# STAT 110 A, Probability \& Statistics for Engineers I <br> UCLA Statistics, Spring 2003 

## http://www.stat.ucla.edu/~dinov/courses students.html

## SOLOTION HOMEWORK 3

## Due Date: Friday, May 09, 2003

http://www.stat.ucla.edu/\~dinov/courses_students.dir/03/Spr/Stat110A.dir/HWs.dir/HW3.html
Assignment 3 Solution (There is a total of 100 points for this assignment.)

## Problem 1

There is no 00000 , nor any zip codes with four zeros. Thus possible $X$ values are $2,3,4$, and 5 . ( 4 points) $\mathrm{X}=0$ for 15213 ( 4 points), $\mathrm{X}=4$ for 44074 ( 4 points), and $\mathrm{X}=3$ for 90024 . ( 4 points) (Any other examples are also okay.)

## Problem 2

a) $\sum p(x) \neq 1$ for $1^{\text {st }}$ and $3^{\text {rd }} \mathrm{p}(\mathrm{x})$. (4 points)
b) $\mathrm{P}(2 \leq X \leq 4)=\mathrm{p}(2)+\mathrm{p}(3)+\mathrm{p}(4)=0.5$ (4 points)
$\mathrm{P}(X \leq 2)=\mathrm{p}(0)+\mathrm{p}(1)+\mathrm{p}(2)=0.6$ (4 points)
$\mathrm{P}(X \neq 0)=1-\mathrm{p}(0)=0.6$ (4 points)
c) $\sum_{x=0}^{4} p(x)=\mathrm{c}[(5-0)+(5-1)+(5-2)+(5-3)+(5-4)]=1 \Rightarrow \mathrm{c}=\frac{1}{15} \quad$ (4 points)

## Problem 3

a) $\mathrm{P} X \leq 3)=\mathrm{p}(0)+\mathrm{p}(1)+\mathrm{p}(2)+\mathrm{p}(3)=0.10+0.15+0.20+0.25=0.70 \quad$ (4 points)
b) $\mathrm{P}(X<3)=\mathrm{P}(x \leq 2)=\mathrm{p}(0)+\mathrm{p}(1)+\mathrm{p}(2)=0.45$ (4 points)
c) $\mathrm{P}(3 \leq X)=\mathrm{p}(3)+\mathrm{p}(4)+\mathrm{p}(5)+\mathrm{p}(6)=0.55$ (4 points)
d) $\mathrm{P}(2 \leq X \leq 5)=\mathrm{p}(2)+\mathrm{p}(3)+\mathrm{p}(4)+\mathrm{p}(5)=0.71$ (4 points)
e) The number of lines not is use is $6-X$, so $6-X=2$ is equivalent to $X=4,6-X=3$ to $\mathrm{x}=3$, and $6-\mathrm{x}=4$ to $\mathrm{x}=2$. Thus $\mathrm{P}(2 \leq X \leq 4)=\mathrm{p}(2)+\mathrm{p}(3)+\mathrm{p}(4)=0.65$ (4 points)
f) $6-\mathrm{X} \geq 4$ if $6-4 \geq \mathrm{X}$, ie, $\mathrm{X} \leq 2$, and $\mathrm{P}(X \leq 2)=0.45$ (4 points)

Problem 4
a) $\mathrm{E}(\mathrm{X})=\sum_{x=0}^{4} x p(x)=(0)(0.08)+(1)(0.15)+(2)(0.45)+(3)(0.27)+(4)(0.05)$

$$
=2.06(4 \text { points })
$$

b) $\mathrm{V}(\mathrm{X})=\sum_{x=0}^{4}(x-2.06)^{2} p(x)=(0-2.06)^{2}(0.08)+\ldots+(4-2.06)^{2}(0.05)$

$$
=0.9364 \quad \text { (4 points) }
$$

c) $\sigma_{x}=\sqrt{0.9364}=0.9677 \quad$ (4 points)
d) $\mathrm{V}(\mathrm{X})=\left[\sum_{x=0}^{4} x^{2} p(x)\right]-(2.06)^{2}=5.18-4.2436=0.9364 \quad$ (4 points)

## Problem 5

a) $\mathrm{E}(\mathrm{X})=(13.5)(0.2)+(15.9)(0.5)+(19.1)(0.3)=16.38 \quad$ (4 points)

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{X}^{2}\right)=(13.5)^{2}(0.2)+(15.9)^{2}(0.5)+(19.1)^{2}(0.3)=272.298 \quad(4 \text { points }) \\
& \mathrm{V}(\mathrm{X})=272.298-(16.38)^{2}=3.9936 \quad(4 \text { points })
\end{aligned}
$$

b) $\mathrm{E}(25 \mathrm{X}-8.5)=25 \mathrm{E}(\mathrm{X})-8.5=(25)(16.38)-8.5=401 \quad$ (4 points)
c) $\mathrm{V}(25 \mathrm{X}-8.5)=\mathrm{V}(25 \mathrm{X})=(25)^{2} \mathrm{~V}(\mathrm{X})=(625)(3.9936)=2496 \quad(4$ points $)$
d) $\mathrm{E}[\mathrm{h}(\mathrm{X})]=\mathrm{E}\left[\mathrm{X}-0.01 \mathrm{X}^{2}\right]=\mathrm{E}(\mathrm{X})-0.01 \mathrm{E}\left(\mathrm{X}^{2}\right)=16.38-2.72=13.66$ (4 points)

