UCLA STAT 110A
 Applied Statistics

-Instructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Helen Hu, UCLA Statistics

University of California, Los Angeles, Spring 2002
http://www.stat.ucla.edu/~dinov/

Frequency Distributions- damaged boxes
Relative frequency for type \mathbf{A} is: $\frac{16}{1664}=0.0096$
Percentage for type A is: $\frac{16}{1664} \times 100=0.96 \approx 1$
percent.
The usefulness of relative frequencies and percentages is clear: for example, it is easily seen that corner gouge
accounts for 59% of the total number of damages.

Chapter 4: Discrete/Continuous Variables, Probabilities, CLT

- Density Histograms
- Probabilities
- Bernoulli trials
- Central Limit Theorem (CLT)
- Standardizing Transformations

Frequency Distributions- damaged boxes

The frequency distribution of a variable is often presented graphically as a bar-chart/bar-plot. For example, the data in the frequency table above can be shown as:

The vertical axis can be frequencies or relative ${ }^{\text {T }}$ frequencies or percentages. On the horizontal axis all boxes should have the same width leave gaps between the boxes (because there is no connection between them) the boxes can be in any order.

Experiments, Models, RV's

- An experiment is a naturally occurring phenomenon, a scientific study, a sampling trial or a test., in which an object (unit/subject) is selected at random (and/or treated at random) to
observe/measure different outcome characteristics of the process the experiment studies.
- Model - generalized hypothetical description used to analyze or describe a phenomenon.
- A random variable is a type of measurement taken on the outcome of a random experiment.

Let's Make a Deal Paradox.

- The probability of picking the wrong door in the initial stage of the game is $2 / 3$.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly $2 / 3$.

The answer is: Binomial distribution

- The distribution of the number of heads in n tosses of a biased coin is called the Binomial distribution.

Binary random process

The biased-coin tossing model is a physical model for situations which can be characterized as a series of trials where:
■each trial has only two outcomes: success or failure;
$\square_{p}=\mathrm{P}($ success $)$ is the same for every trial; and trials are independent.

- The distribution of $X=$ number of successes (heads) in N such trials is

$$
\operatorname{Binomial}(N, p)
$$

Sampling from a finite population -
 Binomial Approximation

If we take a sample of size n

- from a much larger population (of size N)
- in which a proportion p have a characteristic of interest, then the distribution of X, the number in the sample with that characteristic,
- is approximately $\operatorname{Binomial}(n, p)$.
- (Operating Rule: Approximation is adequate if $n / N<0.1$.)
- Example, polling the US population to see what proportion is/has-been married.

Binomial Probabilities -

the moment we all have been waiting for!

- Suppose $\mathrm{X} \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$, then the probability

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}, \quad 0 \leq x \leq n
$$

- Where the binomial coefficients are defined by
$\binom{n}{x}=\frac{n!}{(n-x)!x!}$,

$$
n!=1 \times 2 \times 3 \times \ldots \times(n-1) \times n
$$

Binomial Formula with examples

- Does the Binomial probability satisfy the requirements?
$\Sigma_{x} P(X=x)=\Sigma_{x}\binom{n}{x} p^{x}(1-p)^{(n-x)}=(\mathrm{p}+(1-\mathrm{p}))^{\mathrm{n}}=1$
- Explicit examples for $\mathrm{n}=2$, do the case $\mathrm{n}=3$ at home!

$$
\begin{aligned}
& \sum_{x=0}^{2}\binom{2}{x} p^{x}(1-p)^{(2-x)}=\{\text { Three terms in the sum } \\
& \binom{2}{0} p^{\circ}(1-p)^{2}+\binom{2}{1} p^{\prime}(1-p)^{1}+\binom{2}{2} p^{2}(1-p)^{\circ}= \\
& 1 \times 1 \times(1-p)^{2}+2 \times p \times(1-p)+1 \times p^{2} \times 1=\left\{\begin{array}{l}
\begin{array}{l}
\text { Usual } \\
\text { quadratic- } \\
\text { expansion } \\
\text { formula }
\end{array}
\end{array}\right. \\
& (p+(1-p))^{2}=1
\end{aligned}
$$

Definition of the expected value, in general.

Example

In the at least one of each or at most 3 children example, where $\mathrm{X}=$ \{number of Girls $\}$ we have:

\boldsymbol{X}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\operatorname{pr}(x)$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$\mathrm{E}(X)=\sum_{x} x \mathrm{P}(x)$				
$=0 \times \frac{1}{8}+1 \times \frac{5}{8}+2 \times \frac{1}{8}+3 \times \frac{1}{8}$				
$=1.25$				

The expected value and population mean

$\boldsymbol{\mu}_{x}=\mathbf{E}(\boldsymbol{X})$ is called the mean of the distribution of X.
$\mu_{X}=\mathbf{E}(\boldsymbol{X})$ is usually called the population mean.
$\boldsymbol{\mu}_{\mathrm{x}}$ is the point where the bar graph of $\mathrm{P}(X=x)$ balances.

