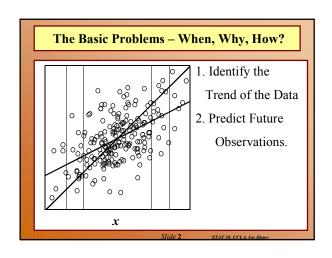
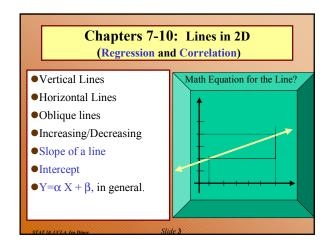
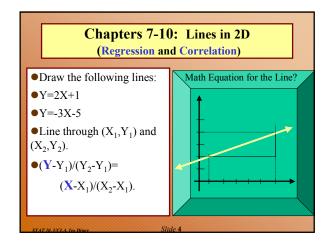
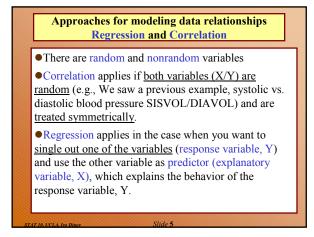
UCLA STAT XL 10 Introduction to Statistical Reasoning •Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology University of California, Los Angeles, Spring 2002 http://www.stat.ucla.edu/~dinov/

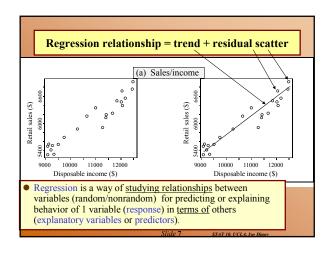


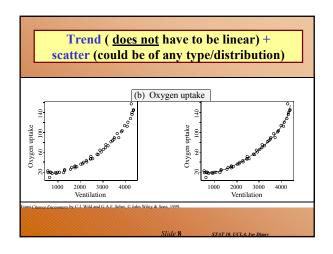


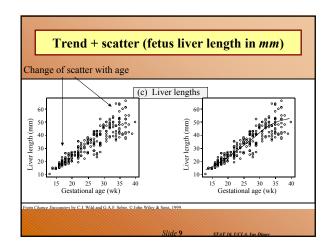


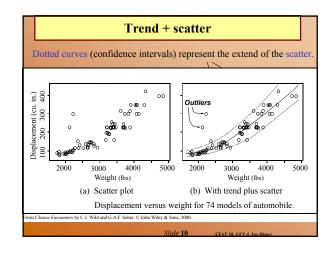


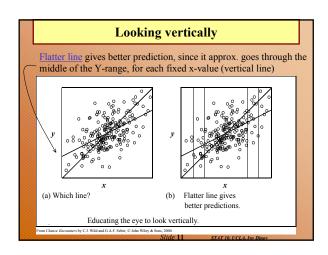


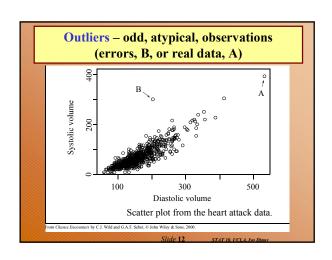












A weak relationship 58 abused children are rated (by non-abusive parents and teachers) on a psychological disturbance measure. How do we quantify weak vs. strong relationship?

A note of caution!

In observational data, <u>strong relationships</u> are *not* necessarily causal. It is virtually **impossible** to conclude a cause-and-effect relationship between variables using observational data!

CE-1. 14

Essential Points

- 1. What essential difference is there between the correlation and regression approaches to a relationship between two variables? (In correlation independent variables; regression response var depends on explanatory variable.)
- What are the most common <u>reasons why people fit</u> <u>regression models</u> to data? (predict Y or unravel reasons/causes of behavior.)
- 3. Can you conclude that changes in *X* caused the changes in *Y* seen in a scatter plot if you have data from an observational study? (No, there could be lurking variables, hidden effects/predictors, also associated with the predictor *X*, itself, e.g., time is often a lurking variable, or may be that changes in *Y* cause changes in *X*, instead of the other way around).

