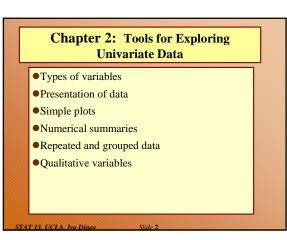
UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences


•Instructor: IVO Dinov, Asst. Prof. In Statistics and Neurology

•<u>Teaching Assistants:</u>

TAT 13. UCLA. Ivo Dinov

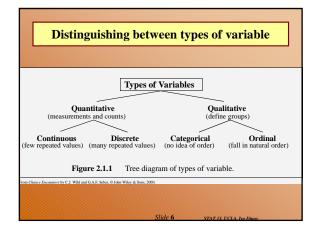
Ming Zheng, Sovia Lau, Tianwei Yu UCLA Statistics

University of California, Los Angeles, Fall 2003 http://www.stat.ucla.edu/~dinov/courses_students.html

TABLE 2.1.1 Data on Male Heart Attack Patients

A subset of the data collected at a Hospital is summarized in this table. Each patient has measurements recorded for a number of variables – ID, Ejection factor (ventricular output), blood systolic/diastolic pressure, etc.

- Reading the table
- Which of the measured variables (age, ejection etc.) are useful in <u>predicting</u> how long the patient may live.
- Are there <u>relationships</u> between these predictors?
- variability & noise in the observations hide the message of the data.


Slide 3 STAT 13 UCLA

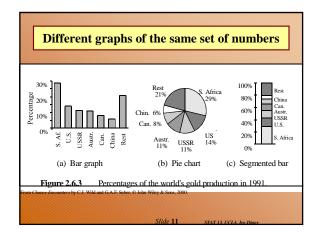
		SYS-	DIA-				OUT-							
ID 390	EJEC 72	VOL 36	131	OCCLU 0	S TEN	TIME 143	0	49 49	SMOKE 2	BET .	59	SURG 0		
279 391	52	74	155	37	63	143	0	54	2	2	68	1		
201 202														
69	1	'AB		2.1	.1	Dat	ta on	Μ	ale l	He	art	Atta	ick P	atie
310 392					10									
311 393							SYS-		DLA	۱-				
70 203		ID	,	EJ	EC		VOL		vo	L	oc	CLU	S 1	EN
394 204 280		390)	-	72		36		13	1		0		0
55 79		279)		52		74		15	5		37		63
205 206 312		391	l		62		52		13	7		33		47
312 80 281		201	l		50		165		32	9		33		30
207 282		202	2		50		47		9	5		0		100
396 208 209		69)		27		124		17	0		77		23
283 210		310)		60		86		21	5		7		50
397 211 398		392	2		72		37		13	2		40		10
284 399		311	1		60		65		16	3		0		40
285 71 286		288	3		59		39		9	4		0		0
212 400		407	7		67		39		11	7		0		73
287 81 813	^a NA	=No	t Av	ailabl	e(mis	sing	data co	o de).						

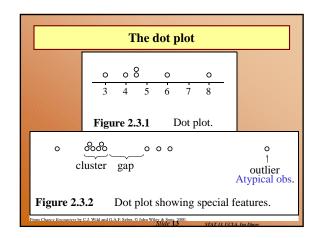
Types of variable

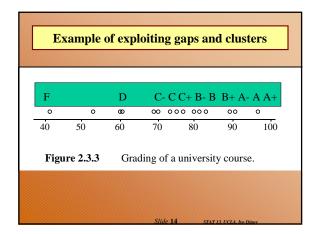
- *Quantitative* variables are *measurements* and counts
 - Variables with *few repeated values* are treated as *continuous*.
 - Variables with *many repeated values* are treated as *discrete*
- *Qualitative* variables (a.k.a. factors or classvariables) describe *group membership*

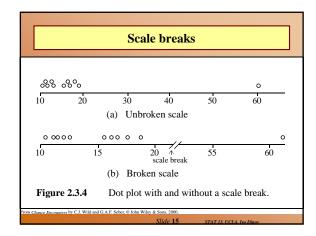
Slide 5 STAT 13, UCLA, Ivo

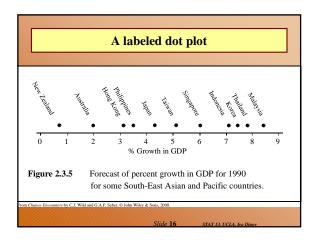
Questions ...

