UCLA STAT XL 10
 Introduction to Statistical Reasoning

-Instructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology

University of California, Los Angeles, Spring 2002
http://www.stat.ucla.edu/~dinov/

STATXL10. UCLA. Ivo Dinov
Slide 1

Let's Make a Deal Paradox aka, Monty Hall 3-door problem

- This paradox is related to a popular television show in the 1970's. In the show, a contestant was given a choice of three doors/cards of which one contained a prize (diamond). The other two doors contained gag gifts like a chicken or a donkey (clubs).

Let's Make a Deal Paradox.

- The intuition of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a $50-50$ chance of winning with either selection? This, however, is not the case.
- The probability of winning by using the switching technique is $2 / 3$, while the odds of winning by not switching is $1 / 3$. The easiest way to explain this is as follows:

Let's Make a Deal Paradox.

- After the contestant chose an initial door, the host of the show then revealed an empty door among the two unchosen doors, and asks the contestant if he or she would like to switch to the other unchosen door. The question is should the contestant switch. Do the odds of winning increase by switching to the remaining door?

Let's Make a Deal Paradox

- The probability of picking the wrong door in the initial stage of the game is $2 / 3$.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly $2 / 3$.
- StatGames.exe (Make a Deal Paradox)

Chance

- The chance of something happening gives the percentage of time it is expected to happen, when the basic process is repeatedly performed.
- E.g., What is the chance of getting an ace (1) if we roll a regular 6-face (hexagonal) die?
- Chances are always between $0 \%-100 \%$.

- The chance of an event is equal to 100% - the chance of the opposite (complementary) event.
- E.g., Chance(getting 1) $=100-$ Chance (2 or 3 or 4 or 5 or 6 turns up).

Long run behavior of coin tossing proportion of heads vs. number of tosses

Two die throw example

What is the chance that the sum of the numbers, turning up when 2 dice are rolled, is equal to 8 ?

- Do the HTML Java-applet: ucla_Classes/Apples.sidirDieeapplet.tim

	1	2	3	4	5	6	
1	2	3	4	5	6	7	
2	3	4	5	6	7	8	
3	4	5	6	7	8	9	
4	5	6	7	8	9	10	
5	6	7	8	9	10	11	
5	7	8	9	10	11	12	

- The law of averages about the behavior of coin tosses - the relative proportion (relative frequency) of heads-to-tails in a coin toss experiment becomes more and more stable as the number of tosses increases. The law of averages applies to relative frequencies not absolute counts of \#H and \#T.
- Two widely held misconceptions about what the law of averages about coin tosses:
■ Differences between the actual numbers of heads \& tails becomes more and more variable with increase of the number of tosses - a seq. of 10 heads doesn't increase the chance of a tail on the next trial.
- Coin toss results are fair, but behavior is still unpredictable.

Coin Toss Models

- Is the coin tossing model adequate for describing the sex order of children in families?
- This is a rough model which is not exact. In most countries rates of B / G is different; from $48 \% \ldots$ to 52%, usually. Birth rates of boys in some places are higher than girls, however, female population seems to be about 51%.
- Independence, if a second child is born the chance it has the same gender (as the first child) is slightly bigger.

Types of Probability

Probability models have two essential components (sample space, the space of all possible outcomes from an experiment; and a list of probabilities for each event in the sample space). Where do the outcomes and the probabilities come from?

- Probabilities from models - say mathematical/physical description of the sample space and the chance of each event. Construct a fair die tossing game.
- Probabilities from data - data observations determine our probability distribution. Say we toss a coin 100 times and the observed Head/Tail counts are used as probabilities.
- Subjective Probabilities - combining data and psychological factors to design a reasonable probability table (e.g., gambling, stock market).

Sample spaces and events

A sample space, S, for a random experiment is the set of all possible outcomes of the experiment.

Examples?

- An event is a collection of outcomes.
- Examples?
- An event occurs if any outcome making up that event occurs.
■ Examples?

Combining events - all statisticians agree on

- "A or \boldsymbol{B} " contains all outcomes in A or B (or both).
- "A and \boldsymbol{B} " contains all outcomes which are in both A and B.

CA State Lottery - Supper Lotto Plus

- California Lotto, chose 5 out of 47 and choose one Mega from [1:27], fee $\$ 1$, your odds are 1 in $41,416,353$! Why?
- 47-choose-5 = [47!]/[(47-5)!(5!)]

