# **UCLA STAT 13**

**Introduction to Statistical Methods for** the Life and Health Sciences

 Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology

•Teaching Assistants: Tom Daula and Kaiding Zhu, **UCLA** Statistics

> University of California, Los Angeles, Fall 2002 http://www.stat.ucla.edu/~dinov/

## **Chapter 11: Tables of Counts**

We discussed means and mean differences in Ch. 10 and developed a statistical toolbox for analyzing quantitative variables.

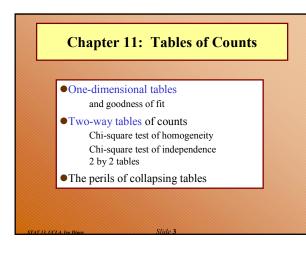
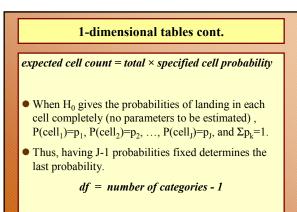
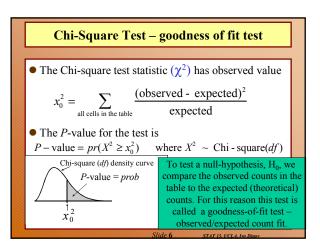

Now we want to develop a similar approach for analyzing qualitative variables.

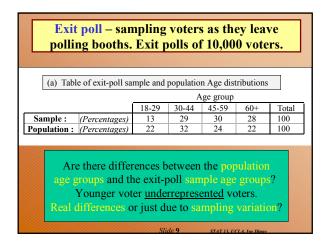
Table-of-measurements  $\rightarrow$  tables-of-counts; Means

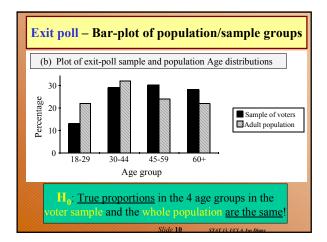

## $\rightarrow$ proportions

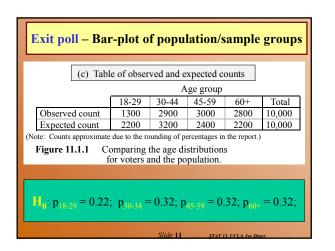

T/F-tests for inference on <u>qualitative</u> variables  $\rightarrow$ 

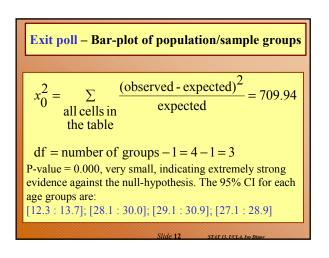
Chi-square  $(\chi^2)$  tests for <u>categorical</u> data.

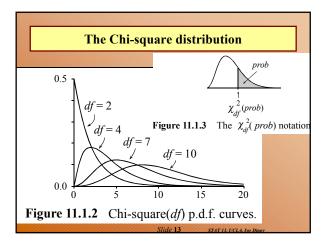


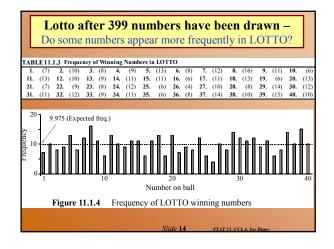




| TABLE11.1.1 Prop    | A     | AB    | B     | Total |
|---------------------|-------|-------|-------|-------|
| No. Observed        | 39    | 70    | 42    | 151   |
| Proportion Observed | 0.258 | 0.464 | 0.278 | 1.000 |


|            | Example of 1D table – rolling a single die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         |        |       |       |       |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------|-------|-------|-------|--|--|--|
| TABLE 11.1 | 2 210 Rolls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of a Die |         |        |       |       |       |  |  |  |
| Outcome    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2        | 3       | 4      | 5     | 6     | Total |  |  |  |
| Count      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40       | 37      | 26     | 43    | 38    | 210   |  |  |  |
| Proportion | 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.190    | 0.176   | 0.124  | 0.205 | 0.181 | 1.000 |  |  |  |
|            | , in the second s |          | they su | pposed | -     |       |       |  |  |  |














