UCLA STAT 110A
 Applied Statistics

-Instructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology

- Teaching Assistant: Helen Hu, UCLA Statistics

University of California, Los Angeles, Spring 2002
http://www.stat.ucla.edu/~dinov/

Slide 1

The C + E Model

- Data $=$ Center + Error : $\mathbf{Y}=\mu+\varepsilon$;
- The response value \mathbf{Y} is equal to unknown constant (μ), but because of normal variability we almost never observe μ exactly.
- Example Speed of light (SOL), $\boldsymbol{\mu}=2.998 \times 10^{9} \mathrm{~m} / \mathrm{s}$. However, 100 measurements of the SOL are all going to be slightly different.
- Model (population) parameter - a quantity describing the model that can take on many values. Ex., μ.

Types of inference

- Estimation of model parameters: Data-driven estimates of the model parameters. Also, includes how much uncertainty about those estimates is there.
- Prediction of new (future) observations: Uses past and current data to predict the value of new observations from the population.
- Tolerance level: a range of values that has userspecified probability of containing a particular proportion of the population.

Estimation of model parameter(s) $-\mu$ (Example)

Data: ball-bearing diameter: $\mu=$? (unknown) given the observed $\mathbf{Y}=\left\{\mathrm{Y}_{1}=\mathbf{0 . 1 8 9 6}, \mathrm{Y}_{2}=\mathbf{0 . 1 9 1 3}, \mathrm{Y}_{10}=\mathbf{0 . 1 9 0 0}\right\}$. $\mathrm{SAE}=\Sigma\left|\mathrm{Y}_{\mathrm{k}}-\mathbf{m}\right| \quad \& \quad \mathrm{SSE}=\Sigma\left(\mathbf{Y}_{\mathrm{k}}-\mathbf{m}\right)^{\mathbf{2}}$

Parameters, Estimators, Estimates ..

- A parameter is a characteristic of the data mean, $1^{\text {st }}$ quartile, SD , etc.)
- An estimator is an abstract rule for calculating a quantity (or parameter) from the sample data.
- An estimate is the value obtained when real data are plugged-in the estimator rule.

Parameters, Estimators, Estimates ...

- E.g., We are interested in the population mean diameter (parameter) of washers the sampleaverage formula represents an estimator we can use, where as the value of the sample average for a particular dataset is the estimate (for the mean parameter).
$\underline{\text { parameter }}=\mu_{Y} ; \quad \underline{\text { estimator }}=\bar{Y}=\frac{1}{N} \sum_{k=1}^{N} Y_{k}$
Data : $Y=\{0.1896,0.1913,0.1900\}$
estimate $=\bar{y}=1 / 3(0.1896+0.1913+0.1900)$
$\overline{\mathrm{y}}=0.1903$. How about $\bar{y}=2 / 3^{(0.1896+0.1913+0.1900)}$

CI for population mean

- E.g., SYSTAT \rightarrow Data:

BirthdayDistribution_1978_systat.SYD

- Statistics \rightarrow Descriptive Statistics \rightarrow Stem-\&-Leaf-Plot
- Statistics \rightarrow Descriptive Statistics \rightarrow CI_for_mean