47 -choose- $5 \times 27=1,533,939 \times 27=41,416,353$

Probability distributions

- Probabilities always lie between 0 and 1 and they sum up to 1 (across all simple events) .
- $\boldsymbol{\operatorname { r r }}(\boldsymbol{A})$ can be obtained by adding up the probabilities of all the outcomes in A.

$$
\operatorname{pr}(A)=\sum_{\Sigma} \operatorname{pr}(E)
$$

Review

What is a sample space? What are the two essential criteria that must be satisfied by a possible sample space? (completeness - every outcome is represented; and uniqueness no outcome is represented more than once.

- What is an event? (collection of outcomes)
- If A is an event, what do we mean by its complement, \bar{A} ? When does \bar{A} occur?
- If A and B are events, when does A or \boldsymbol{B} occur? When does \boldsymbol{A} and \boldsymbol{B} occur?

Proportion vs. Probability

- How do the concepts of a proportion and a probability differ? A proportion is a partial description of a real population. The probabilities give us the chance of something happening in a random experiment. Sometimes, proportions are identical to probabilities (e.g., in a real population under the experiment choose-a-unit-at-random).
- See the two-way table of counts (contingency table) E.g., choose-a-person-at-random from the ones laid off, and compute the chance that the person would be a male, laid off due to position-closing. We can apply the same rules for manipulating probabilities to proportions, in the case where these two are identical.

Job losses raw-data vs. proportions

Example of probability distributions

- Tossing a coin twice. Sample space $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}$, TT $\}$, for a fair coin each outcome is equally likely, so the probabilities of the 4 possible outcomes should be identical, p. Since, $\mathrm{p}(\mathrm{HH})=\mathrm{p}(\mathrm{HT})=\mathrm{p}(\mathrm{TH})=\mathrm{p}(\mathrm{TT})=\mathrm{p}$ and

$$
p_{k} \geq 0 ; \sum_{k} p_{k}=1
$$

- $\mathrm{p}=1 / 4=0.25$.

Rules for manipulating Probabilities

For mutually exclusive events, $\operatorname{pr}(A$ or $B)=\operatorname{pr}(A)+\operatorname{pr}(B)$

Slide 23

Paradox of the Cavalier De Mere

- Betting on the event $\mathrm{E}=\{$ In 4 die rolls at least 1 ace turns up $\bullet\}$. $\mathrm{B}=\{$ In 24 rolls of a pair of dice, at least one double-ace shows up $\bullet \bullet \bullet$.
- Claim: $\mathrm{P}(\mathrm{E})=\mathrm{P}(\mathrm{B}) ?!$?
- Reasoning E: 1 roll gives a chance $1 / 6$ for an ace! So, in 4 rolls we have $4 \times 1 / 6=2 / 3$ to get at least 1 ace!
B : In one roll of a pair of dice, chance of a double-ace is $1 / 36$. So in 24 rolls we have $24 \times 1 / 36=2 / 3$ chance.
- Experience showed $P(E)>P(B)!!!$
- What's wrong? Well, extrapolating these arguments we get that the chance of getting 1 ace in 6 rolls is $6 \times 1 / 6=1$? Obviously, incorrect!

Paradox of the Cavalier De Mere

- The chance of winning (getting at least one ace) is hard to compute, but can we calculate the chance of loosing the complement event?!?
- Than chance-of-winning = 1-chance-of-loosing.
- E^{\wedge}, complement of $\mathrm{E},=\{$ none of 4 rolls shows an ace $\}$.
- In one roll, chance of loosing is $5 / 6$, no ace turns up.
- 2 die rolls are independent, hence we can use the multiplication rule, Chance of no ace in two rolls is $(5 / 6)^{2}$. Similarly, chance of 4 rolls with no ace, the probability $\mathrm{P}\left(\mathrm{E}^{\wedge}\right)=(5 / 6)^{4} \sim 0.482$.
- Game 2: Pair-of-dice: Chance of no-ace in 1 roll is $35 / 36$. Hence, $P(\{$ no-Ace in 24 rolls $\})=(35 / 36)^{24} \sim 0.509$.
- $\mathrm{P}(\{$ at-least-1-ace-in-4-rolls $\})=1-0.482=0.518 \ggg>$ $\mathrm{P}(\{$ at-least-1-double-ace-in-24-rolls $\})=1-0.509=0.491$.

