UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

\bullet Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

-Teaching Assistants:

Ming Zheng, Sovia Lau, Tianwei Yu
UCLA Statistics
University of California, Los Angeles, Fall 2003 http://www.stat.ucla.edu/~dinov/courses_students.html

STAT 13, UCLA, Ivo Dinov Slide 1

Dietary intake of carbohydrate (mg/day) for $\mathrm{N}=5929$ people from a variety of work environments. Standardized histogram plot is unimodal but skewed to the right (high values). Vertical scale is (relative freq.)/(interval width) $=$ $\mathrm{f}_{\mathrm{j}} /\left(\mathrm{N}^{*} \mathrm{~m}\right)$. The proportion of the data in $[\mathrm{a}: \mathrm{b}]$ is the area under the standardized histogram on the range [a: b].

Superposition of a smooth curve (density function) on the standardized histogram (left panel). Area under the density curve on [a: b] = [225: 375] is analytically computed to be: 0.486 (right panel), which is close to the empirically obtained estimate of the area under the histogram on the same interval: 0.483 (left panel).
(c) With approximating curve

Interval endpoints and continuous variables

Recall a continuous variable is one where the domain has no gaps in between the values the variable can take.
In calculations involving a continuous random variable we do not have to worry about whether interval endpoints are included or excluded.

The population mean is the imaginary value of X where the density curve balances
silide 10 sarisicure

Review

- How does a standardized histogram differ from a relative-frequency histogram? raw histogram? (ff/m)
- What graphic feature conveys the proportion of the data falling into a class interval for a standardized histogram? for a relative-frequency histogram?
(area=width . height $=\mathrm{m} f / \mathrm{m}=\mathrm{m}=\mathrm{f} / \mathrm{n})$
- What are the two fundamental ways in which random observations arise?
(Naural phenomena, smplinge experinens - choose a suderent at randon n and use the lotery method to record characteristics, scientific experiments - blood pressure measure)
- How does a density curve describe probabilities?
(The probability that a random obs. falls in [a:b] is the area under the PDF on the same interval.)
Slide 12 STAT 13, UCLA, Ivo Dinov

Finding Help with STATA

- http://www.stat.ucla.edu/~dinov/courses_students.dir /STAT13 Fal101/STAT13 labs.html

Basic method for obtaining probabilities

- Sketch a Normal curve, marking the mean and other values of interest.
- Shade the area under the curve that gives the desired probability.
- Devise a way of getting the desired area from lowertail areas.
- Obtain component lower-tail probabilities from a computer program

The density curve

The probability distribution of a continuous variable is represented by a density curve.
$■$ Probabilities are represented by areas under the curve, Uthe probability that a random observation falls between a and b equal to the area under the density curve between a and b.
■ The total area under the curve equals 1 .
\square The population (or distribution) mean $\mu_{X}=\mathrm{E}(X)$, is where the density curve balances.

- When we calculate probabilities for a continuous random variable, it does not matter whether interval endpoints are included or excluded.

Probabilities

- Computer programs provide lower-tail (or cumulative) probabilities of the form $\operatorname{pr}(X \leq x)$
\square We give the program the x-value; it gives us the probability.
- Computer programs also provide inverse lower-tail probabilities (or quantiles)
- We give the program the probability; it gives us the x value.
- When calculating probabilities, we shade the desired area under the curve and then devise a way of obtaining it via lower-tail probabilities.

Standard Units

The z-score of a value a is

- the number of standard deviations a is away from the mean
- positive if a is above the mean and negative if a is below the mean.
The standard Normal distribution has $\mu=0$ and $\sigma=0$.
- We usually use Z to represent a random variable with a standard Normal distribution.

Ranges, extremes and z-scores

Central ranges:

- $\mathrm{P}(-z \leq Z \leq z)$ is the same as the probability that a random observation from an arbitrary Normal distribution falls within z SD's either side of the mean.

Extremes:

■ $\mathrm{P}(Z \geq z)$ is the same as the probability that a random observation from an arbitrary Normal distribution falls more than z standard deviations above the mean.

- $\mathrm{P}(Z \leq-z)$ is the same as the probability that a random observation from an arbitrary Normal distribution falls more than z standard deviations below the mean.

Combining Random Quantities

Variation and independence:

- No two animals, organisms, natural or man-made objects are ever identical.
- There is always variation. The only question is whether it is large enough to have a practical impact on what you are trying to achieve.
- Variation in component parts leads to even greater variation in the whole.

Formulas

- For a constant number $a, \mathrm{E}(a X)=a \mathrm{E}(X)$
and $\operatorname{SD}(a X)=|a| \operatorname{SD}(X)$.
- Means of sums and differences of random variables act in an obvious way
- the mean of the sum is the sum of the means
- the mean of the difference is the difference in the means
- For independent random variables, (cf. Pythagorean theorem), $\mathrm{S} D\left(X_{1}+X_{2}\right)=\mathrm{S} D\left(X_{1}-X_{2}\right)=\sqrt{\mathrm{S} D\left(X_{1}\right)^{2}+\mathrm{S} D\left(X_{2}\right)^{2}}$ $E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)$
[ASIDE: Sums and differences of independent Normally distributed random variables are also Normally distributed]

Example

Assumption: Crime rate for individuals is independent of family relations!

- Let $\mathrm{X}=\mathrm{RV}$ representing the number of crimes an average individual commits in a 5 yr span.
- Let X1 and X2 be the crime rates of a husband and the wife in one family. What is the expected crime rate for this family given that $\mathrm{E}(\mathrm{X})=1.4$ and $\mathrm{SD}(\mathrm{X})$ $=0.7$?
$\mathrm{S} D\left(X_{1}+X_{2}\right)=\mathrm{SD}\left(X_{1}-X_{2}\right)=\sqrt{\mathrm{S} D\left(X_{1}\right)^{2}+\mathrm{SD}\left(X_{2}\right)^{2}}$
$E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)$
Slide 53 STAT 13, UCLA, Ivo Dinov

Example

- Assumption: Crime rate for individuals is independent of family relations!
- If $\mathrm{X} 1+\mathrm{X} 2=3 \mathrm{X}-1$, dependent case
- X 1 and X 2 are independent (family relation)
- Suppose $\mathrm{X} 1+\mathrm{X} 2=5$, is this atypical?
$\mathrm{S} D\left(X_{1}+X_{2}\right)=\mathrm{S} D\left(X_{1}-X_{2}\right)=\sqrt{\mathrm{S} D\left(X_{1}\right)^{2}+\mathrm{S} D\left(X_{2}\right)^{2}}$
$E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)$

Summary
1. The Standard Normal curve is symmetric w.r.t. the origin $(0,0)$ and
the total area under the curve is 100% (1 unit)
2. Std units indicate how many SD's is a value below $(-) /$ /above (+) the
mean
3. Many histograms have roughly the shape of the normal curve (bell-
shape)
4. If a list of numbers follows the normal curve the percentage of
entries falling within each interval is estimated by: 1 . Converting
the interval to StdUnits and, 2. Computing the corresponding area
under the normal curve (Normal approximation)
5. A histogram which follows the normal curve may be reconstructed
just from $\left(\mu, \sigma^{2}\right)$ mean and variance=std_dev ${ }^{2}$