CI for population mean - Example

- E.g., Lab rats blood glucose levels: $\{266,149,161,220\}$ Estimate μ, the mean population blood sugar level. Assume the variance $\boldsymbol{\sigma}^{2}=2958, \rightarrow \boldsymbol{\sigma}=54.4$, from prior experience. Also assume data comes from $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Sample-avg $=199$, Compute the 95% CI, $\mathrm{L}=0.95$.
- $(1-\mathrm{L}) / 2=0.025,(1+\mathrm{L}) / 2=0.975$,
$\bullet \mathrm{Z}_{(1-\mathrm{L}) / 2}=\mathrm{Z}_{0.025}=-1.96 \quad \& \mathrm{Z}_{(1+\mathrm{L}) / 2}=\mathrm{Z}_{0.975}=1.96$
- $\mathrm{L}=\mathrm{P}\left(\mathrm{z}_{(1-\mathrm{L}) / 2}<\mathbf{n}^{1 / 2}\left(\mathrm{Y}_{-}\right.\right.$bar $\left.\left.-\boldsymbol{\mu}\right) / \boldsymbol{\sigma}<\mathrm{z}_{(1+\mathrm{L}) / 2}\right)$,
- $\mathrm{CI}(\mu)=\left(\mathrm{Y}_{-}\right.$bar $-\sigma_{\mathrm{z}_{(1+\mathrm{L}) / 2}} / \mathbf{n}^{1 / 2} ; \mathrm{Y}_{-}$bar $-\sigma_{\left.\mathrm{z}_{(1-\mathrm{L}) / 2} / \mathbf{n}^{1 / 2}\right)}$
- CI $(\mu)=\left(199-54.4 \times 1.96 / 4^{1 / 2} ; 199+54.4 \times 1.96 / 4^{1 / 2}\right)$
$\mathrm{CI}(\mu)=(145.7: 252.3)$

Comparison of the CI using T (unknown σ) \& Z (known σ) distributions
\bullet CI (μ), when $\underline{\sigma=54.4 \text { is known (Normal distr.) }) ~}$
$\mathbf{C I}(\mu)=\left(\mathrm{Y}_{\mathrm{bar}}-\boldsymbol{\sigma}_{\mathrm{z}_{(1+\mathrm{L}) / 2} / \mathbf{n}^{1 / 2} ;} ; \mathbf{Y}_{\mathrm{bar}}-\boldsymbol{\sigma}_{\left.\mathrm{z}_{(1+\mathrm{L}) / 2} / \mathbf{n}^{1 / 2}\right),}\right.$

$$
\mathrm{z}_{(1+\mathrm{L}) / 2}=1.96
$$

$95 \% \mathrm{CI}(\mu)=\left(199-54.4 \times 1.96 / 4^{1 / 2} ; 199+54.4 \times 1.96 / 4^{1 / 2}\right)$ $\mathrm{CI}_{\mathrm{Z}}(\mu)=(145.7: 252.3)$

- Comparison:
$\mathrm{CI}_{\mathrm{T}}(\mu)=(112.4: 285.6) \leftarrow$ compare \Rightarrow $\mathrm{CI}_{\mathrm{Z}}(\mu)=(145.7: 252.3)$
Which one is better?!? More appropriate?!?

Comparison of the CI using T (unknown σ) \& \mathbf{Z} (known σ) distributions

- For the old data: glucose levels:
$\{266,149,161,220\} \quad \sigma=\sqrt{\frac{1}{N-1} \sum_{k=1}^{N}\left(y_{k}-\bar{y}\right)^{2}}$
- $\mathrm{CI}(\mu)$, when σ is unknown (T-distr.), small-sample-size, and data comes from (approx.) Normal distribution.

$$
\begin{gathered}
\bar{x}=199 \\
\hat{\sigma}=54.39
\end{gathered}
$$

$\mathbf{L}=\mathbf{P}\left(\mathbf{t}_{\mathrm{N}-1,(1-\mathrm{L}) / 2}<\mathbf{n}^{1 / 2}\left(\mathbf{Y}_{\text {bar }}-\mu\right) / \sigma^{\wedge}<\mathbf{t}_{\mathrm{N}-1,(1+\mathrm{L}) / 2}\right)$, $\mathbf{C I}(\mu)=\left(\mathbf{Y}_{\text {bar }}-\boldsymbol{\sigma}^{\wedge} \mathbf{t}_{\mathrm{N}-1,(1+\mathrm{L}) / 2} / \mathbf{n}^{1 / 2} ; \mathbf{Y}_{\mathrm{bar}}-\boldsymbol{\sigma}^{\wedge} \mathrm{t}_{\mathrm{N}-1,(1+\mathrm{L}) / 2} / \mathbf{n}^{1 / 2}\right)$ $95 \% \mathrm{CI}(\mu)=\left(199-54.39 \times 3.18 / 4^{1 / 2} ; 199+54.39 \times 3.18 / 4^{1 / 2}\right)$
$\mathrm{t}_{\mathrm{N}-1,(1+1) / 2}=\mathrm{t}_{3,0.97 \mathrm{~s}}=3.18 \& \mathrm{t}_{\mathrm{N}-1,(\mathrm{a}-1) / 2}=\mathrm{t}_{3,0.025}=-3.18 \rightarrow \mathrm{CI}_{\mathrm{T}}(\mu)=(112.4: 285.6)$