Slide 15

TAT 10. UCLA. Ivo Dinor

Essential Points

5. When can you reliably conclude that changes in *X* cause the changes in *Y*? (Only when controlled randomized experiments are used – levels of *X* are randomly distributed to available experimental units, or experimental conditions need to be identical for different levels of *X*, this includes time.

Slide 16 STAT 10. UCLA, Ivo Dinov

Correlation Coefficient

Correlation coefficient (-1<=R<=1): a measure of linear association, or clustering around a line of multivariate data

Relationship between two variables (X, Y) can be summarized by: (μ_X, σ_X) , (μ_Y, σ_Y) and the correlation coefficient, R. R=1, perfect positive correlation (straight line relationship), R=0, no correlation (random cloud scatter), R=-1, perfect negative correlation.

Computing R(X,Y): (standardize, multiply, average)

$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_k - \boldsymbol{\mu}}{\boldsymbol{\sigma}_k} \right) \left(\frac{y_k - \boldsymbol{\mu}}{\boldsymbol{\sigma}_k} \right) \begin{vmatrix} X = \{x_1, x_2, \dots, x_N\} \\ Y = \{y_1, y_2, \dots, y_N\} \\ (\mu_X, \sigma_X), (\mu_Y, \sigma_Y) \end{vmatrix}$$
sample mean / SD

Correlation Coefficient

Exampl	R()	(X,Y)	λ/	$\frac{1}{1-1}$	Σ [-	$\frac{1-\mu_x}{\sigma_x}$	$\left(\frac{\partial u}{\partial x} - \mu\right)$
Situdent I	Height '	Weight Yı	¥j - ¥	y _i - y		(y _i - ȳ) ²	<i>の。)</i> (ハ ₁ - ヌ)(y ₁ - ȳ)
1	167	60	6	4.67	36	21.8089	26.02
2	170	64	9	8.67	81	75.1689	78.03
3	160	57	-1	1.67	1	2.7889	-1.67
4	152	46	- 8	-0.33	81	67.0469	63.97
5	157	55	-4	-0.3 3	16	0.10 89	1.32
6	160	50	-1	-6.33	1	26.4069	5.33
Tatel	986	332	0	= 0	216	215.3334	195.0

Correlation Coefficient

Example:
$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_k - \mu}{\sigma_k} \right) \left(\frac{y_k - \mu}{\sigma_k} \right)$$

$$\mu_x = \frac{966}{6} = 161 \,\text{cm}, \quad \mu_x = \frac{332}{6} = 55 \,\text{kg},$$

$$\sigma_x = \sqrt{\frac{216}{5}} = 6.573, \quad \sigma_y = \sqrt{\frac{215.3}{5}} = 6.563,$$

$$Corr(X, Y) = R(X, Y) = 0.904$$

Correlation Coefficient - Properties

$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{xk - \mu x}{\sigma x} \right) \left(\frac{yk - \mu y}{\sigma y} \right) =$$

$$R(aX + b, cY + d), \quad \text{since}$$

$$R(aX+b,cY+d)$$
, since

$$\left(\frac{axk+b-\mu ax+b}{\sigma ax+b}\right) = \left(\frac{axk+b-(a\mu x+b)}{a\times\sigma x}\right) = \left(\frac{a(xk-\mu)+b-b}{a\times\sigma x}\right) = \left(\frac{xk-\mu x}{\sigma x}\right)$$

Correlation Coefficient - Properties

Correlation is Associative

$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_k - \mu_x}{\sigma_x} \right) \left(\frac{y_k - \mu_y}{\sigma_y} \right) = R(Y,X)$$

Correlation measures linear association, NOT an association in general!!! So, Corr(X,Y) could be misleading for X & Y related in a non-linear fashion.

Correlation Coefficient - Properties

$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_k - \mu_x}{\sigma_x} \right) \left(\frac{y_k - \mu_y}{\sigma_y} \right) = R(Y,X)$$

- R measures the extent of linear association between two continuous variables.
- Association does not imply causation - both variables may be affected by a third variable - age was a confounding variable.

Maths Score Shae Size

Essential Points

6. If the experimenter has control of the levels of X used, how should these levels be allocated to the available experimental units?

