UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences
-Instructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology
-Teaching Assistants:
Ming Zheng, Sovia Lau, Tianwei Yu
UCLA Statistics
University of California, Los Angeles, Fall 2003 http://www.stat.ucla.edu/~dinov/courses_students.html Slide 1

A 95\% confidence interval

- A type of interval that contains the true value of a parameter for 95% of samples taken is called a 95% confidence interval for that parameter, the ends of the CI are called confidence limits.
- (For the situations we deal with) a confidence interval (CI) for the true value of a parameter is given by

$$
\text { estimate } \pm t \text { standard errors }
$$

TABLE 8.1.1 Value of the Multiplier, t, for a 95% CI

$d f:$	7	8	9	10	11	12	13	14	15	16	17
$t:$	2.365	2.306	2.262	2.228	2.201	2.179	2.160	2.145	2.131	2.120	2.110
$d f:$	18	19	20	25	30	35	40	45	50	60	∞
$t:$	2.101	2.093	2.086	2.060	2.042	2.030	2.021	2.014	2.009	2.000	1.960

Why \uparrow in sample-size \downarrow CI?

Confidence Interval for the true (population) mean μ : sample mean $\pm t$ standard errors or $\quad \bar{x} \pm t \operatorname{se}(\bar{x})$, where $\operatorname{se}(\bar{x})=\frac{s_{x}}{\sqrt{n}}$ and $d f=n-1$

Difference between means

Confidence Interval for a difference between population means $\left(\mu_{t}-\mu_{2}\right)$:

Difference between sample means

$\pm t$ standard errors of the difference
or

SE's for the 3 cases of differences in proportion

(a) Proportions from two independent samples of sizes n_{1} and n_{2}, respectively

$$
\operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

(b) One sample of size \mathbf{n}, several response categories

$$
\operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1}+\hat{p}_{2}-\left(\hat{p}_{1}-\hat{p}_{2}\right)^{2}}{n}}
$$

c) One sample of size \mathbf{n}, many Yes/No items

Sample size - proportion

- For a 95\% CI, margin $=1.96 \times \sqrt{\hat{p}(1-\hat{p}) / n}$
- Sample size for a desired margin of error:

For a margin of error no greater than m, use a sample size of approximately

$$
n=\left(\frac{z}{m}\right)^{2} \times p^{*}\left(1-p^{*}\right)
$$

- p^{*} is a guess at the value of the proportion -- err on the side of being too close to 0.5
- z is the multiplier appropriate for the confidence level
- m is expressed as a proportion (between 0 and 1), not a percentage (basically, What's n, so that $m>=$ margin?)

Random sample of 1,000 people is taken from 5 countries to assess efficacy, cost and quality of health care

(Table entry is \% agreeing)	Australia Canada	N.Z.	UK	U.S.
Difficulties getting needed care	15 20	$\left(\begin{array}{l} 18 \\ 38 \\ 32 \\ 12 \end{array}\right)$	15	28
Recent changes will harm quality	$28 \quad 46$		12	18
System should be rebuilt	$30 \quad 23$		14	33
No bills not covered by insurance	$7 \quad 27$		44	8
2 independent Samples ($\mathbf{n}_{1}, \mathbf{n}_{2}$) compare proportions of people agreeing to a particular health care statement.	1 Sample, many response categories compare proportions of New Zealanders either agreeing (Yes) or disagreeing (No) with a SET of statements.			
Slide 26 STAT I3, UCLA, voo Dinov				

where $\quad \hat{q}_{1}=1-\hat{p}_{1}$ nd $\quad \hat{q}_{2}=1-\hat{p}_{2}$

Summary cont.

- For a great many situations,
an (approximate) confidence interval is given by

$$
\text { estimate } \pm t \text { standard errors }
$$

The size of the multiplier, t, depends both on the desired confidence level and the degrees of freedom $(d f)$.
[With proportions, we use the Normal distribution (i.e., $d f=\infty$) and it is conventional to use z rather than t to denote the multiplier.]

- The margin of error is the quantity added to and subtracted from the estimate to construct the interval (i.e. t standard errors).

Slide 34 STAT 13, UCLA, voo Dinov

- If we want greater confidence that an interval calculated from our data will contain the true value, we have to use a wider interval.
- To double the precision of a 95% confidence interval (i.e.halve the width of the confidence interval), we need to take 4 times as many observations.

Summary cont.

