
1

PIC 20A, UCLA, Ivo Dinov Slide 1

UCLA PIC 20A
Java Programming

�Instructor: Ivo Dinov,
Asst. Prof. In Statistics, Neurology and

Program in Computing

�Teaching Assistant: Yon Seo Kim, PIC

University of California, Los Angeles, Summer 2002
http://www.stat.ucla.edu/~dinov/

PIC 20A, UCLA, Ivo DinovSlide 2

Chapter 2 – Object Oriented Programming

� What Is an Object?

� What Is a Message?

� What Is a Class?

� Objects versus Classes

� What Is Inheritance?

� What Is an Interface?

� Coding – objects, classes, inheritance, interfaces …

PIC 20A, UCLA, Ivo DinovSlide 3

Objects

� An object is a software bundle of variables and related
methods.

� Real-world objects: your dog, desk, your TV set, your bicycle.

� Objects two characteristics: state and behavior.

� Ex., dogs have state (name, color, breed, hungry) and behavior
(barking, fetching, and wagging tail).

� Ex., bicycles have state (current gear, current pedal cadence,
two wheels, number of gears) and behavior (braking,
accelerating, slowing down, changing gears).

PIC 20A, UCLA, Ivo DinovSlide 4

Objects

� (Software) Objects are modeled after real-world
objects in that they too have state and behavior.

� A software object maintains its state in one or more
variables. A variable is an item of data named by an
identifier. A software object implements its behavior
with methods. A method is a function (subroutine)
associated with an object.

� Definition: An object is a software bundle of
variables and related methods.

PIC 20A, UCLA, Ivo DinovSlide 5

Objects – guiding principles

� Modularity: The source code for one object can be
written and maintained independently of the source
code for other objects. Also, an object can be easily
passed around in the system. You can give your
bicycle to someone else, and it will still work.

� Information hiding: An object has a public
interface that other objects can use to communicate
with it. An object can maintain private information
and methods that can be changed without affecting
the other objects that depend on it. You don’t need to
understand the gear mechanism on your bike to use it.

PIC 20A, UCLA, Ivo DinovSlide 6

Messages

� A single object alone is generally not very useful. Instead, an
object usually appears as a component of a larger program or
application that contains many other objects.

� Your bicycle hanging from a hook in the garage is just a
bunch of titanium alloy and rubber; by itself, the bicycle is
incapable of any activity. The bicycle is useful only when
another object (you) interacts with it (pedal).

� Software objects interact and communicate with each other by
sending messages to each other. When object A wants object
B to perform one of B’s methods, object A sends a message to
object B.

2

PIC 20A, UCLA, Ivo DinovSlide 7

Messages

� Sometimes, the receiving object needs more
information so that it knows exactly what to do;

� E.x., when you want to change gears on your bicycle,
you have to indicate which gear you want. This
information is passed along with the message as
parameters.

� Components that comprise a message:
�The object to which the message is addressed (Bicycle)
�The name of the method to perform (changeGear)
�Any parameters needed by the method (lowerGear)

Note the
syntax

PIC 20A, UCLA, Ivo DinovSlide 8

Messages

� Messages provide two important benefits.
�An object’s behavior is expressed through its methods, so

(aside from direct variable access) message passing
supports all possible interactions between objects.

�Objects don’t need to be in the same process or even on the
same machine to send and receive messages back and forth
to each other.

� Ex, //since this view will also be changed, it will
fire a property change to all the listeners

firePropertyChange("ColorMap", null, _colorModel);

C:\Ivo.dir\LONI_Viz\LONI_Viz_MAP_demo\src.dir\edu\ucla\loni\LONI_Viz\
VolumeSliceView.java

PIC 20A, UCLA, Ivo DinovSlide 9

Classes

� In the real world, you often have many objects of the same
kind. For example, your bicycle is just one of many bicycles in
the world. Using object-oriented terminology, we say that your
bicycle object is an instance of the class of objects known as
bicycles. Bicycles have some state (current gear, current size,
two wheels) and behavior (change gears, brake) in common.

� However, each bicycle’s state is independent of and can be
different from that of other bicycles. When building bicycles,
manufacturers take advantage of the fact that bicycles share
characteristics, building many bicycles from the same
blueprint. It would be very inefficient to produce a new
blueprint for every individual bicycle manufactured.

PIC 20A, UCLA, Ivo DinovSlide 10

Classes

� In object-oriented software, it’s also possible to have
many objects of the same kind that share
characteristics: rectangles, employee records, video
clips, and so on. Like the bicycle manufacturers, you
can take advantage of the fact that objects of the same
kind are similar and you can create a blueprint for
those objects.