At random! Example, testing hardness of concrete, Y, based on levels of cement, X, incorporated. Factors effecting Y: amount of H₂O, ratio stone-chips to sand, drying conditions, etc. To prevent uncontrolled differences in batches of concrete in confounding our impression of cement effects, we should choose which batch (H₂0 levels, sand, dry-conditions) gets what amount of cement at random! Then investigate for Xeffects in Y observations. If some significance test indicates observed trend is significantly different from a random pattern → we have evidence of causal relationship, which may strengthen even further if the results are replicable

Essential Points

7. What theories can you explore using regression methods?

Prediction, explanation/causation, testing a scientific hypothesis/mathematical model:

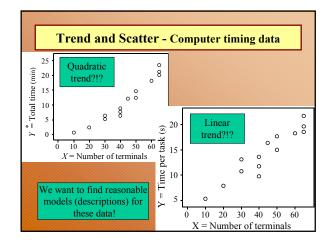
- a. Hooke's spring law: amount of stretch in a spring, Y, is related to the applied weight X by $Y=\alpha + \beta X$, a, b are spring
- b. Theory of gravity: force of gravity F between 2 objects is given by $F = \alpha/D^{\beta}$, where D=distance between objects, a is a constant related to the masses of the objects and $\beta = 2$, according to the inverse square law.
- c. Economic production function: $Q = \alpha L^{\beta} K^{\gamma}$, Q = production, L=quantity of labor, K=capital, α,β,γ are constants specific to the market studied.

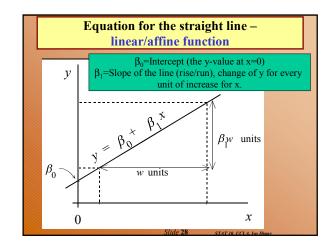
Essential Points

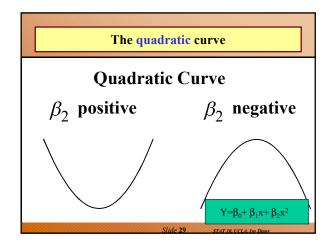
- 8. People fit theoretical models to data for three main purposes.
 - a. To test the model, itself, by checking if the data is reasonably close agreement with the relationship predicted by the model.
 - b. Assuming the model is correct, to test if theoretically specified values of a parameter are consistent with the data (y=2x+1 vs. y=2.1x-0.9).
 - c. Assuming the model is correct, to estimate unknown constants in the model so that the relationship is completely specified (y=ax+5, a=?)

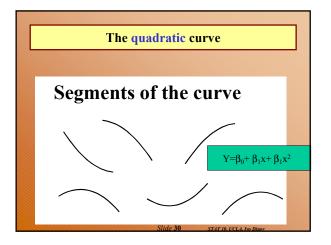
Slide 25 STAT 10, UCLA, Ivo Dino

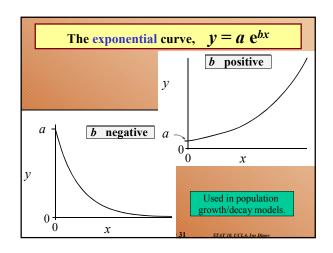
	Trend and So	catter	· - Co	mpu	ter ti	ming	data	1		
	 are trend and scat To investigate a t smooth the data. Computer timing da each running jobs ta between all tasks. Y 	conents of a regression relationship atter around the trend. trend – fit a math function to data, or lata: a mainframe computer has X users, taking Y min time. The main CPU swaps Y* is the total time to finish all tasks. Both with increase of tasks/users, but how?								
	= Number of terminals:	40	50	60	45	40	10	30	20	
r*		6.6	14.9	18.4	12.4	7.9	0.9	5.5	2.7	
,	- 10tai 1 iiic (iiiiis).			18.4			5.5			
	= Time Per Task (secs):	9.9	17.8	16.4	16.5	11.9	3.3	11	8.1	
	= Number of terminals:	50	30	65	40	65	65			
*	= Total Time (mins):	12.6	6.7	23.6	9.2	20.2	21.4			
,	= Time Per Task (secs):	15.1	13.3	21.8	13.8	18.6	19.8			