Paradox of the Cavalier De Mere

- The chance of winning (getting at least one ace) is hard to compute, but can we calculate the chance of loosing the complement event?!?
- Than chance-of-winning = 1-chance-of-loosing.
- E^{\wedge}, complement of $\mathrm{E},=\{$ none of 4 rolls shows an ace $\}$.
- In one roll, chance of loosing is $5 / 6$, no ace turns up.
- 2 die rolls are independent, hence we can use the multiplication rule, Chance of no ace in two rolls is $(5 / 6)^{2}$. Similarly, chance of 4 rolls with no ace, the probability $\mathrm{P}\left(\mathrm{E}^{\wedge}\right)=(5 / 6)^{4} \sim 0.482$.
- Game 2: Pair-of-dice: Chance of no-ace in 1 roll is $35 / 36$. Hence, $P(\{$ no-Ace in 24 rolls $\})=(35 / 36)^{24} \sim 0.509$.
- $\mathrm{P}(\{$ at-least-1-ace-in-4-rolls $\})=1-0.482=0.518 \ggg>$
$\mathrm{P}(\{$ at-least-1-double-ace-in-24-rolls $\})=1-0.509=0.491$.

Basic Rules for computing Probabilities

$\operatorname{pr}(A$ and $B)=\operatorname{pr}(A \mid B) \operatorname{pr}(B)=\operatorname{pr}(B \mid A) \operatorname{pr}(A)$
$\operatorname{pr}(A)=1-\operatorname{pr}(\mathrm{A})$

Properties of probabilities.
$\left\{p_{k}\right\}_{k=1}^{N}$ define probabilities $\Leftrightarrow p_{k} \geq 0 ; \sum_{k} p_{k}=1$

Statistical independence

- Events A and B are statistically independent if knowing whether B has occurred gives no new information about the chances of A occurring,

$$
\text { i.e. if } \operatorname{pr}(A \mid B)=\operatorname{pr}(A)
$$

- Similarly, $\mathrm{P}(B \mid A)=\mathrm{P}(B)$, since
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B} \& \mathrm{~A}) / \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B}) / \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})$
- If A and B are statistically independent, then

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(A) \times \operatorname{pr}(B)
$$

People vs. Collins			
Yellow car	$\frac{1}{10}$	Girl with blond hair	$\frac{1}{3}$
Frequencies assumed by the prosecution:			
Man with mustache	$\frac{1}{4}$	Black man with beard	$\frac{1}{10}$
Girl with ponytail	$\frac{1}{10}$	Interracial couple in car	$\frac{1}{1000}$

The first occasion where a conviction was made in an American court of law, largely on statistical evidence, 1964. A woman was mugged and the offender was described as a wearing dark cloths, with blond hair in a pony tail who got into a yellow car driven by a black male accomplice with mustache and beard. The suspect brought to trial were picked out in a line-up and fit all of the descriptions. Using the product rule for probabilities an expert witness computed the chance that a random couple meets these characteristics, as $1: 12,000,000$.

Examples

Two coins are given. One is fair $(\mathrm{P}(\mathrm{H})=0.5)$ and the other is biased with $\mathrm{P}(\mathrm{H})=2 / 3$. One of the coins is tossed once, resulting in H . The other is tossed three times, resulting in two heads. Which coin is more likely to be the biased one?

- We won't look for the probability of the first or the second coin being the biased one, rather we look for the probability of the given outcomes in two different cases: the first coin being the fair one, and the second--the biased one, and vice versa.
- If we assume that the first coin is fair, then the probability of the heads is $1 / 2$. The second coin must be the biased one, and the probability of it coming up with 2 heads and 1 tail in three tosses is $3 * 2 / 3 * 2 / 3 * 1 / 3=4 / 9$. Note that there are three ways to get 2 heads: HHT, HTH, THH, the probability of each being $4 / 27$. Thus, the probability of both coins coming up with the given results is $2 / 9$.
- If, on the other hand, the first coin is the biased one, and the second coin is fair the probability of them resulting in the combination given in the problem is $(2 / 3) *(3 * 1 / 2 * 1 / 2 * 1 / 2)=1 / 4$, or $2 / 8>2 / 9$. Therefore, it is more probable that the first coin is the biased one.

Examples

- Let \boldsymbol{X} be the sum of spots from rolling 4 fair dice. Determine the expected value, the variance, and the standard deviation of the random variable $\boldsymbol{X} . X=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4$
$E(Y)=\sum_{y} y \times P(Y=y) ; \quad \operatorname{Var}(Y)=\frac{1}{N-1} \sum_{y}(y-E(Y))^{2}$
- Because the rolls are independent:
- $\operatorname{Var}(\boldsymbol{X})=\operatorname{Var}(\mathrm{X} 1)+\operatorname{Var}(\mathrm{X} 2)+\operatorname{Var}(\mathrm{X} 3)+\operatorname{Var}(\mathrm{X} 4)$.
- The variance for any single roll is: $(1 / 5)^{*}(1-3.5)^{2}+(1 / 5)^{*}(2-3.5)^{2}$ $+(1 / 5) *(3-3.5)^{2}+(1 / 5) *(4-3.5)^{2}+(1 / 5) *(5-3.5)^{2}+(1 / 5) *(6-3.5)^{2}$ $=3.5$.
- So, $\operatorname{Var}(X)=4 \times 3.5=14 . \operatorname{SD}(\boldsymbol{X})=\operatorname{sqrt}(\operatorname{Var}(X))=3.74$.
- So, from 4 dice, the expected value (Sum) is 14 , with a SE of 3.74

