
1

PIC 20A, UCLA, Ivo Dinov Slide 1

UCLA PIC 20A
Java Programming

�Instructor: Ivo Dinov,
Asst. Prof. In Statistics, Neurology and

Program in Computing

�Teaching Assistant: Yon Seo Kim, PIC

University of California, Los Angeles, Summer 2002
http://www.stat.ucla.edu/~dinov/

PIC 20A, UCLA, Ivo DinovSlide 2

Chapter 3 – Java Basics

�Variables

�Operators

�Expressions, Statements, and Blocks

�Control Flow Statements

PIC 20A, UCLA, Ivo DinovSlide 3

Variables

� An object stores its state in variables.

� A variable is an item of data named by an identifier.

� You must explicitly provide a name and a type for each
variable you want to use in your program. The variable’s name
must be a legal identifier—an unlimited series of Unicode 1
characters that begins with a letter.

� You use the variable name to refer to the data that the variable
contains. The variable’s type determines what values it can
hold and what operations can be performed on it. To give a
variable a type and a name, you write a variable declaration,
which generally looks like this:

type name
PIC 20A, UCLA, Ivo DinovSlide 4

Variables

� In addition to the name and the type that you explicitly give a
variable, a variable has scope.

� Ex. MaxVariablesDemo, (JavaTutorialExamples\java\nutsandbolts\example-1dot1)

public class MaxVariablesDemo {
public static void main(String args []){

byte largestByte =Byte.MAX_VALUE;
short largestShort =Short.MAX_VALUE;
int largestInteger =Integer.MAX_VALUE;
long largestLong =Long.MAX_VALUE;

//real numbers
float largestFloat =Float.MAX_VALUE;
double largestDouble =Double.MAX_VALUE;

PIC 20A, UCLA, Ivo DinovSlide 5

Variables

� In addition to the name and the type that you explicitly give a
variable, a variable has scope.

� Ex. MaxVariablesDemo, (JavaTutorialExamples\java\nutsandbolts\example-1dot1)

The output from this program is:
The largest byte value is 127
The largest short value is 32767
The largest integer value is 2147483647
The largest long value is 9223372036854775807
The largest float value is 3.40282e+38
The largest double value is 1.79769e+308
The character S is upper case
The value of a Boolean is true

PIC 20A, UCLA, Ivo DinovSlide 6

Data types

� A variable’s data type determines the values that the variable
can contain and the operations that can be performed on it. For
example, the declaration int largestInteger declares that
largest Integer has an integer data type.

� Java has two categories of data types: primitive (single value
of the appropriate size and format) and reference (Arrays,
classes, and interfaces. The value of a reference type variable
is a reference (pointer) to an address of the value, or set of
values, represented by the variable.)

� Java does not support the explicit use of addresses like C/C++.
You use the variable’s name instead.

2

PIC 20A, UCLA, Ivo DinovSlide 7

Variable Names

� A program refers to a variable’s value by the variable’s name.
For example, when it displays the value of the largestByte
variable, the MaxVariablesDemo program uses the name
largestByte. A name, such as largestByte, that’s composed of
a single identifier, is called a simple name. Simple names are in
contrast to qualified names, which a class uses to refer to a
member variable that’s in another object or class.

� For a simple name:
� It must be a legal identifier (starting with a letter).
� It must not be a keyword
� It must be unique within its scope.

PIC 20A, UCLA, Ivo DinovSlide 8

Variable Names

� By Convention: Variable names begin with a
lowercase letter, and class names begin with an
uppercase letter. If a variable name consists of more
than one word, the words are joined together, and
each word after the first begins with an uppercase
letter, e.g.,: isThisObjectVisible . The underscore
character (_) is acceptable anywhere in a name, but
by convention is used only to separate words in
constants (because constants are all caps by
convention and thus cannot be case-delimited).

PIC 20A, UCLA, Ivo DinovSlide 9

Variable Scope

� Variable Scope

PIC 20A, UCLA, Ivo DinovSlide 10

Variable Initialization

� Local variables and member variables can be
initialized with an assignment statement when they’re
declared.

