

Hospital stays									
ays stayed	x	4	5	6	7	8	9	10	Total
Freque	ncy	10	30	113	79	21	8	2	263
Proportion	pr(X = x)	0.038	0.114	0.430	0.300	0.080	0.030	0.008	1000
Cumulative	$pr(X \leq x)$	0.038	0.152	0.582	0.882	0.962	0.992	1.000	
Proportion									
Chance Encounters b	C I Wild and G	A E Sabar d) John Wilay	& Song 200	n				
and the band of the	C.J. Wild and G		Joint Wiley	(C 10010, 200					1111

of ex	inomial(f the num xperimen ccurring	iber of it, whe in eacl	Head re the	s in ar proba is p.	n N-tos bility	s coin		
	x	0	1	2	3	4	5	6
Individual	pr(X = x)	0.001	0.010	0.060	` 0.185	0.324	0.303	0.118
Cumulative	$pr(X \leq x)$	0.001	0.011ء	0.070	,0.256	0.580	0.882	1.000
	For exa (1 — (

Sampling from a finite population – Binomial Approximation

If we take a sample of size *n*

- from a much larger population (of size N)
- in which a proportion *p* have a characteristic of interest, then the distribution of *X*, the number in the sample with that characteristic,
- is approximately Binomial(n, p).
 Qperating Rule: Approximation is adequate if n/N<0.1.)
- Example, polling the US population to see what proportion is/has-been married.

Odds and ends ...
For what types of situation is the urn-sampling model useful? For modeling binary random processes. When sampling with replacement, Binomial distribution is exact, where as, in sampling without replacement Binomial distribution is an <u>approximation</u>.
For what types of situation is the biased-coin sampling model useful? Defective parts. Approval poll of cloning for medicinal purposes. Number of Boys in 151 presidential children (90).
Give the three essential conditions for its applicability. (two outcomes; same *p* for every trial; independence)

Odds and ends ...

- What is the distribution of the number of heads in *n* tosses of a biased coin?
- Under what conditions does the Binomial distribution apply to samples taken without replacement from a finite population? When interested in assessing the distribution of a R.V., *X*, the number of observations in the sample (of *n*) with one specific characteristic, where *n*/*N*<0.1 and a proportion *p* have the characteristic of interest in the beginning of the experiment.

Binomial Probabilities – the moment we all have been waiting for! • Suppose X ~ Binomial(n, p), then the probability $P(X = x) = {n \choose x} p^x (1-p)^{(n-x)}, \quad 0 \le x \le n$ • Where the binomial coefficients are defined by ${n \choose x} = \underbrace{-n!}_{(n-x)! x!}, \quad n! = \underbrace{1 \times 2 \times 3 \times ... \times (n-1) \times n}_{n-factorial}$

	F	Expected	values		
 The game of probabilities Should we play winning/loosi 	of winnin ay the ga	ng each price	e are {0.6, 0	0.3, 0.1}, res	
Prize (\$)	x	1	2	3	
Probability	pr(x)	0.6	0.3	0.1	
What we would "expect	t'' from 100) games		ada	l across row
Number of games won		0.6×100	0.3 ×100	0.1×100	
\$ won		$1 \times 0.6 \times 100$	$2 \times 0.3 \times 100$	$3 \times 0.1 \times 100$	Sum
Total prize money =	Sum; 4	Average prize n	noney = Sum = 1 = 1.	$\times 0.6 + 2 \times 0.$	$3 + 3 \times 0.1$
Theoretically	<mark>Fair Ga</mark>	ne: price to	<mark>play EQ th</mark>	e expected i	return !
		Slide	24 STA	T 13. UCLA. Ivo Dino	y l

Number	Prize	won in dol	lars(x)		
of games	1	2	3	Average winning	gs
played		frequencies	s	per game	
(N)	(Rel	ative freque	encies)	(\overline{x})	So far we looked
100	64	25	11		at the theoretica
	(.64)	(.25)	(.11)	1.7	expectation of th
1,000	573	316	111		game. Now we
	(.573)	(.316)	(.111)	1.538	simulate the gan
10,000	5995	3015	990		on a computer
	(.5995)	(.3015)	(.099)	1.4995	to obtain randor
20,000	11917	6080	2000		samples from
	(.5959)	(.3040)	(.1001)	1.5042	-
30,000	17946	9049	3005		our distribution,
	(.5982)		(.1002)	1.5020	according to the
∞	(.6)	(.3)	(.1)	(1.5)	probabilities
					{0.6, 0.3, 0.1}.

Linear Scaling (affine transformations)
$$aX + b$$

For any constants *a* and *b*, the expectation of the RV $aX + b$
is equal to the sum of the product of a and the expectation of
the RV *X* and the constant *b*.
 $E(aX + b) = a E(X) + b$
And similarly for the standard deviation (*b*, an additive
factor, does not affect the SD).
 $SD(aX + b) = |a| SD(X)$

Linear Scaling (affine transformations)
$$aX + b$$

Why is that so?
 $E(aX + b) = a E(X) + b$ $SD(aX + b) = |a| SD(X)$
 $E(aX + b) = \sum_{x=0}^{n} (ax + b) P(X = x) =$
 $\sum_{x=0}^{n} a x P(X = x) + \sum_{x=0}^{n} b P(X = x) =$
 $a \sum_{x=0}^{n} x P(X = x) + b \sum_{x=0}^{n} P(X = x) =$
 $a E(X) + b \times 1 = aE(X) + b.$

Linear Scaling (affine transformations) aX + bAnd why do we care? E(aX + b) = a E(X) + b SD(aX + b) = |a| SD(X)-E.g., say the rules for the game of chance we saw before change and the new pay-off is as follows: {\$0, \$1.50, \$3}, with probabilities of {0, 6, 0, 3, 0.1}, as before. What is the newly expected return of the game? Remember the old expectation was equal to the entrance fee of \$1.50, and the game was fair! Y = 3(X-1)/2{\$1, \$2, \$3} \rightarrow {\$0, \$1.50, \$3}, E(Y) = 3/2 E(X) - 3/2 = 3/4 = \$0.75And the game became clearly biased. Note how easy it is to compute E(Y).

