UCLA STAT 110 A

Applied Probability \& Statistics for

 Engineers
- Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistant: Maria Chang, UCLA Statistics

University of California, Los Angeles, Spring 2003
http://www.stat.ucla.edu/~dinov/

Slide 1

Frequency Distributions- damaged boxes
Relative frequency for type \mathbf{A} is: $\frac{16}{1664}=0.0096$
Percentage for type A is: $\frac{16}{1664} \times 100=0.96 \approx 1$
percent.
The usefulness of relative frequencies and percentages is clear: for example, it is easily seen that corner gouge
accounts for 59% of the total number of damages.

Chapters 3 - Discrete Variables, Probabilities, CLT

- Random Variables (RV's
- Probability Density Functions (PDF's) for discrete RV's
-Binomial, NegativeBinomial, Geometric,
- Hypergeometric, Poisson distributions

Frequency Distributions- damaged boxes

The frequency distribution of a variable is often presented graphically as a bar-chart/bar-plot. For example, the data in the frequency table above can be shown as:

The vertical axis can be frequencies or relative ${ }^{\circ}{ }^{\prime \prime}$ frequencies or percentages. On the horizontal axis all boxes should have the same width leave gaps between the boxes (because there is no connection between them) the boxes can be in any order.

Experiments, Models, RV's

- An experiment is a naturally occurring phenomenon, a scientific study, a sampling trial or a test., in which an object (unit/subject) is selected at random (and/or treated at random) to observe/measure different outcome characteristics of the process the experiment studies.
- Model - generalized hypothetical description used to analyze or describe a phenomenon.
- A random variable is a type of measurement taken on the outcome of a random experiment.

Stopping at one of each or $\underline{3}$ children

Sample Space - complete/unique description of the possible outcomes from this experiment.

Outcome	GGG	GGB	GB	BG	BBG	BBB
Probability	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

- For R.V. $\mathrm{X}=$ number of girls, we have

\boldsymbol{X}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\operatorname{pr}(x)$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

Bernoulli Trials

- A Bernoulli trial is an experiment where only two possible outcomes are possible ($0 / 1$).
- Examples:
- Coin tosses
- Computer chip (0/1) signal.
- Poll supporters/opponents; yes/no; for/against.

Sampling from a finite population Binomial Approximation

If we take a sample of size n

- from a much larger population (of size N)
- in which a proportion p have a characteristic of interest, then the distribution of \boldsymbol{X}, the number in the sample with that characteristic,
- is approximately $\operatorname{Binomial}(n, p)$.
- (Operating Rule: Approximation is adequate if $n / N<0.1$.)
- Example, polling the US population to see what proportion is/has-been married.

Binomial Probabilities -
the moment we all have been waiting for!

- Suppose $\mathrm{X} \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$, then the probability
$P(X=x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}, \quad 0 \leq x \leq n$
- Where the binomial coefficients are defined by
$\binom{n}{x}=\frac{n!}{(n-x)!x!}, \quad n!=1 \times 2 \times 3 \times \ldots \times(n-1) \times n$

Binomial Formula with examples

- Does the Binomial probability satisfy the requirements?

$$
\Sigma_{x} P(X=x)=\Sigma_{x}\binom{n}{x} p^{x}(1-p)^{(n-x)}=(\mathrm{p}+(1-\mathrm{p}))^{\mathrm{n}}=1
$$

- Explicit examples for $\mathrm{n}=2$, do the case $\mathrm{n}=3$ at home!

$$
\sum_{x=0}^{2}\binom{2}{x} p^{x}(1-p)^{(2-x)}=\{\text { Three terms in the sum }
$$

$\binom{2}{0} p^{\circ}(1-p)^{2}+\binom{2}{1} p^{\prime}(1-p)^{\prime}+\binom{2}{2} p^{2}(1-p)^{0}=$

$$
\begin{aligned}
& 1 \times 1 \times(1-p)^{2}+2 \times p \times(1-p)+1 \times p^{2} \times 1=\left\{\begin{array}{l}
\text { quadratic- } \\
\text { expansion } \\
\text { formula }
\end{array}\right. \\
& (p+(1-p))^{2}=1
\end{aligned}
$$