| <b>Lotto after 399 numbers have been drawn</b> – Do some numbers appear more frequently in LOTTO? |
|---------------------------------------------------------------------------------------------------|
| Number-range: [1:40]                                                                              |
| Number of balls selected at each draw: 7                                                          |
| Number of samples: 57                                                                             |
| Total number of balls selected: 57*7=399,                                                         |
| Expected value of each number: $399/40 = 9.975$                                                   |
| Observed $\chi^2$ statistics is $x_0=30.97$                                                       |
| df=40-1=39                                                                                        |
| P-value = 0.817                                                                                   |
| Conclusion: No evidence for departure from the null hypothesis.                                   |
|                                                                                                   |

## Review

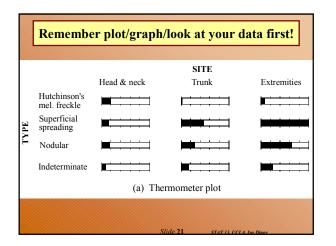
- The test statistic for the Chi-square test compares observed and expected frequencies. In what sense are the *expected* frequencies expected? (Expected frequencies are the frequencies expected in H<sub>0</sub> were true.)
- What shape does the Chi-square distribution generally have? What happens to its shape as the degrees of freedom increase? (Skewed unimodal, becomes symmetric and Normal approximates it well for large df.)
- What values of the Chi-square test statistic (large or small) provide evidence against the null hypothesis? Why? (Large values, since P-value is small. See density curve.)

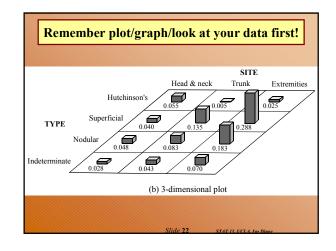
### Review

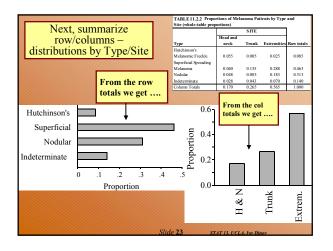
- 4. For one-dimensional tables, how do you compute the degrees of freedom *df*? (df=number of cells/groups-1.)
- 5. Do the expected counts have to be whole numbers? (No, expected counts = number of samples x cell-probability.)

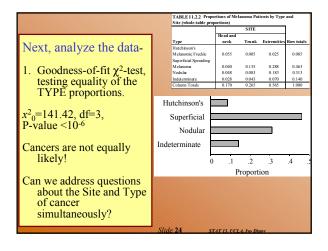
## **Two-way tables**

Suppose we have two (or more) qualitative variables, that we use to classify individuals/units/subjects into groups/classes.

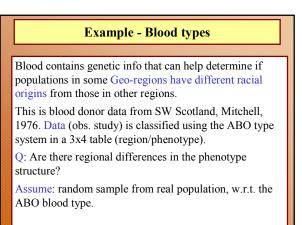

Example, 400 patients with malignant melanoma (type of skin cancer) are cross-classified by TYPE (malignant-cell-type) and SITE (focal-location).

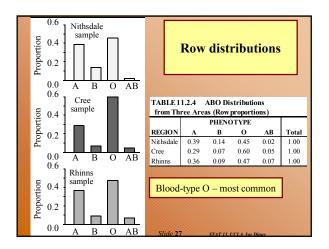

4x3 table (4-rows, types and 3 columns, sites).

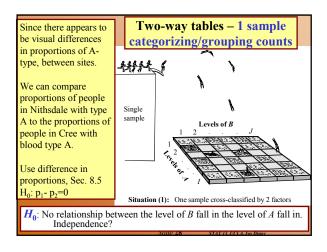

Questions: What's the most common type of cancer? What locations are mostly effected?

