CHAPTER 2:

Supervised Learning

Learning a Class from Examples

Class C of a "family car"

- Prediction: Is car x a family car?
- Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

Input representation:

 x_1 : price, x_2 : engine power

Training set ${\mathcal X}$

Class C

Hypothesis class ${\cal H}$

S, G, and the Version Space

Margin

• Choose *h* with largest margin

VC Dimension

- N points can be labeled in 2^N ways as +/-
- \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these: $VC(\mathcal{H}) = N$

An axis-aligned rectangle shatters 4 points only !

Probably Approximately Correct (PAC) Learning

- How many training examples N should we have, such that with probability at least 1 δ, h has error at most ε ?
 (Blumer et al., 1989)
- Each strip is at most ε/4
- Pr that we miss a strip $1-\epsilon/4$
- Pr that N instances miss a strip (1 ε/4)^N
- Pr that N instances miss 4 strips $4(1 \varepsilon/4)^N$
- $4(1 \epsilon/4)^N \le \delta$ and $(1 x) \le \exp(-x)$
- $4\exp(-\varepsilon N/4) \le \delta$ and $N \ge (4/\varepsilon)\log(4/\delta)$

Noise and Model Complexity

Use the simpler one because

- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)

Multiple Classes, C_i i=1,...,K

Regression

Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- The need for inductive bias, assumptions about ${\mathcal H}$
- Generalization: How well a model performs on new data
- Overfitting: $\mathcal H$ more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , c (\mathcal{H}),
 - 2. Training set size, N,
 - 3. Generalization error, E, on new data
- \Box As N, E \downarrow
- □ As *c* (\mathcal{H}), first $E \downarrow$ and then *E*

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 - Training set (50%)
 - Validation set (25%)
 - Test (publication) set (25%)
- Resampling when there is few data

Dimensions of a Supervised

Learner

- **1.** Model: $g(\mathbf{x}|\theta)$
- 2. Loss function: $E(\theta \mid X) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$
- 3. Optimization procedure:

$$heta^* = rgmin_{ heta} E(heta \,|\, X)$$

CHAPTER 3: Bayesian Decision Theory

Probability and Inference

- Result of tossing a coin is ∈ {Heads,Tails}
- Random var X ∈ {1,0}

Bernoulli: $P \{X=1\} = p_o^X (1 - p_o)^{(1-X)}$

• Sample: $X = \{x^t\}_{t=1}^N$

Estimation: $p_o = \# \{\text{Heads}\}/\#\{\text{Tosses}\} = \sum_t x^t / N$

• Prediction of next toss:

Heads if $p_o > \frac{1}{2}$, Tails otherwise

Classification

- Credit scoring: Inputs are income and savings.
 Output is low-risk vs high-risk
- Input: $\mathbf{x} = [x_1, x_2]^T$, Output: C Î {0,1}
- Prediction:

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 | x_1, x_2) > 0.5 \\ C = 0 \text{ otherwise} \end{cases}$$

or

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 | x_1, x_2) > P(C = 0 | x_1, x_2) \\ C = 0 \text{ otherwise} \end{cases}$$

Bayes' Rule prior likelihood posterior $P(C | \mathbf{x}) = \frac{P(C)p(\mathbf{x} | C)}{p(\mathbf{x})}$ evidence

$$P(C = 0) + P(C = 1) = 1$$

$$p(\mathbf{x}) = p(\mathbf{x} | C = 1)P(C = 1) + p(\mathbf{x} | C = 0)P(C = 0)$$

$$p(C = 0 | \mathbf{x}) + P(C = 1 | \mathbf{x}) = 1$$

Bayes' Rule: K>2 Classes

$$P(C_i | \mathbf{x}) = \frac{p(\mathbf{x} | C_i)P(C_i)}{p(\mathbf{x})}$$
$$= \frac{p(\mathbf{x} | C_i)P(C_i)}{\sum_{k=1}^{K} p(\mathbf{x} | C_k)P(C_k)}$$

$$P(C_i) \ge 0$$
 and $\sum_{i=1}^{\kappa} P(C_i) = 1$
choose C_i if $P(C_i | \mathbf{x}) = \max_{k} P(C_k | \mathbf{x})$

