
CHAPTER 2:

Supervised Learning



Learning a Class from Examples
 Class C of a “family car”

 Prediction: Is car x a family car?

 Knowledge extraction: What do people expect from a 
family car?

 Output: 

Positive (+) and negative (–) examples

 Input representation: 

x1: price, x2 : engine power
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Hypothesis class H
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Error of h on H



S, G, and the Version Space
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most specific hypothesis, S

most general hypothesis, G

h H, between S and G is
consistent 
and make up the 
version space
(Mitchell, 1997)



Margin
 Choose h with largest margin
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VC Dimension
 N points can be labeled in 2N ways as +/–

 H shatters N if there 

exists h  H consistent 

for any of these: 

VC(H ) = N
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An axis-aligned rectangle shatters 4 points only !



Probably Approximately Correct 
(PAC) Learning
 How many training examples N should we have, such that with probability 

at least 1 ‒ δ, h has error at most ε ?

(Blumer et al., 1989)

 Each strip is at most ε/4

 Pr that we miss a strip 1‒ ε/4

 Pr that N instances miss a strip (1 ‒ ε/4)N

 Pr that N instances miss 4 strips 4(1 ‒ ε/4)N

 4(1 ‒ ε/4)N ≤ δ and (1 ‒ x)≤exp( ‒ x)

 4exp(‒ εN/4) ≤ δ  and N ≥ (4/ε)log(4/δ)
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Noise and Model Complexity
Use the simpler one because
 Simpler to use 

(lower computational 

complexity)

 Easier to train (lower 

space complexity)

 Easier to explain 

(more interpretable)

 Generalizes better (lower 

variance - Occam’s razor)
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Multiple Classes, Ci i=1,...,K
N
t

tt ,r 1}{  xX










    , if  

 if  

ij
r

j
t

i
t

t
i C

C

x

x

0

1

 









    , if  

 if  

ij
h

j
t

i
t

t
i C

C

x

x
x

0

1

11

Train hypotheses 
hi(x), i =1,...,K:



Regression
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Model Selection & Generalization
 Learning is an ill-posed problem; data is not sufficient to 

find a unique solution

 The need for inductive bias, assumptions about H
 Generalization: How well a model performs on new data

 Overfitting: H more complex than C or f 

 Underfitting: H less complex than C or f
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Triple Trade-Off
 There is a trade-off between three factors (Dietterich, 

2003):

1. Complexity of H, c (H),

2. Training set size, N, 

3. Generalization error, E, on new data

 As N,E

 As c (H),first Eand then E
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Cross-Validation
 To estimate generalization error, we need data unseen 

during training. We split the data as

 Training set (50%)

 Validation set (25%)

 Test (publication) set (25%)

 Resampling when there is few data
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Dimensions of a Supervised 
Learner
1. Model: 

2. Loss function:

3. Optimization procedure:

 |xg

    
t

tt grLE  |,| xX
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CHAPTER 3:

Bayesian Decision Theory



Probability and Inference
 Result of tossing a coin is {Heads,Tails}

 Random var X {1,0}

Bernoulli: P {X=1} = po
X (1 ‒ po)(1 ‒ X)

 Sample: X = {xt }N
t =1

Estimation: po = # {Heads}/#{Tosses} = ∑
t
xt / N

 Prediction of next toss:

Heads if po > ½, Tails otherwise
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Classification
 Credit scoring: Inputs are income and savings. 

Output is low-risk vs high-risk
 Input: x = [x1,x2]T ,Output: C Î {0,1}
 Prediction: 
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Bayes’ Rule
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Bayes’ Rule: K>2 Classes
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Losses and Risks
 Actions: αi

 Loss of αi when the state is Ck : λik

 Expected risk (Duda and Hart, 1973)
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Losses and Risks: 0/1 Loss
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For minimum risk, choose the most probable class



Losses and Risks: Reject
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Discriminant Functions
  Kigi ,, , 1x   xx kkii ggC max if  choose 
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K decision regions R1,...,RK



K=2 Classes
 Dichotomizer (K=2) vs Polychotomizer (K>2)

 g(x) = g1(x) – g2(x)

 Log odds:
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Utility Theory
 Prob of state k given exidence x: P (Sk|x)

 Utility of αi when state is k: Uik

 Expected utility:
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Association Rules
 Association rule: X  Y

 People who buy/click/visit/enjoy X are also likely to 
buy/click/visit/enjoy Y.

 A rule implies association, not necessarily causation.
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Association measures
 Support (X  Y): 

 Confidence (X  Y):

 Lift (X  Y):
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Apriori algorithm (Agrawal et al., 
1996)
 For (X,Y,Z), a 3-item set, to be frequent (have enough 

support), (X,Y), (X,Z), and (Y,Z) should be frequent.

 If (X,Y) is not frequent, none of its supersets can be 
frequent.

 Once we find the frequent k-item sets, we convert them 
to rules: X, Y  Z, ...

and X  Y, Z, ...
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