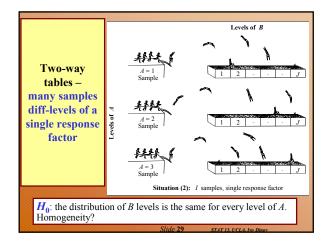

| Melanoma by Site and Type, e.g., 4.6.2 |                    |                 |             |            |  |  |  |  |
|----------------------------------------|--------------------|-----------------|-------------|------------|--|--|--|--|
| TABLE11.2.1 Four h                     | oma Patier<br>SITE | its by Type and | Site        |            |  |  |  |  |
| Туре                                   | Head and<br>neck   | Trunk           | Extremities | Row totals |  |  |  |  |
| Hutchinson's                           |                    |                 |             |            |  |  |  |  |
| Melanomic Freckle                      | 22                 | 2               | 10          | 34         |  |  |  |  |
| Superficial Spreading                  |                    |                 |             |            |  |  |  |  |
| Melanoma                               | 16                 | 54              | 115         | 185        |  |  |  |  |
| Nodular                                | 19                 | 33              | 73          | 125        |  |  |  |  |
| Indeterminate                          | 11                 | 17              | 28          | 56         |  |  |  |  |
| Column Totals                          | 68                 | 106             | 226         | 400        |  |  |  |  |

|                                |                                                    | SITE                                                      | 2                         |                                       | <u>anna</u>                     |                               |                                     |
|--------------------------------|----------------------------------------------------|-----------------------------------------------------------|---------------------------|---------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| <b>T</b>                       | Head and                                           |                                                           | Extremities               | Row totals                            | Pro                             | portion                       | sof                                 |
| Type<br>Hutchinson's           | neck                                               | Trunk                                                     | Extremities               | Row totals                            |                                 |                               |                                     |
| Melanomic Freckle              | 22                                                 | 2                                                         | 10                        | 34                                    | all 4                           | 400 pati                      | ents                                |
| Superficial Spreading          |                                                    |                                                           |                           |                                       | ent                             | rv = count/-                  | 400                                 |
| Melanoma                       | 16                                                 | 54                                                        | 115                       | 185                                   |                                 | - ,                           |                                     |
| Nodular                        | 19                                                 | 33                                                        | 73                        | 125                                   |                                 |                               |                                     |
| Indeterminate<br>Column Totals | 11<br>68                                           | 17                                                        | 28                        | 56                                    |                                 |                               |                                     |
|                                | TAI                                                | BLE11                                                     | 2.2 Propo                 | rtions of Mel                         | anoma Pat                       | ients by Type                 | and                                 |
|                                |                                                    |                                                           |                           |                                       |                                 |                               |                                     |
|                                |                                                    |                                                           | e-table prop              |                                       |                                 |                               | unu                                 |
|                                |                                                    |                                                           | -                         |                                       | SITE                            |                               |                                     |
|                                |                                                    |                                                           | -                         |                                       |                                 |                               |                                     |
|                                |                                                    | e (whole                                                  | -                         | ortions)                              |                                 | Extremities                   |                                     |
|                                | <u>Site</u><br>Typ                                 | e (whole                                                  | e-table prop              | oortions)<br>Head and                 | SITE                            |                               |                                     |
|                                | Site<br>Typ<br>Hute                                | e (whole                                                  | e-table prop              | oortions)<br>Head and                 | SITE                            |                               |                                     |
|                                | Site<br>Typ<br>Huto<br>Meli                        | e (whole<br>e<br>chinson'<br>anomic                       | e-table prop              | Head and<br>neck                      | SITE<br>Trunk                   | Extremities                   | Row totals                          |
|                                | Site<br>Typ<br>Huto<br>Mela<br>Supo                | e (whole<br>e<br>chinson'<br>anomic                       | s<br>Freckle              | Head and<br>neck                      | SITE<br>Trunk                   | Extremities                   | Row totals                          |
|                                | Site<br>Typ<br>Huto<br>Mela<br>Supo                | e (whole<br>e<br>chinson<br>anomic<br>erficial s<br>anoma | s<br>Freckle              | ortions)<br>Head and<br>neck<br>0.055 | SITE<br>Trunk<br>0.005          | Extremities                   | Row totals                          |
|                                | Site<br>Typ<br>Huto<br>Mela<br>Supo<br>Mela<br>Nod | e (whole<br>e<br>chinson<br>anomic<br>erficial s<br>anoma | s<br>Freckle<br>Spreading | Head and<br>neck<br>0.055<br>0.040    | SITE<br>Trunk<br>0.005<br>0.135 | Extremities<br>0.025<br>0.288 | <b>Row totals</b><br>0.085<br>0.463 |