Population standard deviation

The population standard deviation is $\operatorname{sd}(X)=\sqrt{\mathrm{E}\left[(X-\mu)^{2}\right]}$

Note that if X is a $R V$, then $(X-\mu)$ is also a $R V$, and so is $(\mathrm{X}-\mu)^{2}$. Hence, the expectation,
$\mathbf{E}\left[(X-\mu)^{2}\right]$, makes sense.

Linear Scaling (affine transformations) $a X+b$

For any constants a and b, the expectation of the RV $a \boldsymbol{X}+b$ is equal to the sum of the product of a and the expectation of the RV X and the constant b.

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b
$$

And similarly for the standard deviation $(b$, an additive factor, does not affect the SD).

$$
\operatorname{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \operatorname{SD}(\boldsymbol{X})
$$

Linear Scaling (affine transformations) $a X+b$

Example:

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})
$$

1. $\mathrm{X}=\{-1,2,0,3,4,0,-2,1\} ; \mathrm{P}(\mathrm{X}=\mathrm{x})=1 / 8$, for each x
2. $\mathrm{Y}=2 \mathrm{X}-5=\{-7,-1,-5,1,3,-5,-9,-3\}$
3. $E(X)=$
4. $\mathrm{E}(\mathrm{Y})=$
5. Does $\mathrm{E}(\mathrm{X})=\mathbf{2} \mathrm{E}(\mathrm{X})-\mathbf{5}$?
6. Compute $\mathrm{SD}(\mathrm{X}), \mathrm{SD}(\mathrm{Y})$. Does $\mathrm{SD}(\mathrm{Y})=2 \mathrm{SD}(\mathrm{X})$?

Linear Scaling (affine transformations) $a \boldsymbol{X}+\boldsymbol{b}$
And why do we care?

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})
$$

-E.g., say the rules for the game of chance we saw before change and the new pay-off is as follows: $\{\$ 0, \$ 1.50, \$ 3\}$, with probabilities of $\{0.6,0.3,0.1\}$, as before. What is the newly expected return of the game? Remember the old expectation was equal to the entrance fee of $\$ 1.50$, and the game was fair!

$$
\begin{gathered}
\mathbf{Y}=\mathbf{3}(\mathbf{X}-\mathbf{1}) / \mathbf{2} \\
\{\$ 1, \$ 2, \$ 3\} \rightarrow\{\$ 0, \$ 1.50, \$ 3\} \\
\mathrm{E}(\mathrm{Y})=3 / 2 \mathrm{E}(\mathrm{X})-3 / 2=3 / 4=\$ 0.75
\end{gathered}
$$

And the game became clearly biased. Note how easy it is to compute $\mathrm{E}(\mathrm{Y})$.

For the Binomial distribution . . . SD
\square $\mathrm{SD}(X)=\sqrt{n p(1-p)}$

$X \sim \operatorname{Binomial}(n, p) \Rightarrow$

 $X=Y_{1}+Y_{2}+Y_{3}+\ldots+Y_{n}$, where $\boldsymbol{Y}_{\boldsymbol{k}} \sim \operatorname{Bernoulli}(p)$, $\operatorname{Var}\left(Y_{1}\right)=(1-p)^{2} \times p+(0-p)^{2} \times(1-p) \Rightarrow$ $\operatorname{Var}\left(Y_{1}\right)=(1-p)\left(p-p^{2}+p^{2}\right)=(1-p) p \rightarrow$ $\operatorname{Var}(X)=\operatorname{Var}\left(Y_{1}\right)+\ldots+\operatorname{Var}\left(Y_{n}\right)=n(1-p) p$ $\underline{S D}(X)=\operatorname{Sqrt} / \operatorname{Var}(X)]=\operatorname{Sqrt} / n(1-p) p]$
Sample spaces and events

A sample space, S, for a random experiment is the set of all possible outcomes of the experiment.

- An event is a collection of outcomes.
- An event occurs if any outcome making up that event occurs.

Combining events - all statisticians agree on

- "A or \boldsymbol{B} " contains all outcomes in A or B (or both).
- "A and \boldsymbol{B} " contains all outcomes which are in both A and B.

Probability distributions

- Probabilities always lie between 0 and 1 and they sum up to 1 (across all simple events) .
- $\boldsymbol{\operatorname { p r }}(\boldsymbol{A})$ can be obtained by adding up the probabilities of all the outcomes in A.

$$
\operatorname{pr}(A)=\sum_{\sum_{2}} \operatorname{pr}(E)
$$

Rules for manipulating Probability Distributions

For mutually exclusive events, $\operatorname{pr}(\boldsymbol{A}$ or $B)=\operatorname{pr}(\boldsymbol{A})+\operatorname{pr}(B)$

Review

- If A and B are mutually exclusive, what is the probability that both occur? ${ }_{(0)}$ What is the probability that at least one occurs? (sum of probabilities)
- If we have two or more mutually exclusive events, how do we find the probability that at least one of them occurs? (sum of probabilities)
- Why is it sometimes easier to compute $\operatorname{pr}(A)$ from $\operatorname{pr}(A)=1-\operatorname{pr}(\bar{A})$? (The complement of the even may be easer to find or may have a known probability. E.g., a random number between 1 and 10 is drawn. Let $\mathrm{A}=\{$ a number less than or equal to 9 appears $\}$. Find $\operatorname{pr}(\mathrm{A})=1-\operatorname{pr}(\bar{A}))$. probability of \bar{A} is $\operatorname{pr}(\{10$ appears $\})=1 / 10=0.1$. Also Monty Hall 3 door example!

