

Sample size -- mean

• Sample size for a desired margin of error:

For a margin of error no greater than *m*, use a sample size of approximately

$$n = \left(\frac{z\boldsymbol{\sigma}^*}{m}\right)^2$$

- σ^* is an estimate of the variability of individual observations
- z is the multiplier appropriate for the confidence level

Slide 30 STAT 13, UCLA, Ivo Dinov

Chapter 8 Summary

Confidence intervals

- We construct an interval estimate of a parameter to summarize our level of uncertainty about its true value.
- The uncertainty is a consequence of the sampling variation in point estimates
- If we use a method that produces intervals which contain the true value of a parameter for 95% of samples taken, the interval we have calculated from our data is called a 95% confidence interval for the parameter.
- Our confidence in the particular interval comes from the fact that the method works 95% of the time (for 95% CI's).

Slide 32 STAT 13. UCLA, Ivo Dinov

			Standard error	
Parameter		Estimate	of estimate	df
Mean,	μ	\overline{x}	$\frac{s_x}{\sqrt{n}}$	n-1
Proportion,	p	\hat{p}	$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	∞
Difference in means,	μ_1 - μ_2	$\overline{x}_1 - \overline{x}_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	Min(n ₁ -1,n ₂ -1)
Difference in proportions,	p ₁ -p ₂	$\hat{p}_1 - \hat{p}_2$	(see Table 8.5.5)	∞

If = ∞ means we use a muitiplier obtained from the Normal(0,1) distribution.
21s work well when sample sizes are big enough to satisfy the 10% rule in Appendix A3.
Applies to means from independent samples.
If given is a conversative approximation for hand calculation (see Section 10.2).

Slide 33 STAT IS UCIA Iva Din

Summary cont.

For a great many situations,

an (approximate) confidence interval is given by

estimate ± t standard errors

The size of the multiplier, t, depends both on the desired confidence level and the degrees of freedom (df).

[With proportions, we use the Normal distribution (i.e., $df=\infty$) and it is conventional to use z rather than t to denote the multiplier.]

 The margin of error is the quantity added to and subtracted from the estimate to construct the interval (i.e. t standard errors).

Slide 34 STAT 13 UCLA Inc Dinor

Summary cont.

- If we want greater confidence that an interval calculated from our data will contain the true value, we have to use a wider interval.
- To double the precision of a 95% confidence interval (i.e.halve the width of the confidence interval), we need to take 4 times as many observations.

Slide 35 STAT IS UCLA Inc Dina