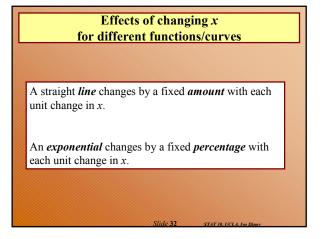


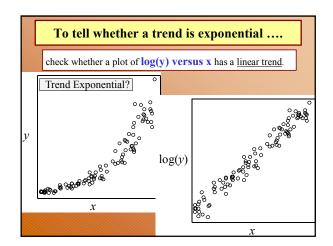


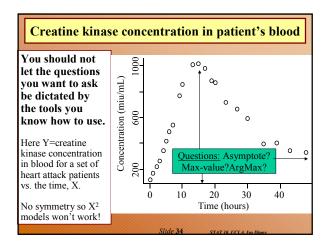


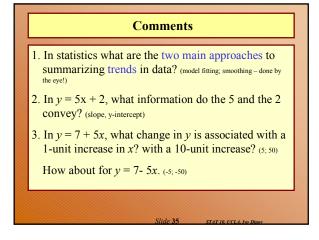


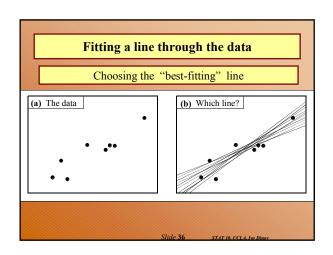


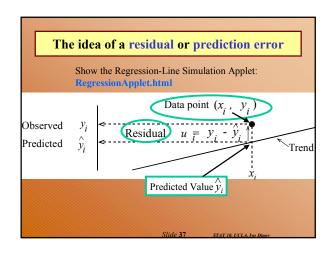












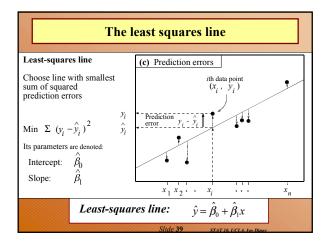
Least squares criterion

Least squares criterion: Choose the values of the parameters to *minimize the sum of squared prediction errors* (or sum of squared residuals),

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = (y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + \dots + (y_n - \hat{y}_n)^2$$

For each point $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, ..., $P_n(x_n, y_n)$.

Slide 38 STAT 10 LICEA Iva Dinas

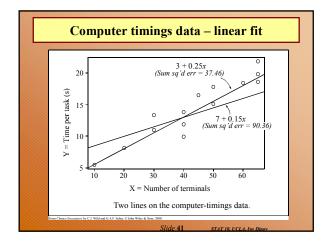


The least squares line

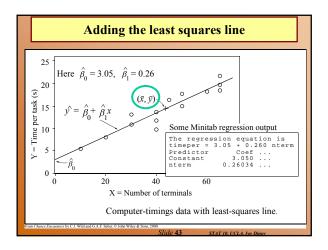
Least-squares line: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

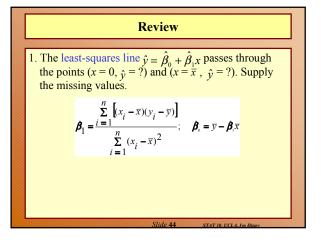
$$\hat{\boldsymbol{\beta}}_{1} = \frac{\sum\limits_{i=1}^{n} \left[(x_{i} - \overline{x})(y_{i} - \overline{y}) \right]}{\sum\limits_{i=1}^{n} (x_{i} - \overline{x})^{2}}; \quad \hat{\boldsymbol{\beta}}_{0} = \overline{y} - \hat{\boldsymbol{\beta}}_{1} \overline{x}$$