Examples - Birthday Paradox

- The Birthday Paradox: In a random group of N people, what is the change that at least two people have the same birthday?
- E.x., if $\mathrm{N}=23, \mathrm{P}>0.5$. Main confusion arises from the fact that in real life we rarely meet people having the same birthday as us, and we meet more than 23 people.
- The reason for such high probability is that any of the 23 people can compare their birthday with any other one, not just you comparing your birthday to anybody else's.
- There are N-Choose- $2=20^{*} 19 / 2$ ways to select a pair or people. Assume there are 365 days in a year, P (one-particular-pair-same-B-day) $=1 / 365$, and
- $\mathrm{P}($ one-particular-pair-failure $)=1-1 / 365 \sim 0.99726$.
- For $\mathrm{N}=20,20$-Choose- $2=190 . \mathrm{E}=\{$ No 2 people have the same birthday is the event all 190 pairs fail (have different birthdays) $\}$, then $\mathrm{P}(\mathrm{E})=\mathrm{P}(\text { failure })^{190}=0.99726^{190}=0.59$.
- Hence, $\mathrm{P}($ at-least-one-success $)=1-0.59=0.41$, quite high.
- Note: for $\mathrm{N}=42 \rightarrow \mathrm{P}>0.9$..

Expected values

- The game of chance: cost to play: $\$ 1.50$; Prices $\{\$ 1, \$ 2, \$ 3\}$, probabilities of winning each price are $\{0.6,0.3,0.1\}$, respectively.
- Should we play the game? What are our chances of winning/loosing?

Prize (8)	x	1	2	3	
Probability	pr(x)	0.6	0.3	0.1	
What we would "expect" from 100 games				add across row	
Number of games won		0.6×100	0.3×100	0.1×100	\downarrow
\$ won		$1 \times 0.6 \times 100$	$2 \times 0.3 \times 100$	$3 \times 0.1 \times 100$	Sum
Total prize money $=$ Sum;		$\begin{aligned} \text { Average prize money }= & \text { Sum } / 100 \\ & =1 \times 0.6+2 \times 0.3+3 \times 0.1 \\ & =1.5 \end{aligned}$			
Theoretically Fair Game: price to play EQ the expected return!					

Definition of the expected value, in general.

The expected value:
$\mathrm{E}(\mathrm{X})=\sum_{\text {all } x} x \mathrm{P}(x)\left(=\int_{\text {all } X} x \mathrm{P}(x) d x\right)$
$=$ Sum of (value times probability of value)

The expected value and population mean

$\boldsymbol{\mu}_{x}=\mathbf{E}(\boldsymbol{X})$ is called the mean of the distribution of X.
$\boldsymbol{\mu}_{X}=\mathbf{E}(\boldsymbol{X})$ is usually called the population mean.
$\boldsymbol{\mu}_{\mathrm{x}}$ is the point where the bar graph of $\mathrm{P}(X=x)$ balances.

Linear Scaling (affine transformations) $a X+b$

For any constants a and b, the expectation of the RV $a \boldsymbol{X}+b$ is equal to the sum of the product of a and the expectation of the RV X and the constant b.

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b
$$

And similarly for the standard deviation (b, an additive factor, does not affect the SD).

$$
\operatorname{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \operatorname{SD}(\boldsymbol{X})
$$

Example:

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})
$$

1. $\mathrm{X}=\{-1,2,0,3,4,0,-2,1\} ; P(X=x)=1 / 8$, for each x
2. $\mathrm{Y}=2 \mathrm{X}-5=\{-7,-1,-5,1,3,-5,-9,-3\}$
3. $E(X)=$
4. $\mathrm{E}(\mathrm{Y})=$
5. Does $\mathrm{E}(\mathbf{X})=2 \mathrm{E}(\mathbf{X})-\mathbf{5}$?
6. Compute $\operatorname{SD}(\mathrm{X}), \mathrm{SD}(\mathrm{Y})$. Does $\mathrm{SD}(\mathrm{Y})=2 \mathrm{SD}(\mathrm{X})$?