Prediction vs. Confidence intervals

\bullet Confidence Intervals (for the population mean μ):

$$
\left(\overline{\mathrm{Y}}-\frac{\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}}{\sqrt{\mathrm{n}}} ; \overline{\mathrm{Y}}+\frac{\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}}{\sqrt{\mathrm{n}}}\right)
$$

- Prediction Intervals: L-level prediction interval (PI) for a new value of the process Y is defined by:
$\left(\hat{Y}_{\text {new }}-\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2} \quad ; \quad \hat{Y}_{\text {new }}+\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}\right)$ where the predicted value $\hat{Y}_{\text {new }}=\bar{Y}$, is obtained as an estimator of the unknown process mean μ.

Classical Prediction for the $\mathrm{C}+\mathrm{E}$ model

- $\mathrm{Y}=\mathrm{C}+\mathrm{E}$. When why, how to use prediction?
- When: $\mathbf{E} \sim N\left(\mathbf{0}, \boldsymbol{\sigma}^{\mathbf{2}}\right) \Leftarrow \rightarrow \mathbf{Y} \sim N\left(\mu, \boldsymbol{\sigma}^{\mathbf{2}}\right)$, there are more general situations, of course. Here we only consider this case.
- Why: Future predictions are of paramount importance in any area of science/engineering/medicine.
- How: μ is mostly unknown, so we estimate it by: \mathbf{m}^{\wedge}, (the sample average).
If population proportion, \mathbf{p}, is unknown we estimate it by the sample-proportion, \mathbf{p}^{\wedge}, etc.

Classical Prediction for the $\mathbf{C}+\mathbf{E}$ model

- How: $\boldsymbol{\mu}$ is mostly unknown, so we estimate it by: \mathbf{m}^{\wedge}

■ Let $\mathrm{Y}_{\text {new }}^{\wedge}$ be the predicted value
\square Error made by using $\mathrm{Y}^{\wedge}{ }_{\text {new }}$, instead of observing a new value, $\mathrm{Y}_{\text {new }}$ is:
(1) $\mathbf{Y}_{\text {new }}-\mathbf{Y}_{\text {new }}^{\wedge}=\left(\boldsymbol{\mu}-\boldsymbol{\varepsilon}_{\text {new }}\right)-\mathbf{Y}_{\text {new }}^{\wedge}=\left(\boldsymbol{\mu}-\mathbf{Y}_{\text {new }}^{\wedge}\right)+\boldsymbol{\varepsilon}_{\text {new }}$
\square But if we use $\boldsymbol{\mu}^{\wedge}$ to predict a new value for $\mathrm{Y}, \mathrm{Y}_{\text {new }}^{\wedge}=\boldsymbol{\mu}^{\wedge}$.
$■ \operatorname{Var}\left(\boldsymbol{\mu}-\mathrm{Y}_{\text {new }}^{\wedge}\right)=\operatorname{Var}\left(\mathrm{Y}_{\text {new }}^{\wedge}\right)=\operatorname{Var}\left(\boldsymbol{\mu}^{\wedge}\right)=\operatorname{Var}($ SampleAvg $)=\boldsymbol{\sigma}^{2} / \mathrm{n}$.
\square The variance of the second term is just $\boldsymbol{\sigma}^{\mathbf{2}}$.
\square Since the first-term in (1) is obtained from $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$, and
$\boldsymbol{\varepsilon}_{\text {new }}=\boldsymbol{\varepsilon}_{\mathbf{n}+\mathbf{1}}$, we have two independent terms $\boldsymbol{\rightarrow}$ Variances add up!
$■ \operatorname{Var}\left(\mathbf{Y}_{\text {new }}-\mathbf{Y}^{\wedge}{ }_{\text {new }}\right)=\operatorname{Var}\left(\boldsymbol{\mu}-\mathbf{Y}^{\wedge}{ }_{\text {new }}\right)+\operatorname{Var}\left(\boldsymbol{\varepsilon}_{\text {new }}\right)=\boldsymbol{\sigma}^{\mathbf{2} / \mathrm{n}}+\boldsymbol{\sigma}^{\mathbf{2}}$.
Slide 32