� A software blueprint for objects is called a class.

PIC 20A, UCLA, Ivo DinovSlide 11

Class vs. Instance Variables

� Class variables: contain information that is shared by all
instances of the class. For example, suppose that all bicycles
had the same number of wheels (2 or 3). In this case, defining
an instance variable to hold the number of wheels is
inefficient; each instance would have its own copy of the
variable, but the value would be the same for every instance. In
such situations, you can define a class variable that contains
the number of gears. All instances share this variable. If one
object changes the variable, it changes for all other objects of
that type. A class can also declare class methods.

� You can invoke a class method directly from the class,
whereas you must invoke instance methods on a particular
instance. (E.g., System.out.println(“Class Method”);)

PIC 20A, UCLA, Ivo DinovSlide 12

Objects vs. Classes

� Objects and Classes probably look very similar …

� A blue-print of a bicycle is not a bicycle.

� The term object is sometimes used to refer to both
classes and instances.

3

PIC 20A, UCLA, Ivo DinovSlide 13

Inheritance

� Generally speaking, objects are defined in terms of
classes. You know a lot about an object by knowing
its class. Even if you don’t know what a
pennyfarthing is, if I told you it was a bicycle, you
would know that it had two wheels, handle bars, and
pedals.

� Object-oriented systems take this a step further and
allow classes to be defined in terms of other classes.
Mountain bikes, racing bikes, and tandems are all
sub-classes of the bicycle (super-)class.

PIC 20A, UCLA, Ivo DinovSlide 14

Inheritance

� Each subclass inherits state (in the form of variable
declarations) from the tandems share some states:
cadence, speed, and size, etc. Also, each subclass
inherits methods from the superclass. Mountain bikes,
racing bikes, and, each subclass inherits methods
from the superclass. All bikes share some behaviors:
braking and changing pedaling speed, for example.

Bikes

RacingMountain Tandems

PIC 20A, UCLA, Ivo DinovSlide 15

Inheritance – how are sub- & super-classes
different?

� Subclasses are not limited to the state and behaviors provided
to them by their superclass. Subclasses can add variables and
methods to the ones they inherit from the superclass. Tandem
bicycles have two seats and two sets of handle bars; some
mountain bikes have an extra set of gears with a lower gear
ratio.

� Subclasses can also override inherited methods and provide
specialized implementations for those methods. For example, if
you had a mountain bike with an extra set of gears, you would
override the “change gears” method so that the rider could use
those new gears.

PIC 20A, UCLA, Ivo DinovSlide 16

Inheritance – how are sub- & super-classes
different?

� You are not limited to just one layer of inheritance. Inheritance
forms a tree, or class hierarchy,

� In general, the farther DOWN in the hierarchy a class appears,
the more specialized its behavior. And the higher UP in the
hierarchy a class is the more general it is!

� The Object class is at the top of class hierarchy, and each class
is its descendant (directly or indirectly).

� For example, all classes inherit Object’s toString() method,
which returns a string representation of the object.

PIC 20A, UCLA, Ivo DinovSlide 17

Interfaces

� An interface is a device or a system that unrelated entities
use to interact. According to this definition, a remote control is
an interface between you and a television set, the

� English language is an interface between two people, and the
protocol of behavior enforced in the military is the interface
between people of different ranks.

� In Java, an interface is a device that unrelated objects use to
interact with each other. An interface is probably most
analogous to a protocol (an agreement on behavior).

� Definition: An interface is a device that unrelated objects use
to interact with each other. An object can implement multiple
interfaces.

PIC 20A, UCLA, Ivo DinovSlide 18

Interfaces

� The bicycle class and its class hierarchy define what a bicycle
can and cannot do in terms of its bicycleness. But bicycles
interact with the world on other terms. For example, a bicycle
in a store could be managed by an inventory program. An
inventory program doesn’t care what class of items it manages,
as long as each item provides certain information, such as price
and tracking number.

� Instead of forcing class relationships on otherwise unrelated
items, the inventory program sets up a protocol of
communication. The inventory interface would define, but
not implement, methods that set and get the retail price,
assign a tracking number, and so on.

4

PIC 20A, UCLA, Ivo DinovSlide 19

Interfaces

� Interfaces are useful for the following reasons:
�Capturing similarities among unrelated

classes without artificially forcing a class
relationship

�Declaring methods that one or more classes
are expected to implement

�Revealing an object’s programming
interface without revealing its class

PIC 20A, UCLA, Ivo DinovSlide 20

Coding using these concepts

� Ex., ClickMe.java class
(C:\Ivo.dir\UCLA_Classes\Summer2002\PIC20A\Examples\JavaTutorialExamples

\java\concepts\example-1dot1\ClickMe.java)

� Local Objects: ClickMe, Spot, the three colors used
in the applet (black, white, and red); an event object
represents the user action of clicking the mouse, and
so on.

