

Example:

$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_{k} - \mu}{\sigma_{k}} \right) \left(\frac{y_{k} - \mu}{\sigma_{k}} \right)$$

$$\mu_{x} = \frac{966}{6} = 161 \text{ cm}, \quad \mu_{y} = \frac{332}{6} = 55 \text{ kg},$$

$$\sigma_{x} = \sqrt{\frac{216}{5}} = 6.573, \quad \sigma_{y} = \sqrt{\frac{215.3}{5}} = 6.563,$$

$$Corr(X,Y) = R(X,Y) = 0.904$$

Essential Points

7. What theories can you explore using regression methods?

Prediction, explanation/causation, testing a scientific hypothesis/mathematical model

a. Hooke's spring law: amount of stretch in a spring, Y, is related to the applied weight X by $Y=\alpha+\beta X$, a, b are spring constants.

b. Theory of gravity: force of gravity F between 2 objects is given by $F = \alpha/D^{\beta}$, where D-distance between objects, a is a constant related to the masses of the objects and $\beta = 2$, according to the inverse square law.

c. Economic production function: $Q = \alpha L^{\beta} K^{\gamma}$, Q = production, L=quantity of labor, K=capital, α , β , γ are constants specific to the market studied.

	Essential Points								
3.	People fit theoretical models to data for three main purposes.								
	a. To test the model, itself, by checking if the data is reasonably close agreement with the relationship predicted by the model.								
	b. Assuming the model is correct, to test if theoretically specified values of a parameter are consistent with the data $(y=2x+1 \text{ vs. } y=2.1x-0.9)$.								
	c. Assuming the model is correct, to estimate unknown constants in the model so that the relationship is completely specified $(y=x+5, y=2)$								

	Trend and Scatter - Computer timing data									
	 The major components of a regression relationship are trend and scatter around the trend. To investigate a trend – fit a math function to data, or smooth the data. Computer timing data: a mainframe computer has X users, each running jobs taking Y min time. The main CPU swaps between all tasks. Y* is the total time to finish all tasks. Both Y and Y* increase with increase of tasks/users, but how? 									
х	=	Number of terminals:	40	50	60	45	40	10	30	20
Y*	=	Total Time (mins):	6.6	14.9	18.4	12.4	7.9	0.9	5.5	2.7
Y	=	Time Per Task (secs):	9.9	17.8	18.4	16.5	11.9	5.5	11	8.1
X v*	=	Number of terminals: Total Time (mins):	50 12.6	30	65 23.6	40	65 20 2	65 21 4		
Y	=	Time Per Task (secs)	15.1	13.3	21.8	13.8	18.6	19.8		
				Slide 2	5	STAT I.	B. UCLA. Ivo	Dinov	[[[[]]	1111

specified (y=ax+5, a=?)

	The least squares line
	Least-squares line: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
β	$\hat{\boldsymbol{y}}_{1} = \frac{\sum_{i=1}^{n} \left[(x_{i} - \bar{x})(y_{i} - \bar{y}) \right]}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}; \hat{\boldsymbol{\beta}}_{\circ} = \bar{y} - \hat{\boldsymbol{\beta}}_{\circ} \bar{x}$
	Slide 40 STAT 13. UCLA. Ivo Dinov

TABLE	12.3.1 Predic	tion Errors	Compu	Computer timings data				
3 + 0.25x			δx	7 + 0.15x				
x	у	ŷ	$y - \hat{y}$	ŷ	$y - \hat{y}$			
40	9.90	13.00	-3.10	13.00	-3.10			
50	17.80	15.50	2.30	14.50	3.30			
60	18.40	18.00	0.40	16.00	2.40			
45	16.50	14.25	2.25	13.75	2.75			
40	11.90	13.00	-1.10	13.00	-1.10			
10	5.50	5.50	0.00	8.50	-3.00			
30	11.00	10.50	0.50	11.50	-0.50			
20	8.10	8.00	0.10	10.00	-1.90			
50	15.10	15.50	-0.40	14.50	0.60			
30	13.30	10.50	2.80	11.50	1.80			
65	21.80	19.25	2.55	16.75	5.05			
40	13.80	13.00	0.80	13.00	0.80			
65	18.60	19.25	-0.65	16.75	1.85			
65	19.80	19.25	0.55	16.75	3.05			
Sum of squared errors			37.46		90.36			
111111		111111111	Slide 42	STAT 13. UCLA. Iw	Dinov			

	Hands – on worksheet !									
1.	X={-1	, 2, 3,	4}, Y	={0, -	1, 1, 2]	},	2, j	⊽ = 0.5		
	X	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$\begin{array}{c} (x-\overline{x}) \times \\ (y-\overline{y}) \end{array}$			
	-1	0	-3	-0.5	9	0.25	1.5			
	2	-1	0	-1.5	0	2.25	0			
	3	1	1	0.5	1	0.25	0.5			
	4	2	2	1.5	4	2.25	3	$\beta_1 = 5/14$ $\beta_0 = y^{-\beta_1 * x}$		
	2	0.5			14	5	5	'β₀= 0.5 -10/		

Course Material Review

- 1. =====Part I=====
- 2. Data collection, surveys.
- 3. Experimental vs. observational studies
- 4. Numerical Summaries (5-#-summary)
- 5. Binomial distribution (prob's, mean, variance)
- 6. Probabilities & proportions, independence of events and conditional probabilities
- 7. Normal Distribution and normal approximation

Course Material Review – cont.

- 1. ====Part II====
- 2. Central Limit Theorem sampling distribution of \overline{X}
- 3. Confidence intervals and parameter estimation
- 4. Hypothesis testing
- 5. Paired vs. Independent samples
- 6. Analysis Of Variance (1-way-ANOVA, one categorical var.)
- 7. Correlation and regression
- 8. Best-linear-fit, least squares method