CI for a population proportion

Confidence Interval for the true (population) proportion p : sample proportion $\pm z$ standard errors
or $\hat{p} \pm z \operatorname{se}(\hat{p})$, where $\operatorname{se}(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Classical Prediction for the $\mathbf{C}+\mathbf{E}$ model

- How: Let $\mathrm{Y}^{\wedge}{ }_{\text {new }}$ be the predicted value
\square Error $\mathbf{Y}_{\text {new }}-\mathbf{Y}^{\wedge}{ }_{\text {new }}=\left(\boldsymbol{\mu}-\boldsymbol{\varepsilon}_{\text {new }}\right)-\mathbf{Y}_{\text {new }}^{\wedge}=\left(\mu-\mathbf{Y}_{\text {new }}^{\wedge}\right)+\boldsymbol{\varepsilon}_{\text {new }}$
$■ \operatorname{Var}\left(\mathbf{Y}_{\text {new }}-\mathbf{Y}^{\wedge}{ }_{\text {new }}\right)=\operatorname{Var}\left(\boldsymbol{\mu}-\mathbf{Y}^{\wedge}{ }_{\text {new }}\right)+\operatorname{Var}\left(\boldsymbol{\varepsilon}_{\text {new }}\right)=\boldsymbol{\sigma}^{2} / \mathrm{n}+\boldsymbol{\sigma}^{2}$.
\square Often $\boldsymbol{\sigma}$ is unknown, and we estimate it by the sample SD, $\mathrm{S} \boldsymbol{\rightarrow}$
$■ \mathrm{SD}\left(\mathbf{Y}_{\text {new }}-\mathbf{Y}^{\wedge}{ }_{\text {new }}\right)=\left[\mathrm{S}^{2}(\mathbf{1}+\mathbf{1} / \mathbf{n})\right]^{1 / 2}$
- We can show that

$$
T=\frac{Y_{\text {new }}-\hat{Y}_{\text {new }}-0}{\sigma\left(Y_{\text {new }}-\hat{Y}_{\text {new }}\right)} \sim t_{n-1}
$$

$\rightarrow \rightarrow$ The L-level prediction interval $\left(\mathbf{P I}\left(\mathbf{Y}_{\text {new }}\right)\right)$ is:
$\mathrm{L}=\mathrm{P}\left(\mathrm{t}_{\mathrm{n}-1,(1,-1) / 2}<\mathrm{T}<\mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L} / 2}\right) \rightarrow \quad$ Solve for T $\left(\hat{Y}_{\text {new }}+\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1-1) / 2} \quad ; \hat{Y}_{\text {new }}+\hat{\boldsymbol{\sigma}} \times \mathrm{t}_{\mathrm{n}-1,(1+L) / 2}\right)$ By symmetr $\left(\hat{Y}_{\text {new }}-\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2} ; \hat{Y}_{\text {new }}+\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}\right) \quad$ of $\mathrm{t}_{\mathrm{n}-1 .}$.

Example - higher blood thiol concentrations associated with rheumatoid arthritis?!?