Sample vs. theoretical mean \& varaince

Conditional Probability

The conditional probability of \boldsymbol{A} occurring given that B occurs is given by

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \text { and } B)}{\operatorname{pr}(B)}
$$

Suppose we select one out of the 400 patients in the study and we want to find the probability that the cancer is on the extremities given that it is of type nodular: $\mathrm{P}=73 / 125=\mathrm{P}$ (C. on Extremities \mid Nodular)
\#nodular patients with cancer on extremities \#nodular patients Slide 57

Statistical independence

Events A and B are statistically independent if knowing whether B has occurred gives no new information about the chances of A occurring,

$$
\text { i.e. if } \operatorname{pr}(A \mid B)=\operatorname{pr}(A)
$$

- Similarly, $\mathrm{P}(B \mid A)=\mathrm{P}(B)$, since
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B} \& \mathrm{~A}) / \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B}) / \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})$
- If A and B are statistically independent, then

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(A) \times \operatorname{pr}(B)
$$

Computing Probabilities using PDFs

- $P(Y \in A)=\int_{A} p_{Y}(y) d y$

$$
p_{Y}(y)=e^{-y}, y \geq 0
$$

- Example:
(i) Exponential shape
$P(0 \leq Y \leq 3)=\int_{0}^{3} p_{Y}(y) d y=$

$$
\int_{0}^{3} e^{-y} d y=-e^{-y} / 3=1-e^{-3} \cong 1
$$

Side 66 STATHOAUCIALVio Dinov

CDF (cumulative distribution function)
$F_{Y}(y)=P(Y \leq y)=\int_{-\infty}^{y} p_{Y}(y) d y$
$p_{Y}(y)=e^{-y}, y \geq 0$

- Example:

$$
\begin{aligned}
& F_{Y}(3)=P(Y \leq 3)=\int_{0}^{3} p_{Y}(y) d y= \\
& \int_{0}^{3} e^{-y} d y=-e^{-y} / 3=1-e^{-3} \cong 1 \\
& 0
\end{aligned}
$$

- Mean $\quad \mu_{Y}=\int_{-\infty}^{\infty} y \times p_{Y}(y) d y$

- Variance $\sigma_{Y}^{2}=\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} \times p_{Y}(y) d y$
- ${ }^{\mathrm{SD}} \sigma_{y}=\sqrt{\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} \times p_{y}(y) d y}$

Continuous Distributions

- Normal distribution
- Student's T distribution
- F-distribution
- Chi-squared (χ^{2})
- Cauchy's distribution
- Exponential distribution
- Poisson distribution, ...

Uniform Distribution - CDF, mean, variance

- Uniform Distribution CDF:
$F_{\gamma}(y)=\int_{-\infty}^{y} p_{\gamma}(x) d x=\int_{a}^{\min (b, b)} \frac{1}{b-a} d x=$

Uniform Distribution

- Uniform Distribution PDF: Y \sim Uniform(a;b)
$p_{\mathrm{Y}}(\mathrm{y})=1 /(\mathrm{b}-\mathrm{a})$, for each $\mathrm{a}<=\mathrm{y}<=\mathrm{b}$, and $\mathrm{p}_{\mathrm{Y}}(\mathrm{y})=0$, otherwise.

Uniform Distribution - CDF, mean, variance

- Mean:
$\mu_{Y}=\int_{-\infty}^{\infty} y p_{Y}(y) d y=\int_{a}^{b} \frac{y}{b-a} d y=\overline{2(b-a)} / b=\frac{a+b}{2}$
- Variance:
$\sigma_{Y}^{2}=\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} p_{Y}(y) d y=\int_{a}^{b} \frac{(2 y-(a+b))^{2}}{4(b-a)} d y=\frac{(b-a)^{2}}{12}$
- SD: $\sigma_{Y}=\sqrt{\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} p_{Y}(y) d y}=\frac{(b-a)}{\sqrt{12}}$

Standard Normal (Gaussian) Distribution

- Normal Distribution PDF: Y~Normal $\left(\mu=0, \sigma^{2}=1\right)$
$p_{Y}(y)=\frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}}, \forall-\infty<y<\infty$

$$
F_{Y}(y)=\int_{-\infty}^{y} p_{Y}(x) d x=\int_{-\infty}^{y} \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} d x
$$

- Normal Distribution PDF: Y~Normal $\left(\mu, \sigma^{2}\right)$
$p_{Y}(y)=\frac{e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi \sigma^{2}}}, \forall-\infty<y<\infty$
$F_{Y}(y)=\int_{-\infty}^{y} p_{Y}(x) d x=\int_{-\infty}^{y} \frac{e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi \sigma^{2}}} d x$

