
1

PIC 20A, UCLA, Ivo Dinov Slide 1

UCLA PIC 20A
Java Programming

�Instructor: Ivo Dinov,
Asst. Prof. In Statistics, Neurology and

Program in Computing

�Teaching Assistant: Yon Seo Kim, PIC

University of California, Los Angeles, Summer 2002
http://www.stat.ucla.edu/~dinov/

PIC 20A, UCLA, Ivo DinovSlide 2

Chapter 5 – Classes & Inheritance

� Creating Classes

� Managing Inheritance

� Nested Classes

PIC 20A, UCLA, Ivo DinovSlide 3

Creating Classes
public class Stack {

private Vector items;
public Stack() { items =new Vector(10); }
public Object push (Object item) {

items.addElement(item); return item; }
public synchronized Object pop() {

int len =items.size();
Object obj =null;
if (len ==0) throw new EmptyStackException();
obj =items.elementAt(len -1);
items.removeElementAt(len -1);
return obj;

}
public boolean isEmpty() {

if (items.size()==0) return true;
else return false;

} }

Class DeclarationVariable
Constructor

MethodsC
la

ss
B

od
y

push pop

PIC 20A, UCLA, Ivo DinovSlide 4

Class Definition = Class Declaration + Class body

public Class // is publicly accessible.

abstract Class // cannot be instantiated.

final Class // cannot be subclassed.
class NameOfClass extends Super

implements Interfaces // ClassBody
{ // Can extend 0 or 1 SuperClass

// Can implement many Interfaces
}

PIC 20A, UCLA, Ivo DinovSlide 5

Declaring Member Variables

accessLevel (= public, protected, package, and private) Lets you
control what other classes have access to a member variable

static - Declares a class variable rather than an instance variable.
final - INDICATES that the value of this member cannot change.
transient - Marks member variables that should not be serialized.

This component is used in object serialization (Interface Serializable).
volatile - Prevents the compiler from performing certain

optimizations on a member.
type - Like other variables, a member variable must have a type.

You can use primitive type names, such as int , float , or
boolean . Or, you can use reference types, such as array,
object, or interface names.

name - A member variable’s unique name can be any legal
identifier and, by convention, begins with a lowercase letter.

PIC 20A, UCLA, Ivo DinovSlide 6

Member Method = method declaration and body

accessLevel – Control other classes’ access to a method
static - declares method as a class not an instance method
abstract - method has no implementation and must be a

member of an abstract class.
final - cannot be overridden by subclasses.
native – When we have external library of functions written in

another language, such as C, you may use those functions from
within Java

synchronize - Concurrently running threads often
invoke methods that operate on the same data. Mark
these methods with the synchronized keyword to
ensure that the threads access information in a thread-
safe manner.

2

PIC 20A, UCLA, Ivo DinovSlide 7

Member Method = method declaration and body

returnType - Declare the data type of the value
that it returns. If your method does not return a
value, use the keyword void.

methodName - Method name can be any legal
identifier.

(parameterList) - You pass information into a
method through its arguments.

throws exceptionList - If your method throws
any checked exceptions, your method
declaration must indicate the type of those
exceptions.

PIC 20A, UCLA, Ivo DinovSlide 8

Naming your Methods

� Method names should be verbs and should be in mixed case.
toString
compareTo
isDefined
setX
getX

� A method name should not be the same as the class name,
because constructors are named for the class. Typically, a
method has a unique name within its class, but ...

� A method with the same signature and return type as a
method in a superclass overrides or hides the
superclass method.

� Name overloading for methods, which means that multiple
methods in the same class can share the same name if they
have different parameter lists.

PIC 20A, UCLA, Ivo DinovSlide 9

Class Constructors

All classes have at least one constructor. A constructor
is used to initialize a new object of that type and has
the same name as the class.
public Stack() {

items =new Vector(10);
}

A constructor has no return type. A constructor is called
by the new operator, which automatically returns the
newly created object.
public Stack(int initialSize) {

items =new Vector(initialSize);
}

Java differentiates constructors based on the number/type arg’s.

private
protected
public
no specifier

PIC 20A, UCLA, Ivo DinovSlide 10

Method/Constructor Arguments

� Arg’s to any method or constructor is a comma-
separated list of variable declarations, each variable is
a pair of type/name.

� You can pass an argument of any data type into a
method or a constructor –
� primitive data types (doubles, floats, and int’s etc.)

�public void getRGBColor(int red,int green,int blue) {
redValue = red; greenValue = green; blueValue = blue;

}
� reference data types (classes or arrays)

�public static Polygon polygonFrom(Point [] listOfPoints)
{ // method accepts an array as an argument.

