
1

PIC 20A, UCLA, Ivo Dinov Slide 1

UCLA PIC 20A
Java Programming

�Instructor: Ivo Dinov,
Asst. Prof. In Statistics, Neurology and

Program in Computing

�Teaching Assistant: Yon Seo Kim, PIC

University of California, Los Angeles, Summer 2002
http://www.stat.ucla.edu/~dinov/

PIC 20A, UCLA, Ivo DinovSlide 2

Chapter 6 – Interfaces & Packages

� Creating Interfaces

� Making Packages

PIC 20A, UCLA, Ivo DinovSlide 3

Interfaces (recall)
� An interface is a device that unrelated objects use to

interact with each other. An object can implement
multiple interfaces.

� Ex. An inventory program doesn’t care what class of
items it manages, as long as each item provides
certain information, such as price and tracking
number, quantity, etc.

� Instead of forcing class relationships on otherwise
unrelated items, the inventory program sets up a
protocol of communication – a set of constant and
method definitions contained within an interface. The
inventory interface would define, but not
implement, methods that set and get the retail price,
assign a tracking number, and so on.

PIC 20A, UCLA, Ivo DinovSlide 4

Interfaces vs. Abstract Classes
� An interface is simply a list of unimplemented, and

therefore abstract, methods – How an interface
differs from an abstract class?
�An interface cannot implement any methods,

whereas an abstract class can.
�A class can implement many interfaces but

can have only one superclass.
�An interface is not part of the class

hierarchy. Unrelated classes can implement
the same interface.

PIC 20A, UCLA, Ivo DinovSlide 5

Interface Example – StockMonitor
a class using the StockWatcher interface

� Watch stock prices coming over a data stream. This class
allows other classes to register to be notified when the value of
a particular stock changes.

public class StockMonitor {
public void watchStock (StockWatcher watcher,

String tickerSymbol, double delta) //register for notification

{ ... }
}
� The StockWatcher is an interface that declares one method:

valueChanged(). An object that wants to be notified of stock
changes must be an instance of a class that implements this
interface and thus implements the valueChanged method.

� The other arguments provide the symbol of the stock to watch
and the amount of change that the watcher considers
interesting enough to be notified of.

PIC 20A, UCLA, Ivo DinovSlide 6

Interface StockWatcher
� When the StockMonitor class detects an interesting

change, it calls the valueChanged method of the
watcher.

public interface StockWatcher Extends <<List Of Interf’s>>

final String sunTicker ="SUNW";
final String oracleTicker ="ORCL";
final String ciscoTicker ="CSCO";
void valueChanged (String tickerSymbol,

double newValue);
}
An interface declaration can have a list of superInterf’s.
An interface can extend multiple other interfaces.

2

PIC 20A, UCLA, Ivo DinovSlide 7

Interface Example - StockApplet

� Applet that implements the StockWatcher interface:
public class StockApplet extends Applet

implements StockWatcher {
public void valueChanged (String

tickerSymbol, double newValue)
{ if (tickerSymbol.equals(sunTicker))

{ ... }
else if (tickerSymbol.equals(oracleTicker))
{ ... }

else if (tickerSymbol.equals(ciscoTicker))
{ ... }

}}
PIC 20A, UCLA, Ivo DinovSlide 8

Interface Example - StockApplet
� Applet that implements the StockWatcher interface:
public class StockApplet extends Applet

implements StockWatcher {
public void valueChanged (String

tickerSymbol, double newValue)
{ if (tickerSymbol.equals(sunTicker))

{ ... }
….

}}
Note that this class refers to each constant defined in

StockWatcher, sunTicker, etc. Classes that
implement an interface inherit the constants defined
within that interface. Other classes use an interface’s
constants by: StockWatcher.sunTicker

PIC 20A, UCLA, Ivo DinovSlide 9

Interface Example – StockMonitor
a class using the StockWatcher interface

� This class allows other classes to register to be
notified when the value of a particular stock changes.

public class StockMonitor {
public void watchStock (StockWatcher watcher,

String tickerSymbol, double delta) //register for notification

{ ... }
}
Only an instance of a class that implements the

interface can be assigned to a reference variable
whose type is an interface name. So only instances of
a class that implements the StockWatcher interface
can register to be notified of stock value changes.