Linear Scaling (affine transformations) $a X+b$

And why do we care?

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})
$$

-E.g., say the rules for the game of chance we saw before change and the new pay-off is as follows: $\{\$ 0, \$ 1.50, \$ 3\}$, with probabilities of $\{0.6,0.3,0.1\}$, as before. What is the newly expected return of the game? Remember the old expectation was equal to the entrance fee of $\$ 1.50$, and the game was fair!

$$
\begin{gathered}
\mathbf{Y}=\mathbf{3}(\mathbf{X}-\mathbf{1}) \mathbf{2} \\
\{\$ 1, \$ 2, \$ 3\} \rightarrow\{\$ 0, \$ 1.50, \$ 3\} \\
\mathrm{E}(\mathrm{Y})=3 / 2 \mathrm{E}(\mathrm{X})-3 / 2=3 / 4=\$ 0.75
\end{gathered}
$$

And the game became clearly biased. Note how easy it is to compute $\mathrm{E}(\mathrm{Y})$.

Linear Scaling (affine transformations) $a X+b$

Why is that so?

$$
\begin{aligned}
& \mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X}) \\
& E(a X+b)=\sum_{x=0}^{n}(a x+b) P(X=x)= \\
& \sum_{x=0}^{n} a x P(X=x)+\sum_{x=0}^{n} b P(X=x)= \\
& a \sum_{x=0}^{n} x P(X=x)+b \sum_{x=0}^{n} P(X=x)= \\
& x=0 \quad a E(X)+b \times 1=a E(X)+b .
\end{aligned}
$$

Linear Scaling (affine transformations) $a \boldsymbol{X}+\boldsymbol{b}$

And why do we care?

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})
$$

-completely general strategy for computing the distributions of RV's which are obtained from other RV's with known distribution. E.g., $X \sim N(0,1)$, and $Y=a X+b$, then we need not calculate the mean and the SD of Y. We know from the above formulas that $\mathrm{E}(\mathrm{Y})=\mathrm{b}$ and $\mathrm{SD}(\mathrm{Y})=|a|$.
-These formulas hold for all distributions, not only for Binomial and Normal.

Means and Variances for (in)dependent Variables!

- Means:
- Independent/Dependent Variables $\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{X} 10\}$ E $\mathrm{E}(\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\ldots+\mathrm{X} 10)=\mathrm{E}(\mathrm{X} 1)+\mathrm{E}(\mathrm{X} 2)+\mathrm{E}(\mathrm{X} 3)+\ldots+\mathrm{E}(\mathrm{X} 10)$
- Variances:
- Independent Variables $\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{X} 10\}$, variances add-up $\underline{\operatorname{Var}(\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\ldots+\mathrm{X} 10)=}$

Var(X1)+Var(X2)+Var(X3)+...+Var(X1)

- Dependent Variables $\{\mathrm{X} 1, \mathrm{X} 2\}$

Variance contingent on the variable dependences, - E.g., If $\mathrm{X} 2=2 \mathrm{X} 1+5$,
$\underline{\operatorname{Var}(\mathrm{X} 1+\mathrm{X} 2)}=\operatorname{Var}(\mathrm{X} 1+2 \mathrm{X} 1+5)=$
$\underline{\operatorname{Var}(3 X 1+5)=\operatorname{Var}(3 X 1)=9 \operatorname{Var}(X 1)}$

Sample vs. theoretical mean $\&$ varaince

- The Expected value:
$\begin{array}{ll}\text { (population mean) } & E(X)=\sum_{\text {all } x} x \mathrm{P}(x)\binom{=\int_{x} \mathrm{P}(x) d x}{\text { all } x} .\end{array}$
- Sample mean $\bar{X}=\frac{1}{N} \sum_{k=1}^{N} x_{\mathrm{k}}$
- (Theoretical) Variance

$$
\begin{aligned}
& \operatorname{Var}(X)=\sum_{\text {all } x}\left(x-\mu_{x}\right)^{2} \mathrm{P}(x)\left(=\int_{\text {all } x}\left(x-\mu_{x}\right)^{2} \mathrm{P}(x) d x\right) \\
& \text { e) varıance }
\end{aligned}
$$