Examples - Birthday Paradox

- The Birthday Paradox: In a random group of N people, what is the change that at least two people have the same birthday?
- E.x., if $\mathrm{N}=23, \mathrm{P}>0.5$. Main confusion arises from the fact that in real life we rarely meet people having the same birthday as us, and we meet more than 23 people.
- The reason for such high probability is that any of the 23 people can compare their birthday with any other one, not just you comparing your birthday to anybody else's.
- There are N-Choose- $2=20^{*} 19 / 2$ ways to select a pair or people. Assume there are 365 days in a year, P(one-particular-pair-same-B-day) $=1 / 365$, and
- $\mathrm{P}($ one-particular-pair-failure $)=1-1 / 365 \sim 0.99726$.
- For $\mathrm{N}=20,20$-Choose- $2=190$. $\mathrm{E}=\{$ No 2 people have the same birthday is the event all 190 pairs fail (have different birthdays) $\}$ then $\mathrm{P}(\mathrm{E})=\mathrm{P}(\text { failure })^{190}=0.99726^{190}=0.59$
- Hence, $\mathrm{P}($ at-least-one-success $)=1-0.59=0.41$, quite high.
- Note: for $\mathrm{N}=42 \rightarrow \mathrm{P}>0.9 \ldots$

The answer is: Binomial distribution

- The distribution of the number of heads in n tosses of a biased coin is called the Binomial distribution.

Binary random process

The biased-coin tossing model is a physical model for situations which can be characterized as a series of trials where:
■each trial has only two outcomes: success or failure;
$\square p=\mathrm{P}($ success $)$ is the same for every trial; and \square trials are independent.

- The distribution of $X=$ number of successes (heads) in N such trials is
$\operatorname{Binomial}(N, p)$

Slide 59

Review

- For what types of situation is the urn-sampling model useful? For modeling binary random processes. When sampling with replacement, Binomial distribution is exact, where as, in sampling without replacement Binomial distribution is an approximation.
- For what types of situation is the biased-coin sampling model useful? Defective parts. Approval poll of cloning for medicinal purposes. Number of Boys in 151 presidential children (90).
- Give the three essential conditions for its applicability. (two outcomes; same p for every trial; independence) Slide 61

Example

A couple wants to have children, but they insist on stopping when they have at least one of each gender or at most 3 children example, where $X=\{$ number of Girls $\}$ we have:

\boldsymbol{X}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\operatorname{pr}(x)$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

$\mathrm{E}(X)=\sum_{x} x \mathrm{P}(x)$
$=0 \times \frac{1}{8}+1 \times \frac{5}{8}+2 \times \frac{1}{8}+3 \times \frac{1}{8}$
$=1.25$

Sampling from a finite population Binomial Approximation

If we take a sample of size n

- from a much larger population (of size N)
- in which a proportion p have a characteristic of interest, then the distribution of X, the number in the sample with that characteristic,
- is approximately $\operatorname{Binomial}(n, p)$.
(Operating Rule: Approximation is adequate if $n / N<0.1$.)
- Example, polling the US population to see what proportion is/has-been married.

The expected value as the point of balance

The mean μ_{x} is the balance point.

Expected values

- The game of chance: cost to play: $\$ 1.50$; Prices $\{\$ 1, \$ 2, \$ 3\}$, probabilities of winning each price are $\{0.6,0.3,0.1\}$, respectively.
- Should we play the game? What are our chances of winning/loosing?

Prize (\$)	x	1	2	3	
Probability	pr(x)	0.6	0.3	0.1	
What we would "expect" from 100 games				add across row	
Number of games won		0.6×100	0.3×100	0.1×100	\downarrow
\$ won		$1 \times 0.6 \times 100$	$2 \times 0.3 \times 100$	$3 \times 0.1 \times 100$	Sum
Total prize money $=$ Sum;		$\begin{aligned} \text { Average prize money }= & \begin{array}{l} \text { Sum } / 100 \\ \\ =1 \times 0.6 \end{array}+2 \times 0.3+3 \times 0.1 \\ & =1.5 \end{aligned}$			

Theoretically Fair Game: price to play $\mathbf{E Q}$ the expected return!

