result of tossing a coin is \in \{Heads,Tails $\}$
- Random var $X \in\{1,0\}$

$$
\text { Bernoulli: } P\{X=1\}=p_{o}^{X}\left(1-p_{o}\right)^{(1-X)}
$$

- Sample: $\boldsymbol{X}=\left\{x^{t}\right\}^{N}{ }_{t=1}$

Estimation: $p_{o}=\#\{$ Heads $\} / \#\{$ Tosses $\}=\sum_{t} x^{t} / N$

- Prediction of next toss:

Heads if $p_{o}>1 / 2$, Tails otherwise

Classification

- Credit scoring: Inputs are income and savings.

Output is low-risk vs high-risk

- Input: $\boldsymbol{x}=\left[x_{1}, x_{2}\right]^{\top}$,Output: C î $\{0,1\}$
- Prediction:
choose $\left\{\begin{array}{l}C=1 \text { if } P\left(C=1 \mid x_{1}, x_{2}\right)>0.5 \\ C=0 \text { otherwise }\end{array}\right.$
or
choose $\left\{\begin{array}{l}C=1 \text { if } P\left(C=1 \mid x_{1}, x_{2}\right)>P\left(C=0 \mid x_{1}, x_{2}\right) \\ C=0 \text { otherwise }\end{array}\right.$

Bayes' Rule

prior likelihood
posterior

$$
P(C \mid \mathbf{x})=\frac{P(C) p(\mathbf{x} \mid C)}{p(\mathbf{x})}
$$

$$
\begin{aligned}
& P(C=0)+P(C=1)=1 \\
& p(\mathbf{x})=p(\mathbf{x} \mid C=1) P(C=1)+p(\mathbf{x} \mid C=0) P(C=0) \\
& p(C=0 \mid \mathbf{x})+P(C=1 \mid \mathbf{x})=1
\end{aligned}
$$

Bayes' Rule: K>2 Classes

$$
\begin{aligned}
& P\left(C_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid C_{i}\right) P\left(c_{i}\right)}{p(\mathbf{x})} \\
& =\frac{p\left(\mathbf{x} \mid C_{i}\right) P\left(c_{i}\right)}{\sum_{k=1}^{K} p\left(\mathbf{x} \mid C_{k}\right) P\left(c_{k}\right)}
\end{aligned} \begin{aligned}
& P\left(C_{i}\right) \geq 0 \text { and } \sum_{i=1}^{K} P\left(c_{i}\right)=1
\end{aligned} \text { choose } C_{i} \text { if } P\left(c_{i} \mid \mathbf{x}\right)=\max _{k} P\left(c_{k} \mid \mathbf{x}\right) .
$$

Losses and Risks

- Actions: α_{i}
- Loss of α_{i} when the state is $C_{k}: \lambda_{i k}$
- Expected risk (Duda and Hart, 1973)

$$
\begin{aligned}
& R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{k=1}^{K} \lambda_{i k} P\left(c_{k} \mid \mathbf{x}\right) \\
& \text { choose } \alpha_{i} \text { if } R\left(\alpha_{i} \mid \mathbf{x}\right)=\min _{k} R\left(\alpha_{k} \mid \mathbf{x}\right)
\end{aligned}
$$

Losses and Risks: 0/1 Loss

$$
\begin{aligned}
& \lambda_{i k}=\left\{\begin{array}{l}
0 \text { if } i=k \\
1 \text { if } i \neq k
\end{array}\right. \\
& \begin{aligned}
R\left(\alpha_{i} \mid \mathbf{x}\right) & =\sum_{k=1}^{k} \lambda_{i k} P\left(c_{k} \mid \mathbf{x}\right) \\
& =\sum_{k \neq i} P\left(C_{k} \mid \mathbf{x}\right) \\
& =1-P\left(C_{i} \mid \mathbf{x}\right)
\end{aligned}
\end{aligned}
$$