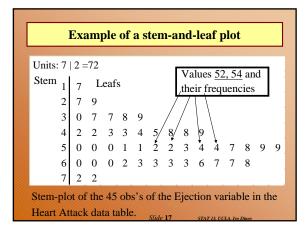

- What is the difference between quantitative and qualitative variables?
- What is the difference between a discrete variable and a continuous variable?
- Name two ways in which observations on qualitative variables can be stored on a computer. (strings/indexes)
- When would you treat a discrete random variable as though it were a continuous random variable?
 Can you give an example? (\$34.45, bill)

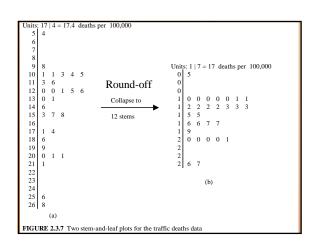

Storing and Reporting Numbers

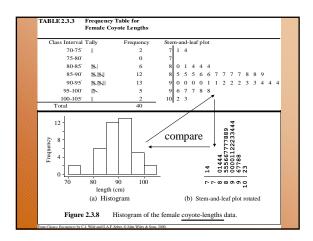

- Round numbers for presentation
- Maintain complete accuracy in numbers to be used in calculations. If you need to round-off, this should be the very last operation ...


	Table	before sin	nplificati	on	
TABLE 2.2.1	Gold Reserves	of Gold-Hol	ding IMF Co	untries	
Country	1970	1975	1980	1985	1990
Belgium	42.01	42.17	34.18	34.18	30.2
Canada	22.59	21.95	20.98	20.11	14.7
France	100.91	100.93	81.85	81.85	81.8
Italy	82.48	82.48	66.67	66.67	66.6
Japan	15.22	21.11	24.23	24.33	24.2
Netherlands	51.06	54.33	43.94	43.94	43.9
Switzerland	78.03	83.2	83.28	83.28	83.2
U.K.	38.52	21.03	18.84	19.03	18.9
U.S.A.	316.34	274.71	264.32	262.65	261.9

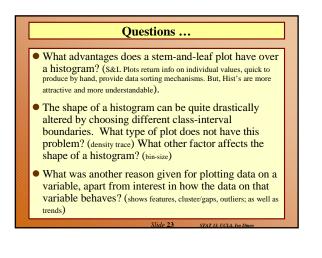

TABLE 2.2	.2 Simplifie	d Table of	Gold Res	erves of I	MFCo	untries
Country	1970	1975	1980	1985	1990	Avera
US	320	270	260	260	260	2
Switzerland	78	83	83	83	83	
France	100	100	82	82	82	
Italy	82	82	67	67	67	
Netherlands	51	54	44	44	44	
Belgium	42	42	34	34	30	
Japan	15	21	24	24	24	
UK	39	21	19	19	19	
Canada	23	22	21	20	15	
Average	83	78	71	71	70	
					-	