Continuous Distributions - Student's T

- Student's T distribution [approx. of $\operatorname{Normal}(0,1)$]
$■ \mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{N}}$ IID from $\operatorname{Normal}(\mu ; \sigma)$
- Variance σ^{2} is unknown
- In 1908, William Gosset (pseudonym Student) derived the exact sampling distribution of the following statistics
$T=\frac{Y-\mu_{Y}}{\hat{\boldsymbol{\sigma}}_{Y}}$
- T~Student(df=N-1), where
$\hat{\sigma}_{Y}=\sqrt{\frac{\sum_{k=1}^{N}\left(Y_{k}-\bar{Y}\right)^{2}}{N-1}}$
Slide 85

Continuous Distributions - F-distribution

- F-distribution k-samples of different sizes.
- Snedecor's F distribution is most commonly used in tests of variance (e.g., ANOVA). The ratio of two chi-squares divided by their respective degrees of freedom is said to follow an F distribution

Continuous Distributions - F-distribution					
- F-distribution k-samples of different sizes					
TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA					
Source	Sum of squares	$d f$	Mean sum of Squares ${ }^{\text {a }}$	F-statistic	P-val
Between Within	$\sum n_{i}\left(\bar{x}_{i}-\bar{x}_{\text {ct. }}\right)^{2}$			$f_{0}=s_{B}^{2} / s_{W}^{2}$	$\operatorname{pr}(F)$
	$\sum\left(n_{i}-1\right) s_{i}^{2}$		s_{W}^{2}		
Total $\quad \sum \sum\left(x_{i j}-\bar{x} . .\right)^{2}$		$n_{\text {tot }}-1$		$\sum n_{i}\left(\bar{x}_{i .}-\bar{x}_{. .}\right)^{2}$	
${ }^{2}$ Mean sum of squares $=($ sum of squares $) / d f$$-\mathrm{s}^{2}{ }_{\mathrm{B}}$ is a measure of variability of$\underline{\text { sample means }, ~ h o w ~ f a r ~ a p a r t ~ t h e y ~ a r e . ~}$$\mathrm{~s}^{2}{ }_{\mathrm{W}}$ reflects the avg. internalvariability within the samples.				$\begin{aligned} & s_{B}^{2}=\frac{\cdot}{k-1} \\ & s_{W}^{2}=\frac{\sum\left(n_{i}-1\right) s_{i}^{2}}{n_{t o t}-k} \end{aligned}$	

Continuous Distributions - $\chi^{\mathbf{2}}$ [Chi-Square]

- χ^{2} [Chi-Square] goodness of fit test:
\square Let $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right\}$ are IID $\mathrm{N}(0,1)$
$\square \mathrm{W}=\mathrm{X}_{1}^{2}+\mathrm{X}_{2}^{2}+\mathrm{X}_{3}^{2}+\ldots+\mathrm{X}_{\mathrm{N}}{ }^{2}$
- $\boldsymbol{W} \sim \chi^{2}(\mathrm{df}=\mathrm{N})$
$■$ Note: If $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{N}}\right\}$ are IID $\mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\sigma})$, then

$$
S D(Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(Y_{k}-\bar{Y}\right)^{2}
$$

And the Statistics $\underline{\mathbf{W} \sim \chi^{2}(\mathrm{df}=\mathrm{N}-1)} \quad W=\frac{N-1}{\sigma^{2}} S D^{2}(Y)$.
$\mathrm{X}^{2}-\sum^{N}\left(O_{k}-E_{k}\right)^{2}$
$\mathrm{X}^{2}=\sum_{k=1}^{N} \frac{\left(O_{k}-E_{k}\right)^{2}}{E_{k}} \sim \chi 2$
■ $\mathrm{E}(\mathrm{W})=\mathrm{N} ; \operatorname{Var}(\mathrm{W})=2 \mathrm{~N}$

Continuous Distributions - Exponential

Exponential distribution, X \sim Exponential (λ)

- The exponential model, with only one unknown parameter, is the simplest of all life distribution models.

$$
f(x)=\lambda e^{-\lambda x} ; \quad x \geq 0
$$

- $\mathrm{E}(\mathrm{X})=1 / \lambda ; \quad \operatorname{Var}(\mathrm{X})=1 / \lambda^{2}$;
- Another name for the exponential mean is the Mean Time To Fail or MTTF and we have MTTF $=1 / \lambda$.
- If \boldsymbol{X} is the time between occurrences of rare events that happen on the average with a rate 1 per unit of time, then X is distributed exponentially with parameter λ. Thus, the exponential distribution is frequently used to model the time interval between successive random events. Examples of variables distributed in this between sucucessive random events. Examplas of arriables istrsuted in life-times
manner would be the gap length between cars crossing an intersection, life-timen of electronic devices, or arrivals of customers at the check-out counter in a grocery store.

Continuous Distributions - Exponential

Exponential distribution, Example:

By-hand vs. ProbCalc.htm

On weeknight shifts between 6 pm and 10 pm , there are an average of 5.2 calls to the UCLA medical emergency number. Let X measure the time needed for the first call on such a shift. Find the probability that the first call arrives (a) between $6: 15$ and 6:45 (b) before 6:30. Also find the median time needed for the first call ($34.578 \% ; 72.865 \%$).
\square We must first determine the correct average of this exponential distribution. If we consider the time interval to be $4 \times 60=240$ minutes, then on average there is a call every $240 / 5.2$ (or 46.15) minutes. Then $X \sim \operatorname{Exp}(1 / 46),[E(X)=46]$ measures the time in minutes after 6:00 pm until the first call.