- (Sample) variance

$$
\operatorname{Var}(X)=\frac{1}{N-1} \sum_{k=1}^{N}\left(x_{k}-\bar{X}\right)^{2}=\sum_{k=1}^{N}\left(x_{k}-\bar{X}\right)^{2} \mathrm{P}(x)
$$

Poisson Distribution - Variance

- $\mathrm{Y} \sim \operatorname{Poisson}(\boldsymbol{\lambda})$, then $\mathrm{P}(\mathrm{Y}=\mathrm{k})=\frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!} \quad, \mathrm{k}=0,1,2, \ldots$
- Variance of $Y, \sigma_{Y}=\lambda^{1 / 2}$, since

$$
\sigma_{Y}^{2}=\operatorname{Var}(Y)=\sum_{k=0}^{\infty}(k-\lambda)^{2} \frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!}=\ldots=\lambda
$$

- For example, suppose that Y denotes the number of blocked shots (arrivals) in a randomly sampled game for the UCLA Bruins men's basketball team. Then a Poisson distribution with mean=4 may be used to model Y .

Poisson as an approximation to Binomial

- Suppose we have a sequence of $\operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right)$ models, with $\lim \left(\mathrm{n} \mathrm{p}_{\mathrm{n}}\right) \rightarrow \lambda$, as $\mathrm{n} \rightarrow$ infinity.
- For each $0<=y<=n$, if $Y_{n} \sim \operatorname{Binomial}\left(n, p_{n}\right)$, then
- $\mathrm{P}\left(\mathrm{Y}_{\mathrm{n}}=\mathrm{y}\right)=$
$\binom{n}{y} p_{n}^{y}\left(1-p_{n}\right)^{n-y}$
■ But this converges to:
$\binom{n}{y} p_{n}{ }^{y}\left(1-p_{n}\right)^{n-y} \xrightarrow[\substack{n \longrightarrow \infty \\ n \times p_{n} \longrightarrow \lambda}]{\text { WHY? }} \frac{\lambda^{y} e^{-\lambda}}{y!}$
- Thus, $\operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\boldsymbol{\lambda})$

Poisson Distribution - Example

- For example, suppose that Y denotes the number of blocked shots in a randomly sampled game for the UCLA Bruins men's basketball team. Poisson distribution with mean $=4$ may be used to model Y .

Poisson as an approximation to Binomial

Rule of thumb is that approximation is good if:
$\begin{array}{ll}\square & n>=100 \\ \square & p<=0.01 \\ \square & \lambda=n p<=20\end{array}$
Then, $\operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\boldsymbol{\lambda})$

Example using Poisson approx to Binomial

> - Suppose $\mathrm{P}($ defective chip $)=0.0001=10^{-4}$. Find the probability that a lot of 25,000 chips has >2 defective!
> $\bullet \mathrm{Y} \sim \operatorname{Binomial}(25,000,0.0001)$, find $\mathrm{P}(\mathrm{Y}>2)$. Note that $\mathrm{Z} \sim \operatorname{Poisson}(\lambda=\mathrm{n} \mathrm{p}=25,000 \times 0.0001=2.5)$
> $P(Z>2)=1-P(Z \leq 2)=1-\sum_{z=0}^{2} \frac{2.5^{z}}{z!} e^{-2.5}=$
> $1-\left(\frac{2.5^{0}}{0!} e^{-2.5}+\frac{2.5^{1}}{1!} e^{-2.5}+\frac{2.5^{2}}{2!} e^{-2.5}\right)=0.456$

