Solution: Homework 2

1.

Frequency Table:

Standard Deviation
mean $=4.35$
$\sigma=\sqrt{\frac{\left(x_{i}-x\right)^{2}}{n}}$
$=\sqrt{\frac{(0-4.35)^{2}+22(2-4.35)^{2}+18(3-4.35)^{2}+22(4-4.35)^{2}+13(5-4.35)^{2}+8(6-4.35)^{2}+6(7-4.35)^{2}+1(8-4.35)^{2}+6(9-4.35)^{2}+2(10-4.35)^{2}+1(11-4.35)^{2}}{100}}$
$=2.22$
Histogram

2.
$X \sim N(\mu=3, \sigma=4)$

* $-5,[-5: 5]$
z-score: $z=\frac{-5-3}{4}$
find the area between -5 and 5: $\mathrm{P}(-2<\mathrm{Z}<2)=0.9545$
$=-2$
* 11, [-infinity: 5]
z-score: $\quad z=\frac{11-3}{4}$
find the area to the left of $11: \mathrm{P}(\mathrm{Z}<2)=0.9772$
* 5, [5: 5]
z-score. $z=\frac{5-3}{4}$
find the area to the right 5: $\mathrm{P}(0.5<\mathrm{Z})=0.3085$
* 1.4, [0: 1.4]
z-score: $\quad \begin{aligned} z & =\frac{0-3}{4} \\ & =-\frac{3}{4}=-0.75\end{aligned}$

$$
\text { z-score: } \quad z=\frac{1.4-3}{4}
$$

$$
=-0.4
$$

* There is no difference between them because normal distribution is a continuous random variable.

