
CHAPTER 2:

Supervised Learning



Learning a Class from Examples
 Class C of a “family car”

 Prediction: Is car x a family car?

 Knowledge extraction: What do people expect from a 
family car?

 Output: 

Positive (+) and negative (–) examples

 Input representation: 

x1: price, x2 : engine power
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Error of h on H



S, G, and the Version Space
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most specific hypothesis, S

most general hypothesis, G

h H, between S and G is
consistent 
and make up the 
version space
(Mitchell, 1997)



Margin
 Choose h with largest margin
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VC Dimension
 N points can be labeled in 2N ways as +/–

 H shatters N if there 

exists h  H consistent 

for any of these: 

VC(H ) = N
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An axis-aligned rectangle shatters 4 points only !



Probably Approximately Correct 
(PAC) Learning
 How many training examples N should we have, such that with probability 

at least 1 ‒ δ, h has error at most ε ?

(Blumer et al., 1989)

 Each strip is at most ε/4

 Pr that we miss a strip 1‒ ε/4

 Pr that N instances miss a strip (1 ‒ ε/4)N

 Pr that N instances miss 4 strips 4(1 ‒ ε/4)N

 4(1 ‒ ε/4)N ≤ δ and (1 ‒ x)≤exp( ‒ x)

 4exp(‒ εN/4) ≤ δ  and N ≥ (4/ε)log(4/δ)
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Noise and Model Complexity
Use the simpler one because
 Simpler to use 

(lower computational 

complexity)

 Easier to train (lower 

space complexity)

 Easier to explain 

(more interpretable)

 Generalizes better (lower 

variance - Occam’s razor)
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Multiple Classes, Ci i=1,...,K
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Train hypotheses 
hi(x), i =1,...,K:



Regression
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Model Selection & Generalization
 Learning is an ill-posed problem; data is not sufficient to 

find a unique solution

 The need for inductive bias, assumptions about H
 Generalization: How well a model performs on new data

 Overfitting: H more complex than C or f 

 Underfitting: H less complex than C or f
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Triple Trade-Off
 There is a trade-off between three factors (Dietterich, 

2003):

1. Complexity of H, c (H),

2. Training set size, N, 

3. Generalization error, E, on new data

 As N,E

 As c (H),first Eand then E
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Cross-Validation
 To estimate generalization error, we need data unseen 

during training. We split the data as

 Training set (50%)

 Validation set (25%)

 Test (publication) set (25%)

 Resampling when there is few data
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Dimensions of a Supervised 
Learner
1. Model: 

2. Loss function:

3. Optimization procedure:
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CHAPTER 3:

Bayesian Decision Theory



Probability and Inference
 Result of tossing a coin is {Heads,Tails}

 Random var X {1,0}

Bernoulli: P {X=1} = po
X (1 ‒ po)(1 ‒ X)

 Sample: X = {xt }N
t =1

Estimation: po = # {Heads}/#{Tosses} = ∑
t
xt / N

 Prediction of next toss:

Heads if po > ½, Tails otherwise
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Classification
 Credit scoring: Inputs are income and savings. 

Output is low-risk vs high-risk
 Input: x = [x1,x2]T ,Output: C Î {0,1}
 Prediction: 
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Bayes’ Rule
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Bayes’ Rule: K>2 Classes
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Losses and Risks
 Actions: αi

 Loss of αi when the state is Ck : λik

 Expected risk (Duda and Hart, 1973)
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Losses and Risks: 0/1 Loss
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For minimum risk, choose the most probable class



Losses and Risks: Reject
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Discriminant Functions
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K=2 Classes
 Dichotomizer (K=2) vs Polychotomizer (K>2)

 g(x) = g1(x) – g2(x)

 Log odds:
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Utility Theory
 Prob of state k given exidence x: P (Sk|x)

 Utility of αi when state is k: Uik

 Expected utility:
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Association Rules
 Association rule: X  Y

 People who buy/click/visit/enjoy X are also likely to 
buy/click/visit/enjoy Y.

 A rule implies association, not necessarily causation.

28



Association measures
 Support (X  Y): 

 Confidence (X  Y):

 Lift (X  Y):
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Apriori algorithm (Agrawal et al., 
1996)
 For (X,Y,Z), a 3-item set, to be frequent (have enough 

support), (X,Y), (X,Z), and (Y,Z) should be frequent.

 If (X,Y) is not frequent, none of its supersets can be 
frequent.

 Once we find the frequent k-item sets, we convert them 
to rules: X, Y  Z, ...

and X  Y, Z, ...
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