� The data type of the variable must match the data type
of the value assigned to it.

� The MaxVariablesDemo program provides initial
values for all its local variables when they are
declared.
� // integers
� byte largestByte =Byte.MAX_VALUE ;
� short largestShort = 23000; // Short.MAX_VALUE ;

PIC 20A, UCLA, Ivo DinovSlide 11

Final Variable

� You can declare a variable in any scope to be final. The value
of a final variable cannot change after it has been initialized.
Such variables are similar to constants in other languages.

� To declare a final variable, use the final keyword in the
variable declaration before the type:

final int aFinalVar =0;
� The previous statement declares a final variable and initializes

it, all at once. Subsequent attempts to assign a value to
aFinalVar result in a compiler error. Again, once a final
local variable has been initialized, it cannot be set again.

final int blankFinal;
...
blankFinal = 0;

PIC 20A, UCLA, Ivo DinovSlide 12

Arithmetic Operations

� Java supports various arithmetic operators for all floating-point
and integer numbers. These operators are:

Operator Use Description
+ op1+op2 Adds op1 and op2 ;

- op1-op2 Subtracts op2 from op1

* op1*op2 Multiplies op1 by op2

/ op1/op2 Divides op1 by op2

% op1 %op2 rem of dividing op1 by op2

� Ex: java\nutsandbolts\example\ArithmeticDemo.java

3

PIC 20A, UCLA, Ivo DinovSlide 13

Unitary Arithmetic Operators

� Two shortcut arithmetic operators are ++, which increments its
operand by 1, and --, which decrements its operand by 1.
Either ++ or -- can appear before (prefix) or after (postfix) its
operand. The prefix version, ++op /--op , evaluates to the value
of the operand after the increment. The postfix version,
op++/--, evaluates to the value of the operand before the
increment/decrement operation.

Operator Use Description
+ +op Promotes op to int if it’s a byte , short , or char

- -op Arithmetically negates op

++ ++op (or op++) op = op+1

-- --op (or op--) op = op -1

PIC 20A, UCLA, Ivo DinovSlide 14

Relational & Conditional Operators

Operator Use Description
> op1 >op2 Returns true if op1 is greater than op2

>= op1 >=op2 Returns true if op1 >= op2

< op1 <op2 Returns true if op1 is less than op2

<= op1 <=op2 Returns true if op1 <= op2

== op1 ==op2 Returns true if op1 and op2 are equal

!= op1 !=op2 True if op1 and op2 are not equal

� Ex. RelationalDemo.java

PIC 20A, UCLA, Ivo DinovSlide 15

Relational & Conditional Operators

Operator Use Description
&& op1 && op2 Returns true if op1 and op2 are both true ;

|| op1 ||op2 Returns true if either op1 or op2 is true ;

!! op Returns true if op is false

& op1 & op2 Returns true if op1 and op2 are both boolean and true

If both operands are numbers, performs bitwise AND operation

| op1 |op2 true if both op1 and op2 are boolean, and either is true

If both operands are numbers, performs bitwise inclusive OR

^ op1 ^ op2 true if op1 and op2 are different, that is,

if one or the other of the operands, but not both, is true

� Ex. RelationalDemo.java

PIC 20A, UCLA, Ivo DinovSlide 16

Shift & Bitwise Operators

� A shift operator performs bit manipulation on data by
shifting the bits of its first operand right or left.
Operator Use Description

<< op1 <<op2 Shift bits of op1 left by
distance op2 ; fills with zero bits on the right

>> op1 >>op2 Shift bits of op1 right by
distance op2 ; fills with highest (sign) bit on the left

>>> op1 >>>op2 Shift bits of op1 right by
distance op2 ; fills with zero bits on the left-hand side

� Ex. RelationalDemo.java

PIC 20A, UCLA, Ivo DinovSlide 17

Shift & Bitwise Operators

�Example: 13 >>1;

The binary representation of the number 13 is 1101.
The result of the shift operation is 1101 shifted to the
right by one position—110, or 6 in decimal. The
left-hand bits are filled with 0’s as needed.