� Classes: ClickMe & Spot

PIC 20A, UCLA, Ivo DinovSlide 21

Coding using these concepts

� public class Spot {
//instance variables

public int size;
public int x,y;

//constructor
public Spot(int intSize) {

size =intSize;
x =-1;
y =-1;

}
}

PIC 20A, UCLA, Ivo DinovSlide 22

Coding using these concepts

� The applet creates a new spot object when the applet is
initialized. Here’s the relevant code from the applet class:

private Spot spot =null;
private static final int RADIUS =7;
...
spot = new Spot(RADIUS);

� The first line shown declares a variable named spot
whose data type is Spot , the class from which the
object is created, and initializes the variable to null.
The second line declares an int variable named
RADIUS = 7. Finally, the last line shown creates the
object; new allocates memory space for the object.

PIC 20A, UCLA, Ivo DinovSlide 23

Coding using these concepts

� Messages:
g.setColor(Color.white);
g.fillRect(0,0,getSize().width -1,getSize().height -1);

� Both are messages from the applet to an object named
g — a Graphics object that knows how to draw
simple on-screen shapes and text. This object is
provided to the applet when the browser instructs the
applet to draw itself.

� The first line sets the color to white;
� The second fills a rectangle the size of the applet, thus

painting the extent of the applet’s area white.

PIC 20A, UCLA, Ivo DinovSlide 24

Coding using these concepts

� Inheritance:
� To run in a browser, an object must be an applet. The

ClickMe applet object is an instance of the ClickMe
class, which is declared like this:
public class ClickMe extends Applet implements
MouseListener {
...
}

� The extends Applet clause makes ClickMe a subclass
of Applet . ClickMe inherits a lot of capability from
its superclass, including the ability to be initialized,
started, and stopped by the browser; to draw within an
area on a browser page; and to register to receive
mouse events.

5

PIC 20A, UCLA, Ivo DinovSlide 25

Coding using these concepts

� Inheritance:
� Along with the benefits of being Applet’s subclass,

the ClickMe class has certain obligations: Its painting
code must be in a method called paint , its
initialization code must be in a method called init, etc.
public void init(){

... // ClickMe ’s initialization code here
}

public void paint(Graphics g){
... // ClickMe ’s painting code here

}

PIC 20A, UCLA, Ivo DinovSlide 26

Coding using these concepts

� Interfaces:
� The ClickMe applet responds to mouse clicks by

displaying a red spot at the click location. If an object
wants to be notified of mouse clicks, the event system
requires that the object implement the MouseListener
interface.

� The object must also register as a mouse listener. The
MouseListener interface declares five methods,
each of which is called for a different kind of mouse
event: when the mouse is clicked, moves outside of
the applet, and so on. Even though the applet is
interested only in mouse clicks, it must implement all
five methods. The methods for the events that the
applet isn’t interested in are empty.

PIC 20A, UCLA, Ivo DinovSlide 27

Coding using these concepts

� Interfaces:
import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
public class ClickMe extends Applet implements
MouseListener {

private Spot spot =null;
private static final int RADIUS =7;
public void init(){

addMouseListener(this);
}

PIC 20A, UCLA, Ivo DinovSlide 28

Coding using these concepts

� Interfaces:
public void mousePressed(MouseEvent event){

if (spot ==null){
spot =new Spot(RADIUS);

}
spot.x =event.getX();
spot.y =event.getY();
repaint();

}
public void mouseClicked(MouseEvent event){}
public void mouseReleased(MouseEvent event){}
public void mouseEntered(MouseEvent event){}
public void mouseExited(MouseEvent event){}

}

PIC 20A, UCLA, Ivo DinovSlide 29

Coding using these concepts

� API Docs – EXTREMELY IMPORTANT:
� The ClickMe applet inherits a lot of capability from its

superclass. To learn more about how ClickMe works, you need
to learn about its superclass, Applet .

� How do you find that information? You can find detailed
descriptions of every class in the API documentation, which
constitutes the specification for the classes that make up the
Java platform.

� The API documentation for the Java 2 Platform is online at
java.sun.com . The documentation is also included on the CD
that comes with our book. When appropriate, this book has
footnotes providing the URLs to the API documents for
particular classes. It’s helpful to have the API documentation
for all releases you use book marked in your browser.

� http://java.sun.com/j2se/1.3/docs/api/index.html

