UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

\bullet Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Sovia Lau, Jason Cheng UCLA Statistics

University of California, Los Angeles, Fall 2003 http://www.stat.ucla.edu/~dinov/courses_students.html Slide 1

Chapter 5: Discrete Random Variables

- Random variables
- Probability functions
- The Binomial distribution
- Expected values

Definitions

- An experiment is a naturally occurring phenomenon, a scientific study, a sampling trial or a test., in which an object (unit/subject) is selected at random (and/or treated at random) to observe/measure different outcome characteristics of the process the experiment studies.
- A random variable is a type of measurement taken on the outcome of a random experiment.

Review

- What is a random variable? What is a discrete random variable? (type of measurement taken on the outcome of random experiment)
- What general principle is used for finding $\mathrm{P}(X=x)$? (Adding the probabilities of all outcomes of the experiment where we have
measured the $\mathrm{RV}, \mathrm{X}=x$) measured the $\mathrm{RV}, \mathrm{X}=x$)
- What two general properties must be satisfied by the probabilities making up a probability function? $(\mathrm{P}(x)>=0 ; \Sigma P(x)=1)$
- What are the two names given to probabilities of the form $\mathrm{P}(X \leq x)$? (cumulative \& lower/left-tail)

The answer is: Binomial distribution

- The distribution of the number of heads in n tosses of a biased coin is called the Binomial distribution.

Binary random process

The biased-coin tossing model is a physical model for situations which can be characterized as a series of trials where:
■each trial has only two outcomes: success or failure;
$\square_{p}=\mathrm{P}$ (success) is the same for every trial; and \square trials are independent.

- The distribution of $X=$ number of successes (heads) in N such trials is

$$
\operatorname{Binomial}(N, p)
$$

Sampling from a finite population -

 Binomial ApproximationIf we take a sample of size n

- from a much larger population (of size N)
- in which a proportion p have a characteristic of interest, then the distribution of X, the number in the sample with that characteristic,
- is approximately $\operatorname{Binomial}(n, p)$.
(Operating Rule: Approximation is adequate if $n / N<0.1$.)
- Example, polling the US population to see what proportion is/has-been married.

Odds and ends ...

- For what types of situation is the urn-sampling model useful? For modeling binary random processes. When sampling with replacement, Binomial distribution is exact, where as, in sampling without replacement Binomial distribution is an approximation.
- For what types of situation is the biased-coin sampling model useful? Defective parts. Approval poll of cloning for medicinal purposes. Number of Boys in 151 presidential children (90).
- Give the three essential conditions for its applicability. (two outcomes; same p for every trial; independence)

Binomial Formula with examples

- Does the Binomial probability satisfy the requirements?

Expected values

$\sum_{X} P(X=x)=\sum_{x}\binom{n}{x} p^{x}(1-p)^{(n-x)}=(\mathrm{p}+(1-\mathrm{p}))^{\mathrm{n}}=1$

- Explicit examples for $\mathrm{n}=2$, do the case $\mathrm{n}=3$ at home!

$$
\sum_{x=0}^{2}\binom{2}{x} p^{x(1-p)^{(2-x)}}=\{\text { Three terms in the sum }
$$

$\binom{2}{0} p^{\circ}(1-p)^{2}+\binom{2}{1} p^{\prime}(1-p)^{)^{\prime}}+\binom{2}{2} p^{2}(1-p)^{\circ}=$ $1 \times 1 \times(1-p)^{2}+2 \times p \times(1-p)+1 \times p^{2} \times 1=\left\{\begin{array}{l}\text { Usual } \\ \text { quadratic- } \\ \text { expansion } \\ \text { formula }\end{array}\right.$
$(p+(1-p))^{2}=1$

Slide 23
STAT 13, UCLL, tro Din

TABLE5.4.1 Average Winnings from a Game conducted N times					
Number of games played (N)	Prize won in dollars (x)			Average winnings	
		$\begin{gathered} 2 \\ \text { frequencies } \end{gathered}$	3		So far we looked at the theoretical
				per game	
	(Relative frequencies)			(\bar{x})	
100	64	25	11		
	(.64)	(.25)	(.11)	1.7	expectation of the
1,000	573	316	111		game. Now we
	(.573)	(.316)	(.111)	1.538	simulate the game
10,000	5995	3015	990		on a computer
	(.5995)	(.3015)	(.099)	1.4995	to obtain random
20,000	11917	6080	2000		to obtain random
	(.5959)	(.3040)	(.1001)	1.5042	samp
30,000	17946	9049	3005		our distribution,
	(.5982)	(.3016)	(.1002)	1.5020	according to the
∞	(.6)			1.5	probabilities
					$\{0.6,0.3,0.1\}$.

The mean μ_{X} is the balance point.

Population mean \& standard deviation

Expected value:

$$
E(X)=\sum_{x} x P(X=x)
$$

Variance

$$
\operatorname{Var}(X)=\sum_{x}(x-E(x))^{2} P(X=x)
$$

Standard Deviation

$S D(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{\sum_{x}(x-E(x))^{2} P(X=x)}$

$$
\operatorname{sd}(X)=\sqrt{\mathrm{E}\left[(X-\mu)^{2}\right]}
$$

Note that if X is a $R V$, then $(X-\mu)$ is also a $R V$, and so is $(\mathrm{X}-\mu)^{2}$. Hence, the expectation, $\mathbf{E}\left[(X-\mu)^{2}\right]$, makes sense.

For any constants a and b, the expectation of the RV $a \boldsymbol{X}+b$ is equal to the sum of the product of a and the expectation of the $\mathrm{RV} X$ and the constant b.

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b
$$

And similarly for the standard deviation (b, an additive factor, does not affect the SD).

$$
\mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})
$$

Linear Scaling (affine transformations) $a X+b$

Linear Scaling (affine transformations) $a X+b$

And why do we care?

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})
$$

-E.g., say the rules for the game of chance we saw before change and the new pay-off is as follows: $\{\$ 0, \$ 1.50, \$ 3\}$, with probabilities of $\{0.6,0.3,0.1\}$, as before. What is the newly expected return of the game? Remember the old expectation was equal to the entrance fee of $\$ 1.50$, and the game was fair!

$$
\begin{gathered}
\mathbf{Y}=\mathbf{3}(\mathbf{X}-\mathbf{1}) / \mathbf{2} \\
\{\$ 1, \$ 2, \$ 3\} \rightarrow\{\$ 0, \$ 1.50, \$ 3\} \\
\mathrm{E}(\mathrm{Y})=3 / 2 \mathrm{E}(\mathrm{X})-3 / 2=3 / 4=\$ 0.75
\end{gathered}
$$

And the game became clearly biased. Note how easy it is to compute $\mathrm{E}(\mathrm{Y})$.

Review

- What does the expected value of X tell you about? (Expected outcome from an experiment regarding the characteristics measured by the RV X)
- Why is the expected value also called the population mean? [because for finite population $\mathrm{E}(\mathrm{X})$ is the ordinary mean (average)]
- What is the relationship between the population mean and the bar graph of the probability function? (balances the graph)
- What are the mean and standard deviation of the Binomial distribution? (np; np(1-p))
- Why is $\mathrm{SD}(X+10)=\mathrm{SD}(X)$?
- Why is $\operatorname{SD}(2 X)=2 \mathrm{SD}(X)$? (Section 5.4.3)