Losses and Risks

- Actions: α_i
- Loss of α_i when the state is $C_k : \lambda_{ik}$
- Expected risk (Duda and Hart, 1973)

$$R(\alpha_{i} | \mathbf{x}) = \sum_{k=1}^{\kappa} \lambda_{ik} P(C_{k} | \mathbf{x})$$

choose α_{i} if $R(\alpha_{i} | \mathbf{x}) = \min_{k} R(\alpha_{k} | \mathbf{x})$

Losses and Risks: 0/1 Loss

$$\lambda_{ik} = \begin{cases} 0 \text{ if } i = k \\ 1 \text{ if } i \neq k \end{cases}$$
$$R(\alpha_i \mid \mathbf{x}) = \sum_{k=1}^{K} \lambda_{ik} P(C_k \mid \mathbf{x})$$
$$= \sum_{k \neq i} P(C_k \mid \mathbf{x})$$
$$= 1 - P(C_i \mid \mathbf{x})$$

For minimum risk, choose the most probable class

Losses and Risks: Reject

$$\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ \lambda & \text{if } i = K + 1 , \quad 0 < \lambda < 1 \\ 1 & \text{otherwise} \end{cases}$$

$$R(\alpha_{\kappa+1} | \mathbf{x}) = \sum_{k=1}^{\kappa} \lambda P(C_k | \mathbf{x}) = \lambda$$
$$R(\alpha_i | \mathbf{x}) = \sum_{k \neq i} P(C_k | \mathbf{x}) = 1 - P(C_i | \mathbf{x})$$

choose C_i if $P(C_i | \mathbf{x}) > P(C_k | \mathbf{x}) \quad \forall k \neq i \text{ and } P(C_i | \mathbf{x}) > 1 - \lambda$ reject otherwise

Discriminant Functions

choose C_i if $g_i(\mathbf{x}) = \max_k g_k(\mathbf{x})$

$$g_{i}(\mathbf{x}) = \begin{cases} -R(\alpha_{i} | \mathbf{x}) \\ P(C_{i} | \mathbf{x}) \\ p(\mathbf{x} | C_{i})P(C_{i}) \end{cases}$$

K decision regions $\mathcal{R}_1, \dots, \mathcal{R}_K$

$$\mathcal{R}_i = \{\mathbf{x} \mid \boldsymbol{g}_i(\mathbf{x}) = \max_k \boldsymbol{g}_k(\mathbf{x})\}$$

K=2 Classes

- Dichotomizer (K=2) vs Polychotomizer (K>2)
- $g(\mathbf{x}) = g_1(\mathbf{x}) g_2(\mathbf{x})$

choose $\begin{cases} C_1 \text{ if } g(\mathbf{x}) > 0 \\ C_2 \text{ otherwise} \end{cases}$

• Log odds:

$$\log \frac{P(C_1 \mid \mathbf{x})}{P(C_2 \mid \mathbf{x})}$$

Utility Theory

- Prob of state k given exidence x: P (Sk | x)
- Utility of α_i when state is $k: U_{ik}$
- Expected utility:

$$EU(\alpha_i | \mathbf{x}) = \sum_k U_{ik} P(S_k | \mathbf{x})$$

Choose α_i if $EU(\alpha_i | \mathbf{x}) = \max_j EU(\alpha_j | \mathbf{x})$

Association Rules

- Association rule: $X \rightarrow Y$
- People who buy/click/visit/enjoy X are also likely to buy/click/visit/enjoy Y.
- A rule implies association, not necessarily causation.

Association measures

- Support $(X \to Y)$: $P(X,Y) = \frac{\# \{ \text{customers who bought } X \text{ and } Y \}}{\# \{ \text{customers} \}}$
- Confidence $(X \to Y)$: $P(Y \mid X) = \frac{P(X,Y)}{P(X)}$ • Lift $(X \to Y)$: $= \frac{P(X,Y)}{P(X)P(Y)} = \frac{P(Y \mid X)}{P(Y)}$ $= \frac{P(Y \mid X)}{P(Y)P(Y)} = \frac{P(Y \mid X)}{P(Y)}$

Apriori algorithm (Agrawal et al., 1996)

- For (X,Y,Z), a 3-item set, to be frequent (have enough support), (X,Y), (X,Z), and (Y,Z) should be frequent.
- If (X,Y) is not frequent, none of its supersets can be frequent.
- Once we find the frequent k-item sets, we convert them to rules: X, Y → Z, ...

and $X \rightarrow Y, Z, ...$