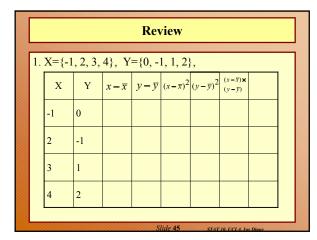
Slide 40 STAT 10, UCLA, Iva Dinay

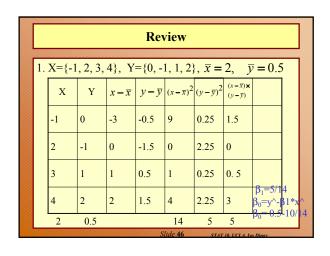


	Predic	tion Errors	Computer timings data				
		3 + 0.2	5 <i>x</i>	7 + 0.15x			
х	y	ŷ	$y - \hat{y}$	ŷ	$y - \hat{y}$		
40	9.90	13.00	-3.10	13.00	-3.10		
50	17.80	15.50	2.30	14.50	3.30		
60	18.40	18.00	0.40	16.00	2.40		
45	16.50	14.25	2.25	13.75	2.75		
40	11.90	13.00	-1.10	13.00	-1.10		
10	5.50	5.50	0.00	8.50	-3.00		
30	11.00	10.50	0.50	11.50	-0.50		
20	8.10	8.00	0.10	10.00	-1.90		
50	15.10	15.50	-0.40	14.50	0.60		
30	13.30	10.50	2.80	11.50	1.80		
65	21.80	19.25	2.55	16.75	5.05		
40	13.80	13.00	0.80	13.00	0.80		
65	18.60	19.25	-0.65	16.75	1.85		
65	19.80	19.25	0.55	16.75	3.05		
S	um of squared	errors	37.46		90.36		
			Slide 42	STAT 10, UCLA, Ivo	Dinou		

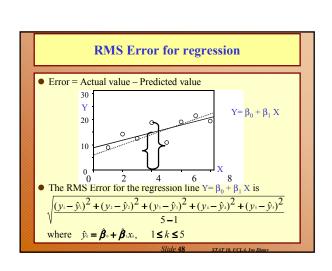




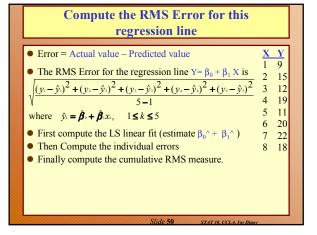




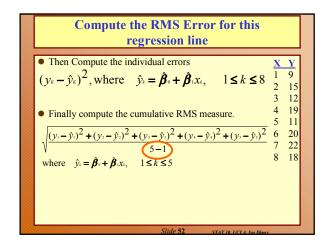
Review What are the quantities that specify a particular line? Explain the idea of a prediction error in the context of fitting a line to a scatter plot. To what visual feature on the plot does a prediction error correspond? What property is satisfied by the line that fits the data best in the least-squares sense? The least-squares line ŷ = β̂₀ + β̂₁x passes through the points (x = 0, ŷ = ?) and (x = x̄, ŷ = ?). Supply the missing values.



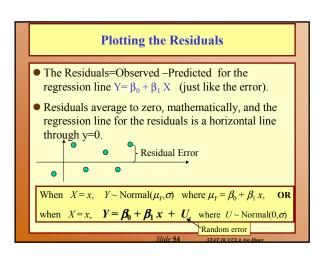
Compute the RMS Error for this regression line • Error = Actual value – Predicted value 1 9 2 15 3 12 4 19 5 11 6 20 7 22 4 19 5 11 6 20 7 22 8 18 • The RMS Error for the regression line $Y = \beta_0 + \beta_1 X$ is $\sqrt{(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2 + (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2}}$ where $\hat{y}_1 = \hat{\beta}_0 + \hat{\beta}_1 X$, $1 \le k \le 5$



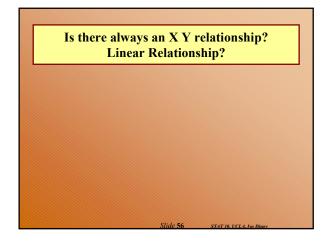
Compute the RMS Error for this regression line • First compute the LS linear fit (estimate $\beta_0^{\wedge} + \beta_1^{\wedge}$), $\mu_x = 4.5, \mu_x = 15.75$ $\frac{X}{Y} = \frac{Y}{X - \mu_X} = \frac{Y - X - \mu_Y}{Y - X - \mu_X} = \frac{(x - \mu_X)^2 - (y - \mu_Y)^2 - (x - \mu_X)^2 + (y - \mu_Y)^2}{(y - \mu_X)^2 - (y - \mu_X)^2} = \frac{(x - \mu_X)^2 + (y - \mu_Y)^2}{(y - \mu_X)^2} = \frac{(x - \mu_X)^2 + (y - \mu_X)^2}{(y - \mu_X)^2} = \frac{(x - \mu_X$ 2 15 3 12 4 19 5 11 20 6 7 22 8 18 Total: Compute

