UCLA STAT 13
 Introduction to Statistical Methods for the Life and Health Sciences

-Instructor: Ivo Dinov,
 Asst. Prof. In Statistics and Neurology

-Teaching Assistants:

Ming Zheng, Sovia Lau, Tianwei Yu
UCLA Statistics
University of California, Los Angeles, Fall 2003
http://www.stat.ucla.edu/~dinov/courses_students.html
Stat 13, UCLA, Ivo Dinov

What is Statistics? A practical example

- Michael Benton \& Francisco Ayala, Dating the Tree of Life, Science 2003 300: 1698-1700
- Molecular vs. Paleontological dating of major branching points in the tree of life are debated
- Molecular date estimates are up to twice as old (due to statistical bias) as Paleontological dates (missing fossils).
- Goals: Same as that set out by Darwin: to understand where life came from, the shape of evolution, the place of humans in nature and to determine the extent of modern biodiversity and where it is threatened.

What is Statistics? Topics!

- It is proposed that molecular dates are correct (with confidence intervals) and that methods exist to correct for that error. However, critics have pointed out several pervasive biases that make molecular dates too old.
-First, if calibration dates are too old, then all other dates estimated from them will also be too old.
- A second biasing factor is that undetected fast-evolving genes could bias estimates of timing. Empirical and statistical studies of vertebrate sequences suggest that such non-clock-like genes may be detected and that they do not affect estimates of dating. However, statistical tests may have low power and could produce consistently $>$ dates.

What is Statistics? A practical example

- Plants: The first vascular land plants are found as fossils in the Silurian, and earlier evidence from possible vascular plant spores may extend the range back to the Ordovician, 475 Ma considerably < a molecular estimate of 700 Ma .
- Birds: Molecular estimates place the split of basal clades and modern orders at 70 to 120 Ma . The oldest uncontroversial fossils of modern bird orders date from the Paleocene (60 Ma), much younger.
- Mammals: Molecular dates split of modern placentals in the mid- to Late Cretaceous (80 to 100 Ma). The oldest fossil representatives of modern mammals dated from the Paleocene and Eocene (50 to 65 Ma).

What is Statistics?
-There are three main methods of probabilistic forecasting:
time-series extrapolation;
expert judgement; and
extrapolation of historical forecast errors.
- Time-series methods rely on statistical models that are
fitted to historical data. These methods, however, seldom
give an accurate description of the past. If many of the
historical facts remain unexplained, time-series methods
result in excessively wide prediction intervals when used for
long-term forecasting.
- Expert judgement is subjective, and historic-
extrapolation alone may be near-sighted.
Stat 13, UCLA, Ivo Dinov

Newtonial science vs. chaotic science

- Article by Robert May, Nature, vol. 411, June 21, 2001
- Science we encounter at schools deals with crisp certainties (e.g., prediction of planetary orbits, the periodic table as a descriptor of all elements, equations describing area, volume, velocity, position, etc.)
- As soon as uncertainty comes in the picture it shakes the foundation of the deterministic science, because only probabilistic statements can be made in describing a phenomenon (e.g., roulette wheels, chaotic dynamic weather predictions, Geiger counter, earthquakes, etc.)
- What is then science all about - describing absolutely certain events and laws alone, or describing more general phenomena in terms of their behavior and chance of occurring? Or may be both!

Errors in Samples ...

- Selection bias: Sampled population is not a representative subgroup of the population really investigated.
- Non-response bias: If a particular subgroup of the population studied does not respond, the resulting responses may be skewed.
- Question effects: Survey questions may be slanted or loaded to influence the result of the sampling.
- Is quota sampling reliable? Each interviewer is assigned a fixed quota of subjects (subjects district, sex, age, income exactly specified, so investigator can select those people as they liked).
- Target population -entire group of individuals, objects, units we study.
- Study population -a subset of the target population containing all "units" which could possibly be used in the study
- Sampling protocol - procedure used to select the sample
- Sample - the subset of "units" about which we actually collect info.

More definitions ...

- How could you implement the lottery method to randomly sample 10 students from a class of 250 ? - list all names; assign numbers $1,2,3, \ldots, 250$ to all students; Use a random-number generator to choose (10-times) a number in range [0;250]; Process students drawn.
- Random or chance error is the difference between the sample-value and the true population-value (e.g., 49% vs. 69%, in the above bodyoverweight example)
- Non-sampling errors (e.g., non-response bias) in the census may be considerably larger than in a comparable survey, since surveys are much smaller operations and easier to control.
- Sampling errors-arising from a decision to use a sample rather than entire population
- Unbiased procedure/protocol: (e.g., using the proportion of left-handers from a random sample to estimate the corresponding proportion in the population).
- Cluster sampling- a cluster of individuals/units are used as a sampling unit, rather than individuals.

