UCLA STAT 110 A Applied Statistics

-Instructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Helen Hu, UCLA Statistics

University of California, Los Angeles, Spring 2002
http://www.stat.ucla.edu/~dinov/

TABLE 2.1.1 Data on Male Heart Attack Patients

A subset of the data collected at a Hospital is summarized in this table. Each patient has measurements recorded for a number of variables - ID, Ejection factor (ventricular output), blood systolic/diastolic pressure, etc.

- Reading the table
-Which of the measured variables (age, ejection etc.) are useful in predicting how long the patient may live. -Are there relationships between these predictors? -variability \& noise in the observations hide the message of the data.

Data \& Variables

Variable is the name (label) given to the object being measured, counted, observed or recorded in any way. E.g., ID, EjectionVolume, Sys/Dia presure, etc.

- Data are the actual recording values. E.g., 120/80 (for the arterial pressure).

Chapter 2: Data Summaries, Plots

- Types of variables
- Presentation of data
- Simple plots
- Numerical summaries
- Repeated and grouped data
- Qualitative variables

Types of variable

- Quantitative variables are measurements and counts

■Variables with few repeated values are treated as continuous.

■ Variables with many repeated values are treated as discrete

- Qualitative variables (a.k.a. factors or classvariables) describe group membership

Frequency Histograms

Frequency Histograms - protocol:

- Determine the RANGE of values [a:b]
- Determine the numbers of bars (bins) to plot; d

■idth of each bar: (b-a)/d

- Count the frequency of your data in each bin, subinterval
Draw the histogram
- Example:

Frequency Histograms - Heights
Frequency Histograms - protocol:

- Determine the RANGE of values [0:130]
\square Determine the numbers of bars (bins) to plot; $\mathbf{8}$
■idth of each bar: ($\mathbf{1 3 0} \mathbf{- 0}$)/8 $=16.3$
\square Count the frequency of your data in each bin, subinterval
- Draw the histogram

Frequency Histograms - Heights

Uni- vs. Multi-modal histograms

Number of clear humps on the frequency histogram plot determines the modality of a histogram plot.

- Note: Modality of the histogram is histogram parameter specific! Changing the width of the bins changes its appearance!

Skewness \& Symmetry of histograms

- A histogram is symmetric is the bars (bins) to the left of some point (mean) are approximately mirror images of those to the right of the mean.

file:///C:/Ivo.dir/UCLA_Classes/Applets.dir/HistogramApplet.html

- Histogram is skewed if it is not symmetric, the histogram is heavy to the left or right, or non-identical on both sides of the mean.

Uni- vs. Multi-modal histograms

- Number of clear humps on the frequency histogram plot determines the modality of a histogram plot.

Analyzing Histogram Plots

- Modality - uni- vs. multi-modal (Why do we care?)
- Symmetry - how skewed is the histogram?
- Center of gravity for the Histogram plot - does it make sense?
- If center-of-gravity exists quantify the spread of the frequencies around this point.
- Strange patterns - gaps, atypical frequencies lying away from the center.

Caution: Storing and Reporting data

- Round numbers for presentation
- Maintain complete accuracy in numbers to be used in calculations. If you need to round-off, this should be the very last operation...

Example of a stem-and-leaf plot

Stem-plot of the 45 obs's of the Ejection variable in the Heart Attack data table.

(a) Original histogram (interval width $=5$)

(c) Same widths, different boundaries (interval width $=5$)

(b) $\underset{\text { (interval width }=3 \text {) }}{\text { Change class-interval width }}$

(d) Density trace
(window width = 5)

Interpreting Stem-plots and Histograms

(a) Unimodal

(g) Symmetric

(b) Bimodal

(c) Trimodal

(f) Negatively skewed (long lower tail)

(i) Exponential shape

Questions ...

- What advantages does a stem-and-leaf plot have over a histogram? (S\&L Plots return info on individual values, quick to produce by hand, provide data sorting mechanisms. But, Hist's are more attractive and more understandable).
- The shape of a histogram can be quite drastically altered by choosing different class-interval boundaries. What type of plot does not have this problem? (density trace) What other factor affects the shape of a histogram? (bin-size)
- What was another reason given for plotting data on a variable, apart from interest in how the data on that variable behaves? (shows features, cluster/gaps, outliers; as well as trends)

Slide 34

Interpreting Stem-plots and Histograms

Quantiles (vs. quartiles)

- The $\mathbf{q}^{\text {th }}$ quantile ($100 \times \mathbf{q}^{\text {th }}$ percentile) is a value, in the range of our data, so that proportion of at least \mathbf{q} of the data lies at or below it and a proportion of at least (1-q) lies at or above it.
- E.x., $X=\{1,2,3,4,5,6,7,8,9,10\}$. The $20^{\text {th }}$ percentile (0.2 quartile) is the value $\mathbf{2}$, since 20% of the data is below it and 80% above it. The $70^{\text {th }}$ percentile is the value 7 , etc.
- We could have also selected $\mathbf{2 . 5}$ and $\mathbf{7 . 5}$ for the $\mathbf{2 0}{ }^{\text {th }}$ and $70^{\text {th }}$ percentile, above. There is no agreement on the exact definitions of quantiles.

Measures of variability (deviation)

- Mean Absolute Deviation (MAD) -

$$
M A D=\frac{1}{n-1} \sum_{i=1}^{n}\left|y_{i}-\bar{y}\right|
$$

- Variance -

$$
\operatorname{Var}=s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

$$
\begin{aligned}
& \text { - Standard Deviation - }
\end{aligned}
$$

Measures of variability (deviation)

- Example:
- Mean Absolute Deviation- $M A D=\frac{1}{n-1} \sum_{i=1}^{n}\left|y_{i}-\bar{y}\right|$
- Variance - $\operatorname{Var}=s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
- Standard Deviation $-S D=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}$
- $X=\{1,2,3,4\}$.

MAD $=4 / 3=1.33$
Var $=5 / 3=1.67$
$\mathrm{SD}=1.3$

Comparing 3 plots of the same data

Stem-and-leaf of strength $\mathbf{N}=33$
Leaf Unit $=10$

Three graphs of the breaking-strength data for $\}$

Outliers and Atypical observations

Outliers - an extremely unrepresentative (of the process) data point

- Example: A paper mill Co. calibrates a device for measuring water depth, using ultrasound, by timing the echos. In calibrating the equipment they ran a simulation of a water tank with known dept. results:

Outliers and Atypical observations

- Measuring water depth, using ultrasound.

Outliers and Atypical observations

- Measuring water depth, using ultrasound. There are 4 clear outliers, see histogram (of differences).
- One engineer noticed that at depths below 0.3 ft , the radiation pattern of the ultrasound device intersected the wall of the tank, which appeared to have disturbed the measurements.
- They repositioned the ultrasound device to that the path of the sound was completely within the tank. Repeat of the measurements produced a better histogram without the initial 4 outliers.

Trimmed, Winsorized means and Resistancy

- A data-driven parameter estimate is said to be resistant if it does not greatly change in the presence of outliers.

Order

- K-times trimmed mean

$$
\bar{y}_{t k}=\frac{1}{n-2 k} \sum_{i=k+1}^{n-k} y
$$

- Winsorized k-times mean:
$\bar{y}_{w k}=\frac{1}{n}\left[(k+1) y_{(k+1)}+\sum_{i=k+2}^{n-k-1} y_{(i)}+(k+1) y_{(n-k)}\right]$