Normal approximation to Binomial - Example

- Roulette wheel investigation:
- Compute $\mathrm{P}(\mathrm{Y}>=58)$, where $\mathrm{Y} \sim \operatorname{Binomial}(100,0.47)-$
\square The proportion of the $\operatorname{Binomial}(100,0.47)$ population having more than 58 reds (successes) out of 100 roulette spins (trials).
\square Since $n \mathrm{p}=47>=10$ \& $n(1-p)=53>10$ Normal approx is justified.
$\bullet Z=(Y-n p) / S q r t(n p(1-p))=18$ red 18black 2 neutral
58 - 100*0.47)/Sqrt(100*0.47*0.53)=2.2
- $\mathrm{P}(\mathrm{Y}>=58) \longleftrightarrow \mathrm{P}(\mathrm{Z}>=2.2)=0.0139$
- True $\mathrm{P}(\mathrm{Y}>=58)=0.177$, using SOCR (demo!)
- Binomial approx useful when no access to SOCR avail.
\longrightarrow Slide 58

Normal approximation to Poisson - example
\bullet Let $X_{1} \sim \operatorname{Poisson}(\lambda) \& X_{2} \sim \operatorname{Poisson}(\mu) \rightarrow X_{1}+X_{2} \sim \operatorname{Poisson}(\lambda+\mu)$

- Let $X_{1}, X_{2}, X_{3}, \ldots, X_{200} \sim \operatorname{Poisson}(2)$, and independent, - $Y_{k}=X_{1}+X_{2}+\cdots+X_{k} \sim$ Poisson(400), $\mathrm{E}\left(Y_{k}\right)=\operatorname{Var}\left(Y_{k}\right)=400$.
- By CLT the distribution of the standardized variable $\left(Y_{k}-400\right) /(400)^{1 / 2} \rightarrow \mathrm{~N}(0,1)$, as k increases to infinity.
- $Z_{k}=\left(Y_{k}-400\right) / 20 \sim \mathrm{~N}(0,1) \Rightarrow Y_{k} \sim \mathrm{~N}(400,400)$.
- $\mathrm{P}\left(2<Y_{k}<400\right)=($ std'z $2 \& 400)=$
- $\mathrm{P}\left((2-400) / 20<Z_{k}<(400-400) / 20\right)=\mathrm{P}\left(-20<Z_{k}<0\right)$ $=0.5$

Poisson or Normal approximation to Binomial?

- Poisson Approximation (Binomial($\left.\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow$ Poisson (λ)):

$\square n>=100 \& p<=0.01 \& \quad \lambda=n p<=20$
- Normal Approximation
$\left(\operatorname{Binomial}(\mathrm{n}, \mathrm{p}) \rightarrow N\left(\underline{\left.\left.\mathbf{n p},(\mathbf{n p}(1-\mathrm{p}))^{1 / 2}\right)\right)}\right.\right.$
$\square \mathrm{np}>=10 \quad \& \quad \mathrm{n}(1-\mathrm{p})>10$

Geometric, Hypergeometric,

 Negative Binomial- $\mathrm{X} \sim \operatorname{Geometric}(\mathrm{p})$, then the probability mass function is Probability of first failure at $\mathrm{x}^{\text {th }}$ trial.

$$
P(X=x)=(1-p)^{x} p ; \quad E(X)=\frac{1-p}{p} ; \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

- Ex: Stat dept purchases 40 light bulbs; 5 are defective.

$$
\text { Select } 5 \text { components at random. }
$$

Find: $P\left(3^{\text {rd }}\right.$ bulb used is the first that does not work $)=$?

Geometric, Hypergeometric,

 Negative Binomial- Negative binomial pmf [X $\sim \operatorname{NegBin}(\mathrm{r}, \mathrm{p})$, if $\mathrm{r}=1 \rightarrow$ Geometric (p)]

$$
P(X=x)=(1-p)^{x} p
$$

Number of failures until the r^{th} success (negative, since number of successes (r) is fixed $\&$ number of trials $(\mathrm{X}$) is random)

$$
\begin{aligned}
& P(X=x)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x} \\
& E(X)=\frac{r(1-p)}{p} ; \quad \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}
\end{aligned}
$$