// Java creates a new Polygon object and
// initializes it from a listOfPoints

}

PIC 20A, UCLA, Ivo DinovSlide 11

The this keyword
� Within an instance method or a constructor, this is a

reference to the current object—You can refer to any
member of the current object from within an instance
method or a constructor by using this.

public class HSBColor {
private int hue, saturation, brightness;
public HSBColor (int hue, int saturation, int brightness) {
this.hue = hue;
this.saturation = saturation;
this.brightness = brightness;

}

PIC 20A, UCLA, Ivo DinovSlide 12

Choosing the right access level
� If other programmers use your class, you want to ensure they

do not misuse your members/class.
� Start with the most restrictive access (private) level that

makes sense for a particular member.
�Avoid public member variables except for constants.

Furthermore, if a member variable can be changed only by
calling a method, you can notify other classes or objects of
the change. Notification is impossible if you allow public
access to a member variable. You might decide to grant
public access if doing so gives you significant performance
gains.

�Limit the number of protected and package member
variables.

� If a member variable is a JavaBeans property, it must be
private.

3

PIC 20A, UCLA, Ivo DinovSlide 13

Instance vs. Class Members (revisited)
public class AClass {

public int instanceInteger =0;
public int instanceMethod(){return instanceInteger;}
public static int classInteger =0;
public static int classMethod(){ return classInteger; }

public static void main (String [] args)) {
AClass anInstance = new AClass();
AClass anotherInstance = new AClass();

//Refer to instance members through an instance.
anInstance.instanceInteger =1;
anotherInstance.instanceInteger =2;

PIC 20A, UCLA, Ivo DinovSlide 14

Instance vs. Class Members (revisited)
System.out.println(anInstance.instanceMethod());
System.out.println(anotherInstance.instanceMethod());

// Illegal to refer directly to instance members from a class method
// System.out.println(instanceMethod()); // illegal
// System.out.println(instanceInteger); // illegal
// Refer to class members through the class...

AClass.classInteger =7;
System.out.println(classMethod());

// ... or refer to class members through an instance.
System.out.println(anInstance.classMethod());
//Instances share class variables
anInstance.classInteger =9;
System.out.println(anInstance.classMethod());
System.out.println(anotherInstance.classMethod());

} }

Out
1
2
7
7
9
9

PIC 20A, UCLA, Ivo DinovSlide 15

Instance vs. Class Members (revisited)
� In general, member declared within a class is an

instance member, and you can access an instance
member and call an instance method only through a
reference to the instance [anInstance.instanceMethod()].

� For a class variable, which is declared by using the
static modifier, the runtime system allocates a class
variable once per class, regardless of the number of
instances created of that class.

� All instances of a class share the same copy of the
class’s class variables. You can access class variables
either through an instance or through the class itself.
Similarly, class methods can be invoked on the class
or through an instance reference. Note that when the
program changes the value of classVariable , its value
changes for all instances.

PIC 20A, UCLA, Ivo DinovSlide 16

Inheritance

Class Tree Hierarchy

MyClass1Level_1

MyClass2Level_4

MyClass2Level_3

MyClass2Level_2

MyClass2Level_3

MyClass2Level_2

MyClass2Level_3 MyClass2Level_3

MyClass2Level_2

MyClass2Level1

MyClass3Level_3

MyClass3Level_2

MyClass3Level1
Type title here

java.lang.Object

PIC 20A, UCLA, Ivo DinovSlide 17

Inheritance

� The Object class, defined in the java.lang package, is
the most general class & defines and implements
behavior that every class needs. All other classes
derive from Object , many classes derive from those
classes, and so on, forming a hierarchy of classes.

� Classes at the bottom of the hierarchy are more
specialized. A subclass derives from its superclass
(direct ancestor – descendant organization).

� Every class has one and only one immediate
superclass. A subclass inherits all the member
variables and methods from its superclass. But, the
subclass has no access to private inherited members.

� Constructors are not members and so are not inherited by
subclasses.

PIC 20A, UCLA, Ivo DinovSlide 18

Overriding methods

� An instance method in a subclass with the same
signature and return type as an instance method in the
superclass overrides the superclass’s method. This
allows a class to inherit from a superclass whose
behavior is “close enough” and then to modify
behavior as needed.

� Ex: java.lang.Object contains toString(). Every
class inherits this method. The implementation in
Object is not very useful for all subclasses;

public class MyClass { //Overrides toString in Object
private int anInt =4;
public String toString(){

return "Instance of MyClass.anInt ="+anInt;
} }

4

PIC 20A, UCLA, Ivo DinovSlide 19

Using supper

� If your method overrides one of its superclass’s
methods, you can invoke the overridden method
through the use of super .

public class Superclass {
public boolean aVariable;
public void aMethod(){ aVariable =true; }

}
public class Subclass extends Superclass {

public boolean aVariable;
public void aMethod() { //overrides aMethod

aVariable =false; super.aMethod();
System.out.println(aVariable);
System.out.println(super.aVariable);

}}

Out

false
true

PIC 20A, UCLA, Ivo DinovSlide 20

Using supper

� You can also use super within a constructor to invoke
a superclass’s constructor.
class AnimationThread extends Thread {

int framesPerSecond;
int numImages;
Image [] images;
public AnimationThread(int fps,int num) {

super("AnimationThread");
this.framesPerSecond =fps;
this.numImages =num;
this.images =new Image [numImages];
…

