

•<u>Teaching Assistants:</u> Tom Daula and Kaiding Zhu, UCLA Statistics

> University of California, Los Angeles, Fall 2002 http://www.stat.ucla.edu/~dinov/

Stop S L	ping at ample Sj ossible ou	<mark>one o</mark> Dace – c Itcomes	<mark>f each</mark> omplete from th	or <u>3</u> c /unique is experi	childre descript iment.	n ion of tl
Outcome	GGG	GGB	GB 1	BG 1	BBG 1	BBB
Probability	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$	8	$\frac{1}{8}$
• For R.V.	X = nu	mber of	f girls, v	we have)	
X		0	1	2	3	
pr(x)	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	
			Slide 5	STAT I	3. UCLA. Ivo Din	IOV

Tossing a biased coin twice	
• For each toss, $P(\text{Head}) = p \rightarrow P(\text{Tail}) = P(\text{comp}(H))=1-p$	
• Outcomes: HH, HT, TH, TT	
• Probabilities: <i>p.p</i> , <i>p</i> (1- <i>p</i>), (1- <i>p</i>) <i>p</i> , (1- <i>p</i>)(1- <i>p</i>)	
• Count X , the number of heads in 2 tosses	
X 0 1 2	
$pr(x)$ $(1-p)^2$ $2p(1-p)$ p^2	
Slide 7 STAT 13. UCLA. Ivo Dinov	

]	Hosp	ital :	stays	3			
Deve of second		4	5	6	7	0	0	10	Treet
Days stayea	x	4	20	112	70	21	9	10	<u>10tal</u>
Proportion	ncy nr(X = r)	0.038	0 114	0 4 3 0	0 300	0 080	0 030	0 008	1000
Cumulative	$pr(X \leq x)$	0.038	0.152	0.582	0.882	0.062	0.000	1.000	1000
Proportion	$pr(x \cdot x)$	0.050	0.152	0.502	0.002	0.702	0.772	1.000	
From Chance Encounters by	C.J. Wild and G	.A.F. Seber, €	John Wiley	& Sons, 200	0.				
	11111111	111111	111111	Slide	11111	STAT I	3. UCLA. IN	o Dinov	

Odds and ends ...

- For what types of situation is the urn-sampling model useful? For modeling binary random processes. When sampling with replacement, Binomial distribution is <u>exact</u>, where as, in sampling without replacement Binomial distribution is an <u>approximation</u>.
- For what types of situation is the biased-coin sampling model useful? Defective parts. Approval poll of cloning for medicinal purposes. Number of Boys in 151 presidential children (90).
- Give the three essential conditions for its applicability. (two outcomes; same *p* for every trial; independence)

Slide 21

	E	xpected	values				
 The game of chance: cost to play:\$1.50; Prices {\$1, \$2, \$3}, probabilities of winning each price are {0.6, 0.3, 0.1}, respectively. Should we play the game? What are our chances of winning/loosing? 							
Prize (\$)	x	1	2	3			
Probability	pr(x)	0.6	0.3	0.1			
What we would "expect" from 100 games add across row							
Number of games won \$ won	,	0.6 × 100 1 × 0.6 × 100	0.3×100 2 × 0.3 × 100	0.1 × 100 3 × 0.1 × 100	Sum		
Total prize money = Sum; Average prize money = $Sum/100$ = $1 \times 0.6 + 2 \times 0.3 + 3 \times 0.1$ = 1.5							
<u>Theoretically</u> Fair Game: price to play EQ the expected return!							
		Slide	25 STA	T 13. UCLA. Ivo Dino	,		

TABLE 5.4.1 A	verage Win	nings from	a Game con	ducted N times	
Number	Prize	won in dol	lars(x)		
of games	1	2	3	Average winning	ş
played		frequencies	3	per game	
(N)	(Rela	ative freque	ncies)	(\overline{x})	So far we looked
100	64 (.64)	25 (.25)	11 (.11)	1.7	at the theoretical expectation of the
1,000	573 (.573)	316 (.316)	111 (.111)	1.538	game. Now we simulate the game
10,000	5995 (.5995)	3015 (.3015)	990 (.099)	1.4995	on a computer
20,000	11917 (.5959)	6080 (.3040)	2000 (.1001)	1.5042	samples from
30,000	17946 (.5982)	9049 (.3016)	3005 (.1002)	1.5020	our distribution, according to the
∞	(.6)	(.3)	(.1)	1.5	probabilities {0.6, 0.3, 0.1}.

In the at least one of each or at most 3 child example, where X = {number of Girls} we $\frac{X \qquad 0 \qquad 1 \qquad 2}{pr(x) \qquad \frac{1}{8} \qquad \frac{5}{8} \qquad \frac{1}{8}}$ $E(X) = \sum x P(x)$	dren have:	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$pr(x) \qquad \frac{1}{8} \frac{5}{8} \frac{1}{8}$ $E(X) = \sum x P(x)$	3	
$E(X) = \sum x P(x)$	$\frac{1}{8}$	
$=0 \times \frac{1}{8} + 1 \times \frac{5}{8} + 2 \times \frac{1}{8} + 3 \times \frac{1}{8}$ =1.25	$\frac{1}{8}$	

Linear Scaling (affine transformations) aX + b

And why do we care?

E(aX+b) = a E(X)+b SD(aX+b) = |a| SD(X)

-<u>completely general</u> strategy for computing the distributions of RV's which are obtained from other RV's with known distribution. E.g., $X \sim N(0,1)$, and Y=aX+b, then we need **not** calculate the mean and the SD of Y. We know from the above formulas that E(Y) = b and SD(Y) = |a|.

-These formulas hold for all distributions, not only for binomial.

• P(X=x) for every value X can take, abbreviated to P(x)

- sample *n* individuals at random from a finite population and
- count X, the number of individuals with a characteristic of interest
- When *n*/*N* < 0.1, the distribution of *X* is approximately **Binomial**(*n*, *p*)
 - where p is the population proportion with the characteristic of interest