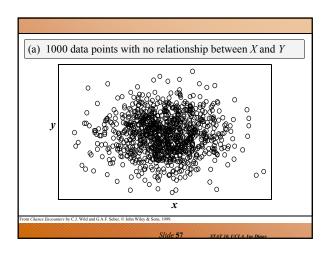


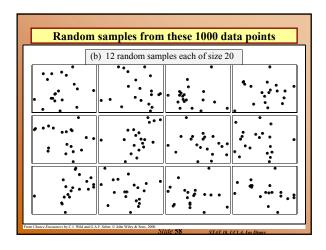
• The RMS Error for the regression line $Y = \beta_0 + \beta_1 X$ says how far away from the (model/predicting) regression line is each observation. • Observe that the SD(Y) is also a RMS Error measure of another specific line – horizontal line through the average of the Y values. This line may also be taken for a regression line, but often it's not the best linear fit. $SD(Y) = \sqrt{\frac{1}{N-1}} \sum_{i=1}^{N} (Y_i - Y_i)^2 \quad \text{vs.}$ • Predicted vs. Observed



Plotting the Residuals – patterns? • The Residuals=Observed – Predicted for the regression line $Y = \beta_0 + \beta_1 X + U$ should show no clear trend or pattern, for our linear model to be a good and useful approximation to the unknown process.



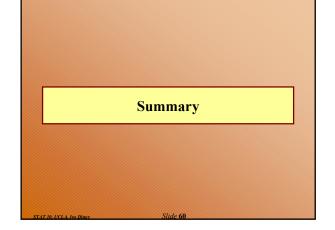




Review

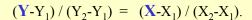
- Describe a fundamental difference between the way regression treats data and the way correlation treats data
- 2. What is the correlation coefficient intended to measure?
- 3. For what shape(s) of trend in a scatter plot does it make sense to calculate a correlation coefficient?
- 4. What is the meaning of a correlation coefficient of r = +1? r = -1? r = 0?

Slide 59 STAT 10, UCLA, Ivo Dinov



Lines in the Plane

- Draw the following lines:
- Y = 3.4X + 13
- Y = -3X 5.7
- Line through (X_1, Y_1) and (X_2, Y_2) .



Slide 61 STAT 10. UCLA Ivo Din

Concepts

- Relationships between quantitative variables should be explored using scatter plots.
 - Usually the *Y* variable is continuous (or behaves like one in that there are few repeated values)
 - and the *X* variable is discrete or continuous.
- **Regression** singles out one variable (*Y*) as the response and uses the explanatory variable (*X*) to explain or predict its behavior.
- Correlation treats both variables symmetrically as random.

Slide 62 STAT 10 UCLA Inc Diner

Concepts cont.

In practical problems, regression models may be fitted for any of the following reasons:

- To understand a **causal relationship** better. Ex?
- To find relationships which may be **causal**. Ex?
- To make **predictions**. Ex?
 - But be cautious about predicting outside the range of the data
- To test theories. Ex?
- To estimate parameters in a theoretical model.

Slide 63

STAT 10. UCLA. Ivo I

Concepts cont.

- In observational data, strong relationships are not necessarily causal.
- We can only have reliable evidence of causation from controlled, randomized, designed experiments.
- Be aware of the possibility of lurking variables which may effect both X and Y.

ilide 64 STAT 10. UCLA. Ivo Dinov

Concepts cont.

- The two main approaches to summarizing trends in data are using *smoothing* and *fitting models* (e.g., regression lines).
- The *least-squares criterion* for fitting a mathematical curve is to choose the values of the parameters (e.g. β_0 and β_1) to minimize the sum of squared prediction errors, $\sum (y_i \hat{y}_i)^2$.

Slide 65

STAT 10, UCLA, Ivo Dinov

Linear Relationship

- We fit the linear relationship $\hat{y} = \beta_0 + \beta_1 x$.
- The slope β_1 is the change in \hat{y} associated with a one-unit increase in x.

Least-squares estimates

- The least-squares estimates, $\hat{\pmb{\beta}}_{\theta}$ and $\hat{\pmb{\beta}}_{I}$ are chosen to minimize $\sum (y_i \hat{y}_i)^2$.
- The least-squares regression line is $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$.