Poisson Distribution - Definition

Used to model counts - number of arrivals (k) on a given interval ...

- The Poisson distribution is also sometimes referred to as the distribution of rare events. Examples of Poisson distributed variables are number of accidents per person, number of sweepstakes won per person, or the number of catastrophic defects found in a production process.
- Customers arrive at a certain store at an average of 15 per hour. What is the probability that the manager must wait at least 5 minutes for the first customer?
- The exponential distribution is often used in probability to model (remaining) lifetimes of mechanical objects for which the average lifetime is known and for which the probability distribution is assumed to decay exponentially.
- Suppose after the first 6 hours, the average remaining lifetime of batteries for a portable compact disc player is 8 hours. Find the probability that a set of batteries lasts between 12 and 16 hours.

Solutions:

- Here the average waiting time is $60 / 15=4$ minutes. Thus $X \sim \exp (1 / 4) . E(X)=4$. Now we want $\mathrm{P}(\mathrm{X}>5)=1-\mathrm{P}(\mathrm{X}<=5)$. We obtain a right tail value of .2865 . So around 28.65% of the time, the store must wait at least 5 minutes for the first customer.
- Here the remaining lifetime can be assumed to be $X \sim \exp (1 / 8) . E(X)=8$. For the total lifetime to be from 12 to 16 , then the remaining lifetime is from 6 to 10 . We find that $\mathrm{P}(6<=\mathrm{X}<=10)=.1859$.

Poisson Distribution - Variance

- $\mathrm{Y} \sim \operatorname{Poisson}(\boldsymbol{\lambda})$, then $\mathrm{P}(\mathrm{Y}=\mathrm{k})=\frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!} \quad, \mathrm{k}=0,1,2, \ldots$
- Variance of $\mathrm{Y}, \sigma_{\mathrm{Y}}=\lambda$, since

$$
\sigma_{Y}^{2}=\operatorname{Var}(Y)=\sum_{k=0}^{\infty}(k-\lambda)^{2} \frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!}=\ldots=\lambda
$$

- For example, suppose that Y denotes the number of blocked shots (arrivals) in a randomly sampled game for the UCLA Bruins men's basketball team. Then a Poisson distribution with mean=4 may be used to model Y .

Poisson as an approximation to Binomial

- Suppose we have a sequence of $\operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right)$ models, with $\lim \left(n p_{n}\right) \rightarrow \lambda$, as $n \rightarrow$ infinity.
- For each $0<=\mathrm{y}<=\mathrm{n}$, if $\mathrm{Y}_{\mathrm{n}} \sim \operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right)$, then
- $\mathrm{P}\left(\mathrm{Y}_{\mathrm{n}}=\mathrm{y}\right)=$

$$
\binom{n}{y} p_{n}^{y}\left(1-p_{n}\right)^{n-y}
$$

■ But this converges to:
$\binom{n}{y} p_{n}{ }^{y}\left(1-p_{n}\right)^{n-y} \xrightarrow[\substack{n \longrightarrow \infty \\ n \times p_{n} \longrightarrow \lambda}]{\text { WHY? }} \frac{\lambda^{y} e^{-\lambda}}{y!}$

- Thus, $\operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\boldsymbol{\lambda})$

Poisson as an approximation to Binomial

Poisson Distribution - Example

- For example, suppose that Y denotes the number of blocked shots in a randomly sampled game for the UCLA Bruins men's basketball team. Poisson distribution with mean $=4$ may be used to model Y .

Rule of thumb is that approximation is good if:
$\begin{array}{ll}\square & n>=100 \\ \square & p<=0.01 \\ \square & \lambda=n p<=20\end{array}$
Then, $\operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\lambda)$

Example using Poisson approx to Binomial

> - Suppose $\mathrm{P}($ defective chip $)=0.0001=10^{-4}$. Find the probability that a lot of 25,000 chips has >2 defective!
> $\bullet \mathrm{Y} \sim \operatorname{Binomial}(25,000,0.0001)$, find $\mathrm{P}(\mathrm{Y}>2)$. Note that $\mathrm{Z} \sim \operatorname{Poisson}(\lambda=\mathrm{n} \mathrm{p}=25,000 \times 0.0001=2.5)$
> $P(Z>2)=1-P(Z \leq 2)=1-\sum_{z=0}^{2} \frac{2.5^{z}}{z!} e^{-2.5}=$
> $1-\left(\frac{2.5^{0}}{0!} e^{-2.5}+\frac{2.5^{1}}{1!} e^{-2.5}+\frac{2.5^{2}}{2!} e^{-2.5}\right)=0.456$

Normal approximation to Binomial - Example

- Roulette wheel investigation:
- Compute $\mathrm{P}(\mathrm{Y}>=58)$, where $\mathrm{Y} \sim \operatorname{Binomial}(100,0.47)-$
\square The proportion of the $\operatorname{Binomial}(100,0.47)$ population having more than 58 reds (successes) out of 100 roulette spins (trials).
\square Since $n p=47>=10$ \& $n(1-p)=53>10$ Normal approx is justified.
$\bullet Z=(Y-n p) / S q r t(n p(1-p))=18$ red 18black 2 neutral
58 - 100*0.47)/Sqrt(100*0.47*0.53)=2.2
- $\mathrm{P}(\mathrm{Y}>=58) \longleftrightarrow \mathrm{P}(\mathrm{Z}>=2.2)=0.0139$
- True $\mathrm{P}(\mathrm{Y}>=58)=0.177$, using SOCR (demo!)
- Binomial approx useful when no access to SOCR avail.