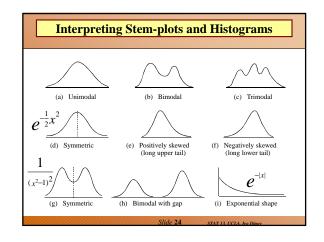


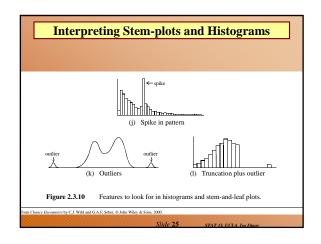


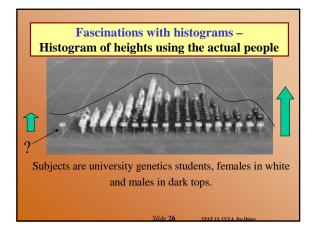


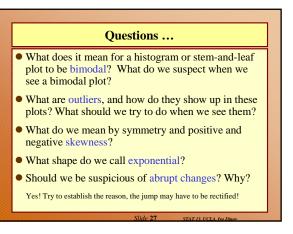


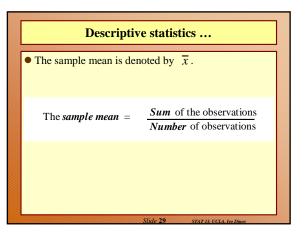

Traffic death-rates data									
	Traini								
TABLE 2.3.1 Traffi	c Death-Rates (per 100,0	00 Population) for 30	Countries						
17.4 Australia	20.1 Austria	19.9 Belgium	12.5 Bulgaria	15.8 Canada					
10.1 Czechoslovakia	13.0 Denmark	11.6 Finland	20.0 France	12.0 E. Germany					
13.1 W. Germany	21.1 Greece	5.4 Hong Kong	17.1 Hungary	15.3 Ireland					
10.3 Israel	10.4 Japan	26.8 Kuwait	11.3 Netherlands	20.1 New Zealand					
10.5 Norway	14.6 Poland	25.6 Portugal	12.6 Singapore	9.8 Sweden					
15.7 Switzerland	18.6 United States	12.1 N. Ireland	12.0 Scotland	10.1England & Wales					
	5 depending on the country (p	rior to reunification of Gen	many)						
Source: Hutchinson [1987,	page 3].								

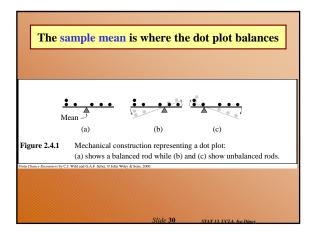


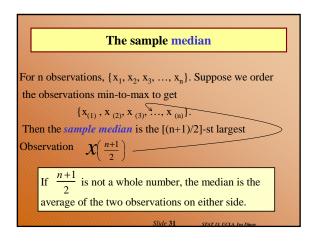

TABLE 2.3.	2 Coy	ote Lengtl	ns Data (e	cm)																
Females																				
93.0	97.0	92.0	101.6	93.0	84.5	1	02.5	5	97	.8	9	1.0		9	8.0		93.	5		91.7
90.2	91.5	80.0	86.4	91.4	83.5		88.0)	71	0.	8	1.3		8	8.5		86.	5		90.0
84.0	89.5	84.0	85.0	87.0	88.0		86.	5	96	0.	8	7.0		9	3.5		93.	5		90.0
85.0	97.0	86.0	73.7																	
Males																				
97.0	95.0	96.0	91.0	95.0	84.5		88.0)	96	.0	9	6.0		8	7.0		95.	0	1	0.00
101.0	96.0	93.0	92.5	95.0	98.5		88.0)	81	.3	9	1.4		8	8.9		86.	4	1	01.6
83.8	104.1	88.9	92.0	91.0	90.0		85.0)	93	.5	7	8.0		10	0.5	1	03.	0		91.0
105.0	86.0	95.5	86.5	90.5	80.0		80.0)												
TABLE 2.3		Frequency Female Co										,	ß						1	
Class Ir	nterval	Tally	Fi	requency		Ster	n-ar	ıd-le	af p	olot			1					A		
	70-75	*		2		7	1	4	-						ь.		. 4	L.4	÷.	
Body	75-80 [.]			0		7														
Douy	80-85	1		6		8	0	1	4	4	4									
length	85-90 ⁻	ЖM		12		8	5	5	5	6	6	7	7	7	7	8	8	9		
0	90-95 [.]	**		13		9	0	0	0	0	1	1	2	2	2	3	3	4	4	4
9	5-100	ĭ⊁-		5		9	6	7	7	8	8									
10	0-105	1		2		10	2	3												
Total				40																

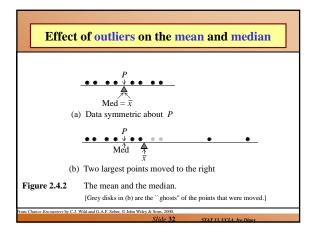


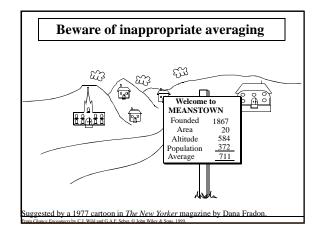











	-	ve stati ograms			iputei	
		STATA	Output	Standar	d deviatio	n
Descriptiv	e Statistic	•			1	
Variable	N N	Mean	Median	TrMean	StDev	SE Mean
age	45	50.133	51.000	50.366	6.092	0.908
Variable	Minimum	Maximum	Q1	Q3		
age	36.000	59.000	46.500	56.000		
<u></u>			Lower qu	artile Up	per quarti	le
<u>.s</u>	umma	<u>rize</u>				

