Solution to homework 3

Problem 3_1

i) $\quad \operatorname{Pr}(\mathrm{X}<=19)=0.0228$
ii) $\quad \operatorname{Pr}(\mathrm{X}<19)=0.0228$
iii) $\quad \operatorname{Pr}(\mathrm{X}>21)=1-0.1587=0.8413$
iv) $\operatorname{Pr}(24<=X<=27)=0.9772-0.6915=0.2857$

Problem 3_2
i) The amount needed is 10.2404 liters
ii) The IQR is 1.7266 liters
iii) $\quad \operatorname{Pr}(\mathrm{X}>6)=\operatorname{Pr}(\mathrm{Z}>(6-8.6) / 1.28)=\operatorname{Pr}(\mathrm{Z}>-1.4444)=0.9251$

Problem 3_3
i) $\quad \mathrm{E}(\mathrm{Y})=\mathrm{E}(3 \mathrm{X}-3 \mathrm{~W})=3 \mathrm{E}(\mathrm{X})-3 \mathrm{E}(\mathrm{W})=3 *(-3)-3 * 5=-24$

$$
\mathrm{SD}(\mathrm{Y})=\left(9 * \operatorname{SD}(\mathrm{X})^{2}+9 * \mathrm{SD}(\mathrm{~W})^{2}\right)^{1 / 2}=(9 * 25+9 * 9)^{1 / 2}=17.493
$$

ii) Random variable Y follows a normal distribution, since it's a linear combination of two normal random variables.

Problem 3_4

Let X denote the number of bits in a message that are corrupted in during transmission In this situation, X follows Binomial distribution (n, p), where $n=10^{5}, p=2 * 10^{-5}$. In
Poisson approximation, $\mathrm{X} \sim$ Poisson $(\mathrm{np}=2)$, therefore, $P(X=x)=\frac{2^{x}}{x!} e^{-2}$
The probability that this message is seriously degraded is $\operatorname{Pr}\left(\mathrm{X}>2 * 10^{-5} * 0.001 \%\right)$

$$
\begin{aligned}
& =P(X>2) \\
& =1-P(X=0)-P(X=1) \\
& =1-\frac{2^{0}}{0!} e^{-2}-\frac{2^{1}}{1!} e^{-2} \\
& =0.594
\end{aligned}
$$