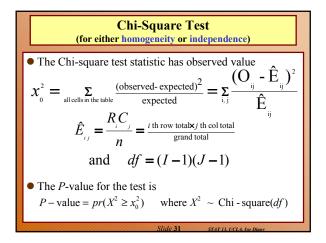



|       |           |        | Examp        | ole - Blo     | od typ     | es          |                       |       |
|-------|-----------|--------|--------------|---------------|------------|-------------|-----------------------|-------|
|       | TABLE     | 11.2.3 | Regional Da  | ta for the AB | O System   |             |                       |       |
|       |           |        |              | PHENOTY       | PE         |             |                       |       |
|       | REGION    |        | А            | В             | 0          | AB          | Total                 |       |
|       | Nithsdale |        | 98           | 35            | 115        | 5           | 253                   |       |
|       | Cree      |        | 38           | 9             | 79         | 6           | 132                   |       |
|       | Rhinns    |        | 36           | 9             | 47         | 7           | 99                    |       |
|       | Total     |        | 172          | 53            | 241        | 18          | 484                   |       |
| TAB   | LE11.2.4  | ABO    | Distribution | s from Three  | e Areas (R | ow prop     | ortions) <sup>*</sup> |       |
|       |           |        |              | PHENOTY       | PE         |             |                       |       |
| REG   | ION       |        | А            | В             | 0          |             | AB                    | Total |
| Niths | dale      |        | 0.39         | 0.14          | 0.45       |             | 0.02                  | 1.00  |
| Cree  |           |        | 0.29         | 0.07          | 0.60       |             | 0.05                  | 1.00  |
| Rhinr | ns        |        | 0.36         | 0.09          | 0.47       |             | 0.07                  | 1.00  |
|       |           |        |              | Slide 25      | STA        | T 13. UCLA. | Ivo Dinov             |       |










| <b>1</b><br><i>O</i> <sub>11</sub><br><i>O</i> <sub>21</sub> | <b>2</b><br><i>O</i> <sub>12</sub><br><i>O</i> <sub>22</sub> | Leve<br> | I Two-Wa<br>I of B<br>J<br>O 1j<br>O 2j        | ay Tabl<br><br>                          | e<br>J<br>O 1J<br>O 2J | Total<br>R <sub>1</sub><br>R <sub>2</sub> |
|--------------------------------------------------------------|--------------------------------------------------------------|----------|------------------------------------------------|------------------------------------------|------------------------|-------------------------------------------|
| <i>O</i> 11                                                  | O 12                                                         |          | <b>j</b><br>O 1j                               |                                          | 0 <sub>1J</sub>        | $R_{I}$                                   |
| <i>O</i> 11                                                  | O 12                                                         |          | <b>j</b><br>O <sub>1j</sub><br>O <sub>2j</sub> |                                          | 0 <sub>1J</sub>        | $R_{I}$                                   |
|                                                              |                                                              |          | $O_{1_j}$<br>$O_{2_j}$                         |                                          |                        |                                           |
| 0 <sub>21</sub>                                              | 0 <sub>22</sub>                                              |          | $O_{2j}$                                       |                                          | $O_{2J}$               | $R_2$                                     |
|                                                              |                                                              |          |                                                |                                          |                        |                                           |
|                                                              |                                                              |          | •                                              |                                          |                        |                                           |
| -                                                            |                                                              |          |                                                |                                          |                        |                                           |
|                                                              |                                                              |          |                                                |                                          |                        |                                           |
| $O_{i^1}$                                                    | $O_{i^2}$                                                    |          | $O_{ij}$                                       |                                          | 0 <sub>i</sub>         | $R_i$                                     |
|                                                              |                                                              |          |                                                |                                          |                        |                                           |
|                                                              |                                                              |          |                                                |                                          |                        |                                           |
|                                                              |                                                              |          |                                                |                                          |                        |                                           |
| $O_{I1}$                                                     | 012                                                          |          | $O_{Ij}$                                       |                                          | 0 11                   | $R_{I}$                                   |
| $C_1$                                                        | $C_2$                                                        |          | $C_i$                                          |                                          | $C_J$                  | п                                         |
|                                                              |                                                              |          | $C_1$ $C_2$                                    | $C_1 \qquad C_2 \qquad \dots \qquad C_j$ |                        | $C_1$ $C_2$ $C_j$ $C_J$                   |