More terminology ...

- What are some of the non-sampling errors that plague surveys? (non-response bias, question effects, survey format effects, interviewer effects)
- If we take a random sample from one population, can we apply the results of our survey to other populations? (It depends on how similar, in the respect studied, the two populations are. In general- No! This can be a dangerous trend.)
- Are sampling households at random and interviewing people at random on the street valid ways of sampling people from an at random on the street valid ways of sampling people from an urban populat
- Pilot surveys - after prelim investigations and designing the trial survey Q's, we need to get a "small sample checking clearness and ambiguity of the questions, and avoid possible sampling errors (e.g., bias).

Slide 23

Questions ...

- How do the following lead to biases or cause differences in response:
- non-response
\square self-selection
- question effects

■ survey-format effects
■ interviewer effects
\square transferring findings?

Questions ...

- Give an example where non-representative information from a survey may be useful. Nonrepresentative info from surveys may be used to estimate parameters of the actual sub-population which is represented by the sample. E.g., Only about 2% of dissatisfied customers complain (most just avoid using the services), these are the most-vocal reps. So, we can not make valid conclusions about the stereotype of the dissatisfied customer, but we can use this info to tract down changes in levels of complains over years.
- Why is it important to take a pilot survey?
- Give an example of an unsatisfactory question in a questionnaire. (In a telephone study: What time is it?
Do we mean Eastern/Central/Mountain/Pacific?)
Slide 25

The Subject of Statistics

Statistics is concerned with the process of finding out about the world and how it operates -

- in the face of variation and uncertainty
- by collecting and then making sense (interpreting) of data.

The Role of Randomization

Well designed statistical studies employ randomization to avoid subjective and other biases.

- Surveys and observational studies should use random sampling to obtain representative samples.
- Experiments should use random assignment of experimental subjects to treatment groups
\square to ensure comparisons are fair i.e., treatment groups are as similar as possible in every way except for the treatment being used.

"Blocking" vs. "stratification"
"Blocking"
- word used in describing an experimental design
"Stratification"
- used in describing a survey or observational study
- Both refer to idea of only making comparisons within
relatively similar groups of subjects

Non-sampling errors cont.

- Question-wording effects:

Even slight differences in question wording can produce measurable differences in how people respond.

- Interviewer effects:

Different interviewers asking the same questions can tend to obtain different answers.

- Survey format effects:

Factors such as question order, questionnaire layout, self-administered questionnaire or interviewer, can effect the results.

Dealing with errors

- Statistical methods are available for estimating the likely size of sampling errors.
- All we can do with non-sampling errors is to try to minimize them at the study-design stage.

- Pilot survey:

One tests a survey on a relatively small group of people to try to identify any problems with the survey design before conducting the survey proper.

Jargon describing experiments

- Double blind:

Both the subjects and those administering the treatments have been blinded.

- Placebo:

An inert/dummy/fake treatment.

- Placebo effect:

Response caused in human subjects by the idea that they are being treated.

Experimental vs. Observation study

- A researcher wants to evaluate IQ levels are related to person's height. 100 people are are randomly selected and grouped into 5 bins: $[0: 50),[50 ; 100)$, [100:150], [150:200), [200:250] cm in height. The subjects undertook a IQ exam and the results are analyzed.
- Another researcher wants to assess the bleaching effects of 10 laundry detergents on 3 different colors (R,G,B). The laundry detergents are randomly selected and applied to 10 pieces of cloth. The discoloration is finally evaluated.

Experimental vs. Observation study

- For each study, describe what treatment is being compared and what response is being measured to compare the treatments.
- Which of the studies would be described as experiments and which would be described as observational studies?
- For the studies that are observational, could an experiment have been carried out instead? If not, briefly explain why not.
- For the studies that are experiments, briefly discuss what forms of blinding would be possible to be used.
- In which of the studies has blocking been used? Briefly describe what was blocked and why it was blocked.

Mean, Median, Mode, Quartiles, 5\# summary

- The sample mean is the average of all numeric obs's.
- The sample median is the obs. at the index $(n+1) / 2$ (note take avg of the 2 obs's in the middle for fractions like 23.5), of the observations ordered by size (small-to-large)?
- The sample median usually preferred to the sample mean for skewed data?

- Under what circumstances may quoting a single center (be it mean or median) not make sense?(multi-modal)
- What can we say about the sample mean of a qualitative variable? (meaningless)