PIC 20A, UCLA, Ivo DinovSlide 10

Interface Can NOT Expand …

� To add some functionality to StockWatcher. Ex. add a
method that reports the current stock price.

� If you make this change later, all classes that
implement the old StockWatcher interface will break!

public interface StockWatcher {
….

void currentValue (String tickerSymbol,
double newValue);

}
Try to anticipate all uses for your interface up front and

specify it completely from the beginning. Otherwise,
you need to create a StockWatcher sub-interface
called StockTracker that declares the new method

PIC 20A, UCLA, Ivo DinovSlide 11

Packages

A package is a collection, a bundle, of related
classes and interfaces providing access
protection and namespace management.

Ex: If you write a group of classes that represent
a collection of graphic objects, such as circles,
rectangles, lines, and points. You also write an
interface, Draggable , that classes implement if
they can be dragged with the mouse by the
user:

PIC 20A, UCLA, Ivo DinovSlide 12

Packages – Example

public abstract class Graphic
{ ... //in the Graphic.java file
}
public class Circle extends Graphic implements Draggable
{ ... //in the Circle.java file
}
public class Rectangle extends Graphic implements Draggable
{ ... //in the Rectangle.java file
}
public interface Draggable
{ ... //in the Draggable.java file
}

3

PIC 20A, UCLA, Ivo DinovSlide 13

Why bundle classes in Packages?

� You and other programmers can easily determine that
these classes and interfaces are related.

� You and other programmers know where to find
classes and interfaces that provide graphics-related
functions.

� The names of your classes won’t conflict with class
names in other packages, because the package creates
a new namespace.

� You can allow classes within the package to have
unrestricted access to one another yet still restrict
access for classes outside the package.

PIC 20A, UCLA, Ivo DinovSlide 14

Creating Packages

package graphics;

public class Circle extends
Graphic implements Draggable

{
...

}

PIC 20A, UCLA, Ivo DinovSlide 15

Creating Packages

package graphics;
public class Circle extends Graphic

implements Draggable
{ ...
}
----------------Rectangle.java------------------------
package graphics;
public class Rectangle extends Graphic

implements Draggable
{ ...
}

PIC 20A, UCLA, Ivo DinovSlide 16

Scope of Packages

�The scope of the package statement is the
entire source file, so all classes and
interfaces defined in Circle.java and
Rectangle.java are also members of the
graphics package.

�If you put multiple classes in a single
source file, only one may be public, and it
must share the name of the source file’s
base name. Only public package members
are accessible from outside the package.

PIC 20A, UCLA, Ivo DinovSlide 17

Naming Packages

�By Convention: Companies use their reversed
Internet domain name in their package names,
like this: com.company.package . Name
collisions that occur within a single company
need to be handled by convention within that
company, perhaps by including the region or
the project name after the company name, for
example, com.company.region.package.

�My packages look like:
�edu.ucla.stat.dinov.MyNewPackage
�edu.ucla.loni.LONI_Viz
�edu.ucla.loni.BrainGraph

PIC 20A, UCLA, Ivo DinovSlide 18

Using Packages

� Only public package members are accessible outside
the package in which they are defined.

� To use a public package member from outside its
package, you must do either of:
�Refer to the member by its long (qualified) name:

edu.ucla.stat.Viz.VizDisplayPanel()
� Import the package member

� import edu.ucla.stat.Viz.VizDisplayPanel;
…
VizDisplayPanel myPanel = new VizDisplayPanel();

� Import the member’s entire package
�import edu.ucla.stat.Viz.*;

…
VizDisplayPanel myPanel = new VizDisplayPanel();

4

PIC 20A, UCLA, Ivo DinovSlide 19

Using Packages

�Caution! When referring to a class be ware that a
class with the same name can apper in several of the
packages you import ….
�Then an implicit localization of the required

packages is necessary (compile error will be
reported for you).

import edu.ucla.stat.Viz.Rectangle;
import java.Graphics.*;
Rectangle myREctangle = new Rectangle();

�Which blue-print for a Rectangle object are you
using?

PIC 20A, UCLA, Ivo DinovSlide 20

Example of Using Packages

�C:\Ivo.dir\LONI_Viz\LONI_Viz_MAP_demo
�Directory organization:
�Package delimiters inside *.java files
�Use of outside classes (external packages)
�Compilation (make makefile; ant build.xml)
�Debugging
�Running (run.bat)