|             | Chi-Squ  | are Test             |                    |                                          |                |
|-------------|----------|----------------------|--------------------|------------------------------------------|----------------|
|             | Expected | l counts             | are prin           | ted below                                | observed count |
| Hutchinson  | 1        | ad & N<br>22<br>5.78 | Trunk<br>2<br>9.01 | Extremit<br>10<br>19.21                  | 34             |
| Superficial | 2        | 16<br>31.45          | 54<br>49.03        | 115<br>104.53                            |                |
| Nodular     | 3        | 19<br>21.25          |                    | 73<br>70.62                              |                |
| Indetermina | 4<br>te  | 11<br>9.52           |                    | 28<br>31.64                              |                |
|             | Total    | 68                   | 106                | 226                                      | 400            |
|             | Chi-Sq = | 7.590<br>0.238       | + 0.505<br>+ 0.000 | + 4.416<br>+ 1.050<br>+ 0.080<br>+ 0.419 | +<br>+         |
|             | DF = 6,  | P-Value              | = 0.000            |                                          |                |

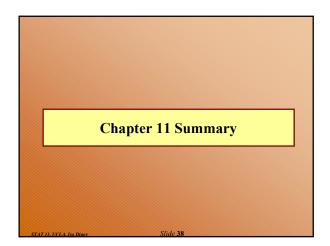
### Comments

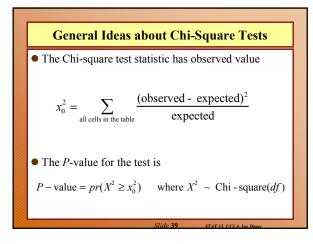
- 1. What information do the row sums of a 2-way table of counts give you? What about the column sums?
- 2. How do you calculate whole-table proportions? When does it make sense to calculate them? What information do such proportions give you?
- 3. What sort of information do the row sums of the wholetable proportions give you? What about the column sums?
- 4. What are the denominators of the row proportions? What information do they give you? Repeat for column proportions.

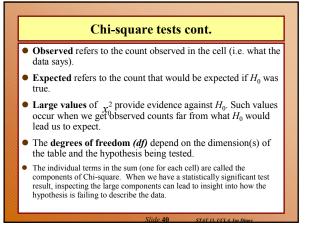
#### Comments

- 5. Suppose that we are interested in comparing row distributions. In what way(s) can we sample to obtain our data? Express in words the null hypothesis tested by the Chi-square test. Repeat for column distributions.
- 6. If we do not want to think in terms of row distributions or column distributions but just want to see whether there is any relationship between the row an individual falls into and the column he or she falls into, express in words the null hypothesis tested by the Chi-square test.

## Comments


- 7. Express in words how one calculates the expected counts for cell(*i*, *j*).
- 8. Qualitatively, would a large value or a small value of  $x_0^2$  make you think that there was evidence of a relationship between row and column distributions? Why?
- 9. Qualitatively, would a large *P*-value or a small *P*-value make you think that there was evidence of a relationship between row and column classifications?


**Degrees of freedom** – since there are n-1 free parameters, for colums and rows, row/comun sums must equal 1 (or n)

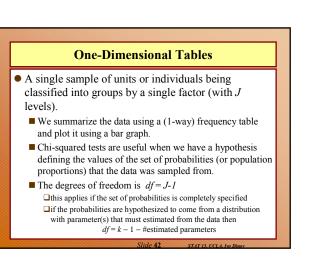

Chi-square test for a  $2 \times 2$  table: df = 1.