Thiol Concentration (mmol)		
	Normal	Rheumatoid
Research question:	1.84	2.81
Is the change in the Thiol status	1.92	4.06
in the lysate of packed blood	1.94	3.62
cells substantial to be indicative	1.92	3.27
of a non trivial relationship	1.85	3.27
between Thiol-levels and	1.91	3.76
rheumatoid arthritis?	2.07	
Sample size	7	6
Sample mean	1.92143	3.46500
Sample standard deviation	0.07559	0.44049
	Slide 35	staruanciudwo Diwn

Difference between proportions

Confidence Interval for a difference between population proportions ($p_{1}-p_{2}$):

Difference between sample proportions $\pm z$ standard errors of the difference
$\hat{p}_{1}-\hat{p}_{2} \pm z \operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)$
How do we compute the $\operatorname{SE}\left(\hat{\rho}_{1}-\hat{\rho}_{2}\right)$ for different cases? Slide 38

Example - 1996 US Presidential Election							
State	n	Pre-election Polls			Election Results		
		Clinton Doll	Perot	Other/Undecided	Clinton	Doll	Perot
New Jersey	1,000	(51)33	8	8	53	36	9
New York	1,000	59 25	7	9	59	31	8
Connecticutt	1,000	$\begin{array}{ll}51 & 29\end{array}$	11	9	52	35	10

Proportions from 2 independent samples

$\rceil \hat{p}_{1}-\hat{p}_{2} \pm z \operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)$
estimate $\pm z \times \mathrm{SE}=\hat{p}_{1}-\hat{p}_{2} \pm 1.96 \times S E\left(\hat{p}_{1}-\hat{p}_{2}\right)=$ $\hat{p}_{1}-\hat{p}_{2} \pm 1.96 \times \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}^{\left(1-\hat{p}_{2}\right)}}{n_{2}}}=$ $0.08 \pm 1.96 \times 0.02842=[4 \% ; 12 \%]$

Proportions from 2 independent samples

SE's for the 2 cases of differences in proportion

(a) Proportions from two independent samples of sizes n_{1} and n_{2}, respectively

$$
\operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

(b) One sample of size \mathbf{n}, several response categories

$$
\operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1}+\hat{p}_{2}-\left(\hat{p}_{1}-\hat{p}_{2}\right)^{2}}{n}}
$$

Sample size -- mean

- Sample size for a desired margin of error:

For a margin of error no greater than m, use a sample size of approximately

$$
n=\left(\frac{z \boldsymbol{\sigma}^{*}}{m}\right)^{2}
$$

- σ^{*} is an estimate of the variability of individual observations - z is the multiplier appropriate for the confidence level

Confidence intervals

- We construct an interval estimate of a parameter to summarize our level of uncertainty about its true value.
- The uncertainty is a consequence of the sampling variation in point estimates.
- If we use a method that produces intervals which contain the true value of a parameter for 95% of samples taken, the interval we have calculated from our data is called a 95% confidence interval for the parameter.
- Our confidence in the particular interval comes from the fact that the method works 95% of the time (for 95% CI's).

Sample size - proportion

- For a 95\% CI, margin $=1.96 \times \sqrt{\hat{p}(1-\hat{p}) / n}$
- Sample size for a desired margin of error:

For a margin of error no greater than m, use a sample size of approximately

$$
n=\left(\frac{z}{m}\right)^{2} \times p^{*}\left(1-p^{*}\right)
$$

- p^{*} is a guess at the value of the proportion -- err on the side of being too close to 0.5
- z is the multiplier appropriate for the confidence level
- m is expressed as a proportion (between 0 and 1), not a percentage (basically, What's n , so that $\mathrm{m}>=$ margin?)

Summary cont.

- For a great many situations,

an (approximate) confidence interval is given by

estimate $\pm t$ standard errors

The size of the multiplier, t, depends both on the desired confidence level and the degrees of freedom ($d f$).
[With proportions, we use the Normal distribution (i.e., $d f=\infty$) and it is conventional to use z rather than t to denote the multiplier.]

- The margin of error is the quantity added to and subtracted from the estimate to construct the interval (i.e. t standard errors).

Slide 49

Summary cont.

- If we want greater confidence that an interval calculated from our data will contain the true value, we have to use a wider interval.
- To double the precision of a 95% confidence interval (i.e.halve the width of the confidence interval), we need to take 4 times as many observations.