Binomial Formula - examples

- Rolling a pair of dice 4 times. What's the chance of getting at least 2 but less than 4 aces (1-1)?

$$
\sum_{x} P(X=x)=\sum_{x}\binom{n}{x} p^{x}(1-p)^{(n-x)}
$$

- Let $\mathrm{X}=\{$ Event an ace turns up $\}, \mathrm{p}=\mathrm{P}($ success $)=1 / 36$

$$
P(2 \leq X<4)=\sum_{x=2}^{3}\binom{4}{x}^{x}(1-p)^{(4-x)}=
$$

$$
\binom{4}{2} p^{2}(1-p)^{2}+\binom{4}{3} p^{3}(1-p)^{1}=
$$

$$
6 \times\left(\frac{1}{36}\right)^{2} \times\left(\frac{35}{36}\right)^{2}+4 \times\left(\frac{1}{36}\right)^{3} \times\left(\frac{35}{36}\right)^{1}=0.005
$$

Example

- Suppose we have a box containing the following numbers in it:

- What is the probability that if we randomly draw 3 numbers with replacement at least two numbers are 1's?
- P(getting 1$)=5 / 9$. Let $X=\# 1$'s in a sample of 3 $\rightarrow \mathrm{X} \sim \operatorname{Bin}(3,0.555), \mathbf{P}(\mathbf{X}>=\mathbf{2})=\mathbf{P}(\mathbf{X}=\mathbf{2}$ or $\mathbf{X}=\mathbf{3})=\mathbf{0 . 5 8 2}$.
- What's the probability that we get at most one 1 ? $\mathbf{P}(\mathbf{X}<=1)=\mathbf{P}(\mathbf{X}=0$ or $\mathbf{X}=1)=0.418$ (Online Res.)

Binomial Probabilities - ?!?!?!

Suppose $X \sim \operatorname{Binomial}(n, p)$, then the probability

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}, \quad 0 \leq x \leq n
$$

- Where the binomial coefficients are defined by
$\binom{n}{x}=\frac{n!}{(n-x)!x!}, \quad n!=1 \times 2 \times 3 \times \ldots \times(n-1) \times n$

Example

- According to the data base of a large multinational airline company, 35% of all its 475 pilots are over 40 years of age. The company is about to purchase the latest model Boeing and is planning to select a random sample of 25 pilots to receive training in flying this new plane.
Let X be the number of pilots over 40 years of age in this sample.
- Discuss the validity of using the Binomial distribution in this situation. (Hint: each trial has only two outcomes: $p=\mathrm{P}$ (success) is the same for every trial; and trials are independent. If $\mathrm{n} / \mathrm{N}<0.1$ binomial approximation is justified! 25/475 ~ 0.05).

Examples

- 35% of all its 475 pilots are over 40 . The company is to select a random sample of 25 pilots. $X=$ \# pilots over 40 years in sample.
- State the value of the parameter(s) of this distribution. - Binomial(25, 0.35)
- Assuming that the Binomial distribution you have described above is an appropriate model for X, Find the probability that:
(i) more than 7 of the pilots selected are over 40 years of age.
$\mathrm{P}(\mathrm{X}>7)=1-\mathrm{P}([0,6])=0.173$, From the online table, but need to know how to compute by hand (ii) 5 or 6 of the pilots selected are over 40 years of age.
$\begin{gathered}\mathrm{P}(\mathrm{X}=5 \text { or } \mathrm{X}=6)= \\ \text { Binomial }(25,0.35)\end{gathered}\binom{25}{5} 0.35^{5} \times 0.65^{20}+\binom{25}{6} 0.35^{6} \times 0.65^{19}$

$$
=0.051+0.091=0.142
$$

(iii) between 13 and 18 (inclusive) of the pilots selected are over 40 years of age. $\quad P(13<=X<=18)=0.06$, From the online table.

Examples

- 35% of all its 475 pilots are over 40 years of age. The company is to select a random sample of 25 pilots. $X=$ \# pilots over 40 years in this sample.
- How many of the pilots selected would you expect to be over 40 years of age? What is the standard deviation of X ?
$\bullet E(X)=n \times p=25 \times 0.35=8.75$
$-\mathrm{SD}^{2}(\mathrm{X})=\operatorname{Var}(\mathrm{X})=\mathrm{n} p(1-\mathrm{p})=5.6875$
- $\operatorname{SD}(\mathrm{X})=2.385$
- Why would the airline company be interested in the variable "pilots over 40 years of age"? Suggest another variable the company may be interested in measuring? Briefly justify your answer. (GO TO Ch. 21, CI's)