In general for IxJ table  $df = (I-1)^*(J-1)$ 

|           | Nonsmo                                                       | kers                      |                       | Smok                                 | ers             |
|-----------|--------------------------------------------------------------|---------------------------|-----------------------|--------------------------------------|-----------------|
|           | Not irradiated                                               | Irradiated                |                       | Not irradiated                       | Irradiated      |
| No cancer | 950                                                          | 9000                      | No cancer             | 5000                                 | 5               |
| Cancer    | 50(5%)                                                       | 1000(10%)                 | Cancer                | 5000(50%)                            | 95(95%)         |
|           |                                                              | Not irradiated Irradiated |                       |                                      |                 |
|           | No cancer                                                    |                           | adiated               | Irradiated<br>9005                   |                 |
|           | Cancer                                                       | • •                       | (46%)                 | 1095(11%)                            |                 |
| wa<br>inv | ty table (botto<br>vestigate irradiation<br>ough irradiation | om), w.r.t<br>diation/ca  | . smokin<br>ncer rela | g factor. Go<br>tion. <u>It appe</u> | al to<br>ars as |










- Using the Chi-square distribution as the sampling distribution of  $X^2$  when  $H_0$  is true is a large sample approximation.
- Where expected counts are small, *P*-values from the Chisquare distribution begin to become unreliable.
- Our rule is that expected counts should be greater than 1 and 80% of the expected counts should be at least 5.
- If this rule is not satisfied, we can often amalgamate rare categories
  - (i.e. treat two or more similar classes as a single class) in order to increase the expected counts.

STATIS UCL

• For 2 x 2 tables we use the rule for comparing two proportions.



#### **One-dimensional tables cont.**

- A common hypothesis is that all of the probabilities (respectively population proportions) are identical.
- If the above hypothesis is rejected, we can investigate the nature of the differences by looking at the differences between pairs of proportions.
- When constructing confidence intervals for differences between proportions, use standard errors for single sample and several response categories.

### **Two-Way Tables**

### **Chi-Square test**

 Whether H<sub>0</sub> specifies equality of row distributions, or equality of column distributions, or independence of row and column classifications, the Chi-square test uses

Expected count in cell(*i*,*j*):

$$\hat{E}_{ij} = \frac{R_i C_j}{n} = \frac{i \text{th row total} \times j \text{th col total}}{\text{grand total}}$$
and
$$df = (I-1)(J-1)$$

#### Warning

- Chi-square tests, as described in this book, are only appropriate when the data is collected as a single random sample or when rows (or columns) come from independent random samples.
- Social scientists have often used it on two-way tables constructed using data from complex surveys which employ devices such as cluster sampling.
- The Chi-square test is not appropriate under such circumstances.

#### Two-way tables cont.

#### **Two Types of Table**

- We distinguished between
  - Situation 1, Single sample cross-classified by two factors
  - and Situation (2), separate samples, each classified according to one response factor (see Fig.11.2.7).

### **Row distributions**

- Row distributions tell us about the chances that an individual who belongs to a given row will fall into each of the column classes.
- They are estimated by the row proportions of the table (using row totals as denominators).
- They are not meaningful if columns are separate samples.
- When constructing confidence intervals for differences between proportions, proportions from different rows are statistically independent.

#### **Column Distributions**

- Column distributions tell us about the chances that an individual who belongs to a given column will fall into each of the row classes.
- They are estimated by the column proportions of the table (using column totals as denominators).
- They are not meaningful if rows are separate samples.
- When constructing confidence intervals for differences between proportions, proportions from different columns are statistically independent.

## **Whole-table Proportions**

- Whole-table proportions are formed using the grand total of the table as the denominator.
- They tell us about the chances of an individual experiencing a given combination of the 2 factors.
- They are only meaningful when we have a single sample cross-classified by two factors.
  - They are not meaningful if rows are separate samples or if columns are separate samples.
- When constructing confidence intervals for differences between proportions, use standard errors for single sample, several response categories.

Slide 49

STAT 13. UCLA. Ivo Din