STAT 110 A, Probability \& Statistics for Engineers I UCLA Statistics, Spring 2003

http://www.stat.ucla.edu/~dinov/courses students.html

HOMEWORK 3

Due Date: Friday, May 09, 2003, turn in after lecture

Correct solutions to any four problems carry full credit, but you must complete problem HW3_5 See the HW submission rules. On the front page include the following header.

- (HW_3_1) [Sec. 3.1, \#4] Let $\boldsymbol{X}=$ the number of nonzero digits in a randomly selected zip code. What are the possible values of \boldsymbol{X} ? Give three possible outcomes and their associated \boldsymbol{X} values.
- (HW_3_2) [Sec. 3.2, \#12] Let $\boldsymbol{X}=$ the number of tires on a randomly selected automobile that are underinflated.
(a) Which of the following three $\mathrm{p}(\mathrm{x})$ functions is a legitimate probability mass function for \boldsymbol{X}, and what are the other two not allowed?

x	0	1	2	3	4
$\mathrm{p}_{1}(\mathrm{x})$	0.3	0.2	0.1	0.05	0.05
$\mathrm{p}_{2}(\mathrm{x})$	0.4	0.1	0.1	0.1	0.3
$\mathrm{p}_{3}(\mathrm{x})$	0.4	0.1	0.2	0.1	0.3

(b) For the legitimate pmf of part (a), compute $\mathrm{P}(2 \leq \boldsymbol{X} \leq 4), \mathrm{P}(\boldsymbol{X} \leq 2)$, and $\mathrm{P}(\boldsymbol{X} \neq 0)$.
(c) If $\mathrm{p}(\mathrm{x})=\mathrm{c}(5-\mathrm{x})$ for $\mathrm{x}=0,1,2,3,4$, what is the correct value of c ?

- (HW_3_3) [Sec. 3.2, \#13] A mail-order computer business has six telephone lines. Let \boldsymbol{X} denote the number of lines in use at a specified time. Suppose the pmf of \boldsymbol{X} is as given in the accompanying table. Calculate the probability of each of the following probabilities:

x	0	1	2	3	4	5	6
$\mathrm{p}(\mathrm{x})$	0.10	0.15	0.20	0.25	0.20	0.06	0.04

(a) $\{$ at most 3 lines are in use $\}$
(b) \{fewer than 3 lines are in use $\}$
(c) \{at least 3 lines are in use $\}$
(d) \{between 2 and 5 lines, inclusive, are in use\}
(e) \{between 2 and 4 lines, inclusive, are not in use\}
(f) \{at least 4 lines are not in use $\}$

- (HW_3_4) [Sec. 3.3, \#28] The pmf for $\boldsymbol{X}=$ the number of major defects on a randomly selected applicance of a certain type is given in the table below. Compute the following:

x	0	1	2	3	4
$\mathrm{p}(\mathrm{x})$	0.08	0.15	0.45	0.27	0.05

(a) $\mathrm{E}(\boldsymbol{X})$, the expected value of the R.V. \boldsymbol{X}.
(b) $\mathrm{V}(\boldsymbol{X})$, the variance of \boldsymbol{X}.
(c) $\mathrm{SD}(\boldsymbol{X})$, the standard deviation of \boldsymbol{X}.
(d) $\mathrm{V}(\boldsymbol{X})$, using the shortcut formula, $\mathrm{V}(\boldsymbol{X})=\mathrm{E}\left(\boldsymbol{X}^{2}\right)-\mu^{2}$. Should equal the answer in part (b).

- (HW_3_5) [Sec. 3.3, \#31] An appliance dealer sells three different models of upright freezers having $13.5 \mathrm{ft}^{3}, 15.9 \mathrm{ft}^{3}$, and $19.1 \mathrm{ft}^{3}$ (cubic feet) of storage space, respectively. Let $\boldsymbol{X}=$ the amount of storage space purchased by the next customer to buy a freezer. Suppose that \boldsymbol{X} has pmf.

x	13.5	15.9	19.1
$\mathrm{p}(\mathrm{x})$	0.2	0.5	0.3

(a) Compute $\mathrm{E}(\boldsymbol{X}), \mathrm{E}\left(\boldsymbol{X}^{2}\right), \mathrm{E}\left(\boldsymbol{X}^{3}\right)$, and $\mathrm{V}(\boldsymbol{X})$.
(b) If the price of a freezer having capacity $\boldsymbol{X} \mathrm{ft}^{3}$ is $25 \mathrm{X}-8.5$, what is the expected price paid by the next customer to buy a freezer?
(c) What is the variance of the price $25 \boldsymbol{X}-8.5$ paid by the next customer? Interpret this value!
(d) Suppose that although the rated capacity of a freezer is \boldsymbol{X}, the actual capacity is $\mathrm{h}(\boldsymbol{X})$ $=\boldsymbol{X}-0.01 \boldsymbol{X}^{2}$, slightly under the advertised space. What is the expected actual capacity of the freezer purchased by the next customer?
\square
\qquad
\qquad
turday, April 26, 2003 14:21:42 by dinov@stat.ucla.edu.

Ivo D. Dinov, Ph.D., Departments of Statistics and Neurology, UCLA School of Medicine ?

le
14:21:42 2003 dinov@stat.ucla.edu. \qquad
\qquad
-正