Poisson or Normal approximation to Binomial?

Poisson Approximation (Binomial(n, $\left.\mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\lambda)$):
$\binom{n}{y} p_{n}{ }^{y}\left(1-p_{n}\right)^{n-y} \xrightarrow[\substack{n \longrightarrow p_{n} \longrightarrow \lambda}]{\text { WHY? }} \frac{\lambda^{y} e^{-\lambda}}{y!}$
$\square n>=100 \& p<=0.01 \& \quad \lambda=n p<=20$

- Normal Approximation
$\left(\right.$ Binomial $(\mathrm{n}, \mathrm{p}) \rightarrow N\left(\underline{\left.\left.\mathbf{n p},(\mathbf{n p}(\mathbf{1}-\mathrm{p}))^{1 / 2}\right)\right)}\right.$
$\square_{n p}>=10 \quad \& \quad n(1-p)>10$

Normal approximation to Binomial

- Suppose $\mathbf{Y} \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$
- Then $\mathbf{Y}=\mathbf{Y}_{1}+\mathbf{Y}_{2}+\mathbf{Y}_{3}+\ldots+\mathbf{Y}_{\mathrm{n}}$, where
- $\quad \mathbf{Y}_{\mathrm{k}} \sim \operatorname{Bernoulli}(\mathrm{p}), \mathrm{E}\left(\mathrm{Y}_{\mathrm{k}}\right)=\mathrm{p} \& \operatorname{Var}\left(\mathrm{Y}_{\mathrm{k}}\right)=\mathrm{p}(1-\mathrm{p}) \rightarrow$
$\square \quad E(Y)=n p \& \operatorname{Var}(Y)=n p(1-p), \operatorname{sd}(Y)=(n p(1-p))^{1 / 2}$
- Standardize Y:
$\square \mathbf{Z}=(Y-n p) /(\mathbf{n p}(1-p))^{1 / 2}$
\square By CLT $\rightarrow \mathrm{Z} \sim \mathbf{N}(0,1)$. So, $\underline{Y} \sim N\left\lceil n \mathrm{np},(\mathrm{np}(1-\mathrm{p}))^{1 / 2}\right]$
- Normal Approx to Binomial is
reasonable when $n p>=10 \quad \& \quad n(1-p)>10$
($\mathrm{p} \&(1-\mathrm{p}$) are NOT too small relative to n).

Normal approximation to Poisson

- Let $X_{1} \sim \operatorname{Poisson}(\lambda) \& X_{2} \sim \operatorname{Poisson}(\mu) \rightarrow X_{1}+X_{2} \sim \operatorname{Poisson}(\lambda+\mu)$
- Let $X_{1}, X_{2}, X_{3}, \ldots, X_{k} \sim \operatorname{Poisson}(\lambda)$, and independent,
- $Y_{k}=X_{1}+X_{2}+\cdots+X_{k} \sim \operatorname{Poisson}(\mathrm{k} \lambda), \mathrm{E}\left(Y_{k}\right)=\operatorname{Var}\left(Y_{k}\right)=k \lambda$.
- The random variables in the sum on the right are independent and each has the Poisson distribution with parameter λ.
- By CLT the distribution of the standardized variable $\left(Y_{k}-k \lambda\right) /(k \lambda)^{1 / 2} \Rightarrow \mathrm{~N}(0,1)$, as k increases to infinity.
- So, for $k \lambda>=100, Z_{k}=\left\{\left(Y_{k}-k \lambda\right) /(k \lambda)^{1 / 2}\right\} \sim \mathbf{N}(0,1)$.
$\bullet Y_{k} \sim \mathrm{~N}\left(k \lambda,(k \lambda)^{1 / 2}\right)$.

Exponential family and arrival numbers/times

- First, let $\underline{T}_{\underline{k}}$ denote the time of the k^{\prime} th arrival for $k=$ $1,2, \ldots$ The gamma experiment is to run the process until the k^{\prime} th arrival occurs and note the time of this arrival.
- Next, let \underline{N}_{t} denote the number of arrivals in the time interval $(0, t)$ for $t \geq 0$. The Poisson experiment is to run the process until time t and note the number of arrivals.