For minimum risk, choose the most probable class

Losses and Risks: Reject

$$
\begin{aligned}
\lambda_{i k}= & \begin{cases}0 & \text { if } i=k \\
\lambda & \text { if } i=K+1, \\
1 & \text { otherwise }\end{cases} \\
& R\left(\alpha_{K+1} \mid \mathbf{x}\right)=\sum_{k=1}^{K} \lambda P\left(C_{k} \mid \mathbf{x}\right)=\lambda
\end{aligned} \quad \begin{aligned}
& R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{k \neq i} P\left(C_{k} \mid \mathbf{x}\right)=1-P\left(C_{i} \mid \mathbf{x}\right)
\end{aligned}
$$

choose C_{i} if $P\left(C_{i} \mid \mathbf{x}\right)>P\left(C_{k} \mid \mathbf{x}\right) \forall k \neq i$ and $P\left(C_{i} \mid \mathbf{x}\right)>1-\lambda$ reject otherwise

Discriminant Functions

choose C_{i} if $g_{i}(\mathbf{x})=\max _{k} g_{k}(\mathbf{x})$

$$
g_{i}(\mathbf{x})=\left\{\begin{array}{l}
-R\left(\alpha_{i} \mid \mathbf{x}\right) \\
P\left(C_{i} \mid \mathbf{x}\right) \\
p\left(\mathbf{x} \mid C_{i}\right) P\left(C_{i}\right)
\end{array}\right.
$$

K decision regions $\mathcal{R}_{1}, \ldots, \mathcal{R}_{K}$

$$
\mathcal{R}_{i}=\left\{\mathbf{x} \mid g_{i}(\mathbf{x})=\max _{k} g_{k}(\mathbf{x})\right\}
$$

$g_{i}(\mathbf{x}), i=1, \ldots, K$

$K=2$ Classes

- Dichotomizer ($K=2$) vs Polychotomizer ($K>2$)
- $g(x)=g_{1}(x)-g_{2}(x)$

$$
\text { choose }\left\{\begin{array}{l}
c_{1} \text { if } g(\mathbf{x})>0 \\
c_{2} \text { otherwise }
\end{array}\right.
$$

- Log odds: $\log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{P\left(C_{2} \mid \mathbf{x}\right)}$

Utility Theory

- Prob of state k given exidence $\boldsymbol{x}: P\left(S_{k} \mid \boldsymbol{x}\right)$
- Utility of α_{i} when state is $k: U_{i k}$
- Expected utility:

$$
\begin{aligned}
& E U\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{k} U_{i k} P\left(S_{k} \mid \mathbf{x}\right) \\
& \text { Choose } \alpha_{i} \text { if } E U\left(\alpha_{i} \mid \mathbf{x}\right)=\max _{j} E U\left(\alpha_{j} \mid \mathbf{x}\right)
\end{aligned}
$$

Association Rules

- Association rule: $X \rightarrow Y$
- People who buy/click/visit/enjoy X are also likely to buy/click/visit/enjoy Y.
- A rule implies association, not necessarily causation.

Association measures

- Support $(X \rightarrow Y)$:

$$
P(X, Y)=\frac{\#\{\text { customers who bought } X \text { and } Y\}}{\#\{\text { customers }\}}
$$

- Confidence $(X \rightarrow Y)$:
- Lift $(X \rightarrow Y)$:

$$
=\frac{P(X, Y)}{P(X) P(Y)}=\frac{P(Y \mid X)}{P(Y)}
$$

Apriori algorithm (Agrawal et al., 1996)

- For (X, Y, Z), a 3-item set, to be frequent (have enough support), (X,Y), (X,Z), and (Y,Z) should be frequent.
- If (X, Y) is not frequent, none of its supersets can be frequent.
- Once we find the frequent k-item sets, we convert them to rules: $\mathrm{X}, \mathrm{Y} \rightarrow \mathrm{Z}, \ldots$ and $X \rightarrow Y, Z, \ldots$