PIC 20A, UCLA, Ivo DinovSlide 18

Shift & Bitwise Operators

� A shift operator performs bit manipulation on data by
shifting the bits of its first operand right or left.
Operator Use Description

& op1& op2 Bitwise AND , if both operands are numbers
Conditional AND, if operands are boolean

| op1 |op2 Bitwise inclusive OR , if operands are
numbers. Conditional OR, if operands are boolean

^ op1 ^ op2 Bitwise exclusive OR (XOR)

~ ~op2 Bitwise complement

� Ex. RelationalDemo.java

4

PIC 20A, UCLA, Ivo DinovSlide 19

Shift & Bitwise Operators

�See the tables for { & | ^ ~ } in the textbook.
� ~ 10112 (1110) � is 01002 (410)
� 11012 (1310) & 11002 (1210) � is 11002 (1210)
� 11012 (1310) ^ 11002 (1210) � is 12 (110)
� 10012 (910) | 11002 (1210) � is 11012 (1310)

PIC 20A, UCLA, Ivo DinovSlide 20

Expressions

� Expressions perform the work of a program. Among other
things, expressions are used to compute and to assign values to
variables and to help control the execution flow of a program.

� The job of an expression is twofold: to perform the
computation indicated by the elements of the expression and to
return a value that is the result of the computation.

� Definition: An expression is a series of variables, operators,
and method calls (constructed according to the syntax of the
language) that evaluates to a single value. As discussed in the
previous section, operators return a value, so the use of an
operator is an expression. Ex: MaxVariablesDemo

PIC 20A, UCLA, Ivo DinovSlide 21

Operator Precedence

� High Precedence:
Postfix operators [] ..(params)expr ++expr --
Unary operators ++expr --expr +expr -expr ~!
Creation or cast new (type)expr
Multiplicative */%
Additive +-
Shift >>>>
Relational <><=>= instanceof
Equality ==!=
Bitwise AND &
Bitwise exclusive OR ^
Bitwise inclusive OR |
Conditional AND &&
Conditional OR ||
Shortcut if - ?:
Assignment =+=-=*=/=%=&=^=|=<<=>>=>>>=

� Low Precedence

PIC 20A, UCLA, Ivo DinovSlide 22

Statements

� Statements are roughly equivalent to sentences in
natural languages. A statement forms a complete
unit of execution.

� Expression Statements:
� aValue =8933.234; // assignment statement
� aValue++; // increment statement
� System.out.println(aValue); // method call statement
� Integer intObject =new Integer(4); //object creation statement

� Declaration statement: double aValue =8933.234;

� Control flow statement: regulates the order in which
statements get executed. The for loop and the if statement.

PIC 20A, UCLA, Ivo DinovSlide 23

Blocks (of statements)

� A block is a group of zero or more statements between
balanced braces and can be used anywhere a single statement
is allowed.

� Ex. MaxVariablesDemo program:

if (Character.isUpperCase(aChar)){

System.out.println(aChar +"is upper case.");

} else {

System.out.println(aChar +"is lower case.");

}

2 Blocks:
if & else

PIC 20A, UCLA, Ivo DinovSlide 24

Control-flow statements

� Control flow statements allow conditional execution

� For example, in the following code snippet, the if statement
conditionally executes the System.out.println statement within
the braces, based on the return value of
Character.isUpperCase(aChar):

char c;

...

if (Character.isUpperCase(aChar)){

System.out.println(aChar +"is upper case.");

}

5

PIC 20A, UCLA, Ivo DinovSlide 25

Control-flow statements

� Java provides several control flow statements

� Statement Type Keywords

Looping while , do-while , for

Decision making if-else , switch-case

Exception handling try-catch-finally , throw

Branching break, continue, label:, return

PIC 20A, UCLA, Ivo DinovSlide 26

Control-flow statements – while / do loops

while (expression){

statement(s)

}

do {

statement(s)

} while (expression);

while (c !='g') {
copyToMe.append(c);
c

=copyFromMe.charAt(++i);
}

do {
copyToMe.append(c);
c =copyFromMe.charAt(++i);