- How are $\underline{T}_{\underline{k}} \& N_{\underline{t}}$ related?
$\underline{N}_{\underline{t}} \geq k \leftarrow \underline{T}_{\underline{k}} \leq t$
This distribution is the gamma
distribution with shape parameter
$\left.\begin{array}{c}\text { disribution with shape parammeter } k \\ \text { and rute parameter . Apain } 1 / r\end{array}\right)$

Independence of continuous RVs

- The RV's $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$ are independent if for any n-tuple $\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$
$P\left(\left\{Y_{1} \leq y_{1}\right\} \cap\left\{Y_{2} \leq y_{2}\right\} \cap\left\{Y_{3} \leq y_{3}\right\} \cap \ldots \cap\left\{Y_{n} \leq y_{n}\right\}\right)$
$=P\left(Y_{1} \leq y_{1}\right) \times P\left(Y_{2} \leq y_{2}\right) \times P\left(Y_{3} \leq y_{3}\right) \times \ldots \times P\left(Y_{n} \leq y_{n}\right.$
\qquad

Standard Normal Curve

- The standard normal curve is described by the equation:

Where remember, the natural number $\mathbf{e} \boldsymbol{\sim} \mathbf{2 . 7 1 8 2 \ldots}$
We say: $X \sim \operatorname{Normal}(\mu, \sigma)$, or simply $X \sim N(\mu, \sigma)$

The inverse problem - Percentiles/quantiles


```
Areas under Standard Normal Curve - Example
```

- Many histograms are similar in shape to the standard normal curve. For example, persons height. The height of all incoming female army recruits is measured for custom training and assignment purposes (e.g., very tall people are inappropriate for constricted space positions, and very short people may be disadvantages in certain other situations). The mean height is computed to be 64 in and the standard deviation is 2 in . Only recruits shorter than 65.5 in will be trained for tank operation and recruits within $1 / 2$ standard deviations of the mean will have no restrictions on duties
- What percentage of the incoming recruits will be trained to operate armored combat vehicles (tanks)?
- About what percentage of the recruits will have no restrictions on training/duties?

Identifying Common Distributions - QQ plots

Identifying Common Distributions - QQ plots

- Quantile-Quantile plots indicate how well the model distribution agrees with the data. in approximating a population (data) distribution.
- Histograms, can reveal much of the features of the data distribution.
- Quantile-Quantile plots indicate how well the model distribution agrees with the data.
- $\mathrm{q}^{\text {-th }}$ quantile, for $0<\mathrm{q}<1$, is the (data-space) value, V_{q}, at or below which lies a proportion q of the data.
- E.g., $\mathrm{q}=0.80, \mathrm{Y}=\{1,2,3,4,5,6,7,8,9,10\}$. The $\mathrm{q}^{\text {th }}$ quantile $\mathrm{V}_{\mathrm{q}}=8$, since 80% of the data is at or below 8 .

Constructing QQ plots

- Start off with data $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{\mathrm{n}}\right\}$

- Order the data observations $\mathbf{y}_{(1)}<=\mathrm{y}_{(2)}<=\mathrm{y}_{(3)}<=\ldots<=\mathrm{y}_{(\mathrm{n})}$
- Compute quantile rank, $q_{(k)}$, for each observation, $\mathbf{y}_{(\mathrm{k})}$, $\mathrm{P}\left(\mathrm{Y}<=\mathrm{q}_{(\mathrm{k})}\right)=(\mathrm{k}-0.375) /(\mathrm{n}+0.250)$, where

Y is a RV from the (target) model distribution.

- Finally, plot the points $\left(\mathbf{y}_{(\mathrm{k})}, \mathbf{q}_{(\mathrm{k})}\right)$ in 2D plane, $1<=\mathrm{k}<=\mathrm{n}$.
- Note: Different statistical packages use slightly different formulas for the computation of $\mathbf{q}_{(\mathrm{k})}$. However, the results are quite similar. This is the formulas employed in SAS.
- Basic idea: Probability that: $(\operatorname{model}) \mathbf{Y}<=($ data $) y_{1} \sim \mathbf{1} / \mathbf{n}$; $Y<=y_{2} \sim 2 / n ; \quad Y<=y_{3} \sim 3 / n ; \ldots$

Example - Constructing QQ plots

- Start off with data $\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right\}$.

Data transformations

- In practice oftentimes observed data does not directly fit any of the models we have available. In these cases transforming the raw data may provide/satisfy the requirements for using the distribution models we know.
- Common transformations: $\mathrm{Y}=\mathrm{T}(\mathrm{X}), \mathrm{X}=$ raw data, $\mathrm{Y}=$ new

■ Data positively skewed to right use $T(X)=\operatorname{Sqrt}(X)$ or $\mathrm{T}(\mathrm{X})=\log (\mathrm{X})$
■If data varies by more than 2 orders of magnitude
\square For $X>0$, use $T(X)=\log (X)$
\square For any X, use $T(X)=-1 / X$.
\square If X are counts (categorical var's), $\mathrm{T}(\mathrm{X})=\operatorname{Sqrt}(\mathrm{X})$
$\square \mathrm{X}=$ proportions \& largest/ smallest Proportions $>=2$, use Logit transform: $\mathrm{T}(\mathrm{X})=\log [\mathrm{X} /(1-\mathrm{X})]$.