Slide 66 STAT 10, UCLA, Ivo Din

Residuals and outliers

■ These assumptions should be checked using residual plots. The *i*-th *residual* (or *prediction error*) is

$$y_i - \hat{y}_i = \text{observed} - \text{predicted}.$$

■ An *outlier* is a data point with an unexpectedly large residual (positive or negative).

Slide 67 STAT 10 UCLA Ivo Dino

Correlation coefficient

The correlation coefficient r is a measure of linear association with $-1 \le r \le 1$.

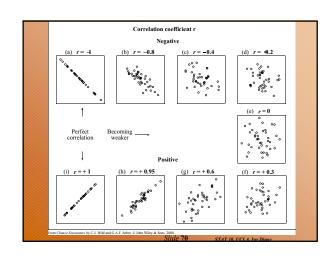
- If r = 1, then X and Y have a perfect positive linear relationship.
- If r = −1, then X and Y have a perfect negative linear relationship.
- If r = 0, then there is no linear relationship between X and Y.
- Correlation does not necessarily imply causation.

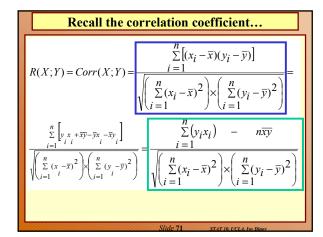
Slide 68 STAT 10, UCLA, Ivo Dinov

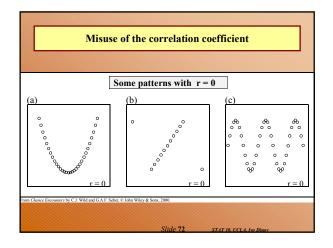
Correlation coefficient – interpret the following. Give examples!

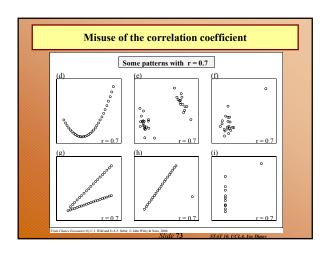
- Correlation is invariant w.r.t. linear transformations of X or Y.
- Correlation is Associative.
- Correlation measures linear association, NOT an association in general!!!

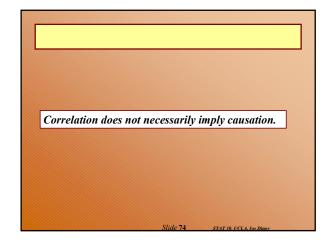
Slide 69 STAT 10, UCLA, Ivo Dinov

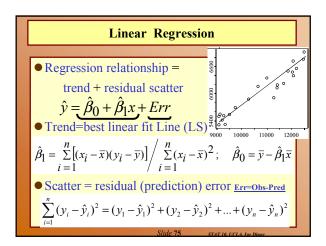


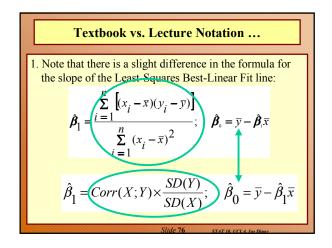


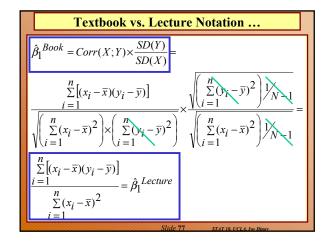


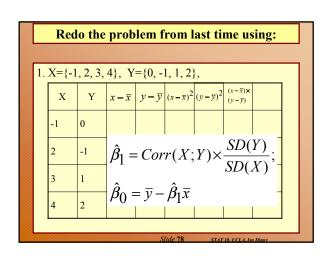












Redo the problem from last time using:										
1.	X={-1	, 2, 3,	4}, Y	={0, -	1, 1, 2	$\}, \overline{x} =$	2, <u>ī</u>	$\bar{y} = 0.5$		
	X	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$(x - \overline{x}) \times (y - \overline{y})$			
	-1	0	-3	-0.5	9	0.25	1.5			
	2	-1	0	-1.5	0	2.25	0			
	3	1	1	0.5	1	0.25	0. 5			
	4	2	2	1.5	4	2.25	3			
	2	0.5			14	5	5 10. UCLA. Iv			

