# STAT 110 A, Probability \& Statistics for Engineers I <br> UCLA Statistics, Spring 2003 

http://www.stat.ucla.edu/~dinov/courses_students.html

## SOLOTION HOMEWORK 2

## Due Date: Friday, Apr. 25, 2003

http://www.stat.ucla.edu/\~dinov/courses_students.dir/03/Spr/Stat110A.dir/HWs.dir/HW1.html
Assignment 2 Solution (There is a total of 100 points for this assignment.)

## Problem 1

a) $(5)(4)=20$ (4 points)
b) $(5)(4)(3)=60 \quad(4$ points $)$
c) $\binom{5}{2}=\frac{5!}{2!3!}=10 \quad(4$ points $)$

Problem2
a) $\binom{20}{5}=\frac{20!}{5!15!}=15504 \quad$ (3 points)
b) $\binom{8}{4}\binom{12}{1}=840 \quad$ (3 points)
c) $\binom{8}{4}\binom{12}{1} /\binom{20}{5}=840 / 15504=0.0542 \quad$ (3 points)
d) $\mathrm{P}($ at least 4$)=\mathrm{P}(\operatorname{exactly} 4)+\mathrm{P}(\operatorname{exactly} 5)=\binom{8}{4}\binom{12}{1} /\binom{20}{5}+\binom{8}{5}\binom{12}{0} /\binom{20}{5}$

$$
=0.0542+0.0036=0.0578 \quad(3 \text { points })
$$

## Problem 3

a) If the A's are distinguishable from one another and similarly for the B's, C's, and D's, then there are 12 ! possible chain molecules; otherwise, there are $\frac{12!}{3!3!3!3!}=369600$
possible chain molecules. (8 points)
b) Think of the group of 3 A's as a single molecule and similarly for the B's, C's, and D's. Then there are 4 ! ways to order these entities. Thus,
$\mathrm{P}($ all together $)=\frac{4!}{369600}=0.00006494 \quad(8$ points $)$

## Problem 4

a) $\mathrm{P}(\mathrm{A})=0.15+0.10+0.10+0.10=0.45 \quad$ (2 points)
$\mathrm{P}(\mathrm{B})=0.10+0.15=0.25 \quad$ ( 2 points)
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.10 \quad(2$ points $)$
b) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) / \mathrm{P}(\mathrm{B})=(0.10) /(0.25)=0.40 \quad$ ( 2 points)

Knowing that the car is black, the probability that it has automatic transmission is 0.40 .
(1 point)
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) / \mathrm{P}(\mathrm{A})=(0.10) /(0.45)=0.2222 \quad(2$ points $)$
Knowing that the car has automatic transmission, the probability that it is black is
0.2222. (1 point)
c) $\mathrm{P}(\mathrm{A} \mid \mathrm{C})=\mathrm{P}(\mathrm{A} \cap \mathrm{C}) / \mathrm{P}(\mathrm{C})=(0.15) /(0.30)=0.50 \quad(2$ points $)$

The probability that car has automatic transmission given that the car is white is
0.50. (1 point)
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{C}^{\prime}\right)=\mathrm{P}\left(\mathrm{A} \cap \mathrm{C}^{\prime}\right) / \mathrm{P}\left(\mathrm{C}^{\prime}\right)=(0.15) /(0.70)=0.2143 \quad(2$ points $)$
Knowing that the car is not white, the probability that it has automatic transmission is 0.2143. (1 point)

## Problem 5

a) $\mathrm{P}($ both are O$)=(0.44)(0.44)=0.1936 \quad$ (5 points)
b) $\mathrm{P}($ two individuals match $)=0.42^{2}+0.10^{2}+0.04^{2}+0.44^{2}=0.3816 \quad$ ( 5 points)

## Problem 6

Let $\mathrm{A}_{1}=$ older pump fails, $\mathrm{A}_{2}=$ newer pump fails, and $\mathrm{X}=\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2}\right)$. Then
$P\left(A_{1}\right)=0.10+X \quad$ (3 points for equation)
$\mathrm{P}\left(\mathrm{A}_{2}\right)=0.05+\mathrm{X} \quad$ (3 points for equation)
$\mathrm{X}=\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right) \times \mathrm{P}\left(\mathrm{A}_{2}\right)=(0.10+\mathrm{X})(0.05+\mathrm{X}) \quad(4$ points for equation $)$
The resulting quadratic equation has roots $\mathrm{X}=0.0059$ ( 3 points) and $\mathrm{X}=0.8441$ ( 3 points). Hopefully the smaller root is the actual probability of system failure.

## Problem 7

Let q denote the probability that a rivet is defective.

$$
\begin{aligned}
& \text { a) } \begin{aligned}
\mathrm{P}(\text { seam need rework }) & =0.14=1-\mathrm{P}(\text { seam doesn't need rework }) \\
& =1-\mathrm{P}(\text { no rivets are dective }) \\
& =1-(1-\mathrm{q})^{25} \quad(4 \text { points for equation })
\end{aligned} \\
& \begin{aligned}
\mathrm{q}=0.00601 \quad \text { (4 points) }
\end{aligned} \\
& \text { b) } \begin{aligned}
&\left.0.10=1-(1-\mathrm{q})^{25} \quad \text { (4 points for equation }\right) \\
& \mathrm{q}=0.00421 \quad(4 \text { points })
\end{aligned}
\end{aligned}
$$