Central Limit Theorem theoretical formulation

Let $\left\{X_{1}, X_{2}, \ldots, X_{k}, \ldots\right\}$ be a sequence of independent observations from one specific random process. Let and $E(X)=\boldsymbol{\mu}$ and $S D(X)=\sigma$ and both be finite $(0<\boldsymbol{\sigma}<\boldsymbol{\infty} ;|\boldsymbol{\mu}|<\infty)$. If $\bar{X}{ }_{n}=\frac{1}{n_{k}} \sum_{k=1} X_{\vec{k}}$, sample-avg,
Then \bar{X} has a distribution which approaches $\mathrm{N}\left(\mu, \sigma^{2} / n\right)$, as $n \rightarrow \infty$.

When you have data from a moderate to small sample and want to use a normal approximation to the distribution of \bar{X} in a calculation, what would you want to do before having any faith in the results? (30 or more for the sample-size, depending on the skewness of the distribution of X. Plot the data - non-symmetry and heavyness in the tails slows down the CLT effects).

- Take-home message: CLT is an application of statistics of paramount importance. Often, we are not sure of the distribution of an observable process. However, the CLT gives us a theoretical description of the distribution of the sample means as the samplesize increases ($\left(\mu, \sigma^{2} / n\right)$.

Central Limit Theorem - theoretical formulation

Central Limit Theorem - heuristic formulation

Central Limit Theorem:

When sampling from almost any distribution,
\bar{X} is approximately Normally distributed in large samples.

Show Sampling Distribution Simulation Applet: file:///C:IIvo.dir/UCLA_Classes/Winter2002/AdditionallInstructorAids/ SamplingDistributionApplet.html

Review

- What does the central limit theorem say? Why is it useful? (If the sample sizes are large, the mean in Normally distributed, as a RV)
- In what way might you expect the central limit effect to differ between samples from a symmetric distribution and samples from a very skewed distribution? (Larger samples for non-symmetric distributions to see CLT effects)
- What other important factor, apart from skewness, slows down the action of the central limit effect?
(Heavyness in the tails of the original distribution.)

The standard error of the mean - remember ...

- For the sample mean calculated from a random sample, $\operatorname{SD}(\bar{X})=\frac{\sigma}{\sqrt{n}}$. This implies that the variability from sample to sample in the samplemeans is given by the variability of the individual observations divided by the square root of the sample-size. In a way, averaging decreases variability.
- Recall that for known $\operatorname{SD}(\mathrm{X})=\sigma$, we can express the $\mathrm{SD}(\bar{X})=\frac{\sigma}{\sqrt{n}}$. How about if $\mathrm{SD}(\mathrm{X})$ is unknown?!?

The standard error of the mean

The standard error of the sample mean is an estimate of the $S D$ of the sample mean

- i.e. a measure of the precision of the sample mean as an estimate of the population mean
- given by $\operatorname{SE}(\bar{x})=\frac{\text { Sample standard deviation }}{\sqrt{\text { Sample size }}}$

$$
S \mathrm{EE}(\bar{x})=\frac{s_{x}}{\sqrt{n}} \begin{aligned}
& \bullet \text { Note similarity with } \\
& \bullet \mathrm{SD}(\bar{X})=\frac{\sigma}{\sqrt{n}} .
\end{aligned}
$$

Cavendish's $\mathbf{1 7 9 8}$ data on mean density of the
Earth, $\mathbf{g} / \mathbf{c m}^{3}$, relative to that of $\mathrm{H}_{2} \mathrm{O}$

5.50	5.61	4.88	5.07	5.26	5.55	5.36	5.29	5.58	5.65
5.57	5.53	5.62	5.29	5.44	5.34	5.79	5.10	5.27	5.39
5.42	5.47	5.63	5.34	5.46	5.30	5.75	5.68	5.85	
Source: Cavendish $[1798]$									

Sample mean $\bar{x}=5.447931 \mathrm{~g} / \mathrm{cm}^{3}$
and sample $\mathbf{S D}=S_{X}=0.2209457 \mathrm{~g} / \mathrm{cm}^{3}$
Then the standard error for these data is:

$$
S E(\bar{X})=\frac{S_{X}}{\sqrt{n}}=\frac{0.2209457}{\sqrt{29}}=0.04102858
$$

Cavendish's $\mathbf{1 7 9 8}$ data on mean density of the
Earth, $\mathbf{g} / \mathrm{cm}^{3}$, relative to that of $\mathbf{H}_{2} \mathbf{O}$

5.50	5.61	4.88	5.07	5.26	5.55	5.36	5.29	5.58	5.65
5.57	5.53	5.62	5.29	5.44	5.34	5.79	5.10	5.27	5.39
5.42	5.47	5.63	5.34	5.46	5.30	5.75	5.68	5.85	

Total of 29 measurements obtained by $\bar{x} \quad$ Two-standard-error interval Total of 29 measurements obtained by
measuring Earth's attraction to masses

Newton's law of gravitation: $\mathrm{F}=\mathrm{G} \mathrm{m}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$, the attraction force \bar{F} is the ratio of the product (Gravitational const, mass of bodyl, mass body2) and the distance between them, r. Goal is to estimate G!