} while (c !='g');

PIC 20A, UCLA, Ivo DinovSlide 27

Control-flow – if-else conditioning

if (expression1){
statement(s)

}

else if (expression2){
statement(s)

}
…
else {

statement(s)

}

if (testscore >=90){
grade ='A';

} else if (testscore >=80) {
grade ='B';

} else if (testscore >=70){
grade ='C';

} else if (testscore >=60){
grade ='D';

} else {
grade ='F';

}
System.out.println("GRD="+grade);

IfElseDemo.java

PIC 20A, UCLA, Ivo DinovSlide 28

Control-flow – switch conditioning

switch (month){
case 1:System.out.println("January");break;
case 2:System.out.println("February");break;
case 3:System.out.println("March");break;
case 4:System.out.println("April");break;
case 5:System.out.println("May");break;
case 6:System.out.println("June");break;
case 7:System.out.println("July");break;
case 8:System.out.println("August");break;
case 9:System.out.println("September");break;
case 10:System.out.println("October");break;
case 11:System.out.println("November");break;
case 12:System.out.println("December");break;

}

SwitchDemo.java

PIC 20A, UCLA, Ivo DinovSlide 29

Exception Handling

� Java provides a mechanism known as exceptions to help
programs report and handle errors. When a run-time
error occurs, the program throws an exception. This means
that the normal flow of the program is interrupted and that
the runtime environment attempts to find an exception
handler—a block of code that can deal with a particular
type of error. The exception handler can attempt to recover
from the error or, if it determines that the error is
unrecoverable, provide a gentle exit from the program.

� Three statements play a part in handling exceptions.
� Try
� Catch
� Finally

PIC 20A, UCLA, Ivo DinovSlide 30

Exception Handling

• try statement identifies a block of statements
within which an exception might be thrown.

• catch statement must be associated with a try
statement and identifies a block of
Statements that can handle a particular type
of exception. The statements are executed
if an exception of a particular type occurs
within the try block.

• finally statement must be associated with a try
statement and identifies a block of statements
that are executed regardless of whether an
error occurs within the try block.

6

PIC 20A, UCLA, Ivo DinovSlide 31

Exception Handling

try {
statement(s)

} catch (exceptiontype name) {

statement(s)
} finally {

statement(s)
}

PIC 20A, UCLA, Ivo DinovSlide 32

Branching Statements

•The break statement
•The continue statement
•The return statement
The break statement and the continue statement can be used

with or without a label. A label is an identifier placed
before a statement. The label is followed by a colon (......):

statementName: someJavaStatement;
Ex: for (int i = 0 ; i < arrayOfInts.length; i++) {

if (arrayOfInts [i] == searchfor) {
foundIt =true;
break;

}
}

PIC 20A, UCLA, Ivo DinovSlide 33

Branching Statements with a Label

int j =0, i =0;
boolean foundIt =false;
search:
for (; i <arrayOfInts.length; i++) {

for (j =0; j <arrayOfInts [i].length; j++) {
if (arrayOfInts [i][j] ==searchfor){

foundIt =true;
break search;

}
}

}
….

PIC 20A, UCLA, Ivo DinovSlide 34

Continue Statements

� You use the continue statement to skip the current
iteration of a for, while, or do loop.

� The unlabeled form skips to the end of the innermost
loop’s body and evaluates the boolean expression that
controls the loop, basically skipping the remainder of
this iteration of the loop.

� for (int i =0;i <max;i++) { //interested only in p's
if (searchMe.charAt(i) != 'p')

continue;
//process p's

numPs++;
searchMe.setCharAt(i,'P');

}

PIC 20A, UCLA, Ivo DinovSlide 35

Return Statements

�Use return to exit from the current method. The
flow of control returns to the statement that
follows the original method call. The return
statement has two forms:

return ++count; // return (++count);
The data type of the value returned by return
must match the type of the method’s declared
return value.

�When a method is declared void , use the form
of return that doesn’t return a value:

return;

