Problem 3_1

- i) $Pr(X \le 19) = 0.0228$
- ii) Pr(X < 19) = 0.0228
- iii) Pr(X>21) = 1-0.1587 = 0.8413
- iv) $Pr(24 \le X \le 27) = 0.9772 0.6915 = 0.2857$

Problem 3_2

i) The amount needed is 10.2404 liters
ii) The IQR is 1.7266 liters
iii) Pr(X>6) = Pr(Z>(6-8.6)/1.28) = Pr(Z>-1.4444) = 0.9251

Problem 3_3

- i) E(Y) = E(3X-3W) = 3E(X)-3E(W) = 3*(-3) 3*5 = -24
 - $SD(Y) = (9*SD(X)^2 + 9*SD(W)^2)^{1/2} = (9*25+9*9)^{1/2} = 17.493$

ii) Random variable Y follows a normal distribution, since it's a linear combination of two normal random variables.

Problem 3_4

Let X denote the number of bits in a message that are corrupted in during transmission In this situation, X follows Binomial distribution (n, p), where $n = 10^5$, $p = 2*10^{-5}$. In

Poisson approximation, X ~ Poisson (np = 2), therefore, $P(X = x) = \frac{2^x}{x!}e^{-2}$

The probability that this message is seriously degraded is Pr (X> $2*10^{-5}*0.001\%$)

$$= P(X > 2)$$

= 1 - P(X = 0) - P(X = 1)
= 1 - $\frac{2^{0}}{0!}e^{-2} - \frac{2^{1}}{1!}e^{-2}$
= 0.594