} }

PIC 20A, UCLA, Ivo DinovSlide 21

Subclasses of java.lang.Object

� Every class is a descendant, direct or indirect, of the
Object class. This class defines the basic state and
behavior that all objects must have, such as the ability
to compare oneself to another object, to convert to a
string, to wait on a condition variable, to notify other
objects that a condition variable has changed, and to
return the class of the object.

clone
equals and hashCode
finalize
toString
getClass
notify
notifyAll , and
wait

PIC 20A, UCLA, Ivo DinovSlide 22

Final Classes and Methods

�A final class cannot be subclassed. Two
reasons:
� Security: to increase system security by

preventing system subversion. To subvert systems
hackers often create a subclass of a class and then
substitute the subclass for the original. The
subclass looks and feels like the original class but
does vastly different things, possibly causing
damage or getting due to possible overriding.

� Design: for reasons of good object-oriented
design. If your class is perfect or that,
conceptually, your class should have no subclasses.

final class ChessAlgorithm { ... }

PIC 20A, UCLA, Ivo DinovSlide 23

Abstract Classes and Methods

� If a class represents an abstract concept it should
not be instantiated. Take, for example, food in the real
world. Have you ever seen an instance of food? No.
What you see instead are instances of carrot, apple,
and chocolate chip cookies.

� It makes sense to create an abstract Number object. A
class such as Number, which represents an abstract
concept and should not be instantiated, is called an
abstract class. An abstract class can only be
subclassed; it cannot be instantiated.

abstract class Number {
...
}

PIC 20A, UCLA, Ivo DinovSlide 24

Abstract Classes and Methods

� An abstract class can contain abstract methods—
methods with no implementation. In practice, abstract
classes provide a complete or partial implementation
of at least one method. If an abstract class contains
only abstract method declarations, it should be
implemented as an interface instead.

� Ex: In an object-oriented drawing application, you
can draw circles, rectangles, lines, Bézier curves, and
so on. These graphic objects all have certain states
(position, bounding box) and behaviors (move, resize,
draw) in common. You can take advantage of these
similarities and declare them all to inherit from the
same parent object—for example, GraphicObject.

5

PIC 20A, UCLA, Ivo DinovSlide 25

Abstract Classes and Methods

abstract class GraphicObject {
int x, y;
...
void moveTo(int newX, int newY) { … }
abstract void draw();

}
class Circle extends GraphicObject {

void draw(){ ... }
}
class Rectangle extends GraphicObject {

void draw(){ ... }
}

PIC 20A, UCLA, Ivo DinovSlide 26

Nested Classes

�A nested class is a member of another class.
class EnclosingClass {

...
class ANestedClass {

...
}

}
� You use nested classes to reflect and to enforce the

relationship between two classes. You should define
a class within another class when the nested class
makes sense only in the context of its enclosing class
or when it relies on the enclosing class for its
function. Ex, a text cursor might make sense only in
the context of a text component.

PIC 20A, UCLA, Ivo DinovSlide 27

Project Organization

(Re-)Design Implementation Testing

DebuggingAnalysis

PIC 20A, UCLA, Ivo DinovSlide 28

Project Design

�Complex Number Calculator Example:
•Runnable as an Applet and an
Application
•Identify Complex-Number
Operations
•State of the application:

•What widgets (components) do
we need to get user input?
•How to present the result to the
user as output?
•How to arrange all components
in the frame?

•Behavior of the application
•Clean/resize/change appearance

PIC 20A, UCLA, Ivo DinovSlide 29

Project Design

�Complex Number Calculator Example:
•Runnable as an Applet and an
Application
•Identify Complex-Number
Operations
•State of the application:

•What widgets (components) do
we need to get user input?
•How to present the result to the
user as output?
•How to arrange all components
in the frame?

•Behavior of the application
•Clean/resize/change appearance

PIC 20A, UCLA, Ivo DinovSlide 30

Project Design

�Complex Number Calculator Example:
•Applet vs. Application – write
an applet, then insert main()
•Operations {-, +. *, /, ||, 1/z, Clear}
•State:

•JTextField, Jlist, Jpanel,
JScrollPane, JLabel
•ComplexDrawPanel() – private
class
•BorderLayout

•Behavior:
•Action triggered by List element
selection (arithmetic operation)
•Read in JTextField strings
•Compute result
•Draw all Complex numbers
•Scale DrawingPanel based on |z|

6

PIC 20A, UCLA, Ivo DinovSlide 31

Project Design

�Complex Number Calculator Example:
•Identify specific members:

•Constructors
•Methods
•Variables
•Private classes

•Write empty bodies for most
methods you need
•Try to compile, fix little bugs.
•Look and feel of the applet?!?
•Begin putting in details about the
state and behavior of the application
•Compile, test, debug, redesign, re-
implement, recompile etc.
•Final tests, validation,
documentation and project
submission

