

•Teaching Assistant: Maria Chang, UCLA Statistics

University of California, Los Angeles, Spring 2003 http://www.stat.ucla.edu/~dinov/

Chapters 3 – Discrete Variables, Probabilities, CLT

Random Variables (RV's

- Probability Density Functions (PDF's) for discrete RV's
- •Binomial, NegativeBinomial, Geometric,
- Hypergeometric, Poisson distributions

ура	Total Frequency	Relative Frequency	Percentage
L - Flap out	16	0.0096	1
B - Flap torn	17	0.0102	1
- End smasl	red 132	0.0793	8
) - Puncture	95	0.0571	6
- Glue probl	em 87	0.0523	5
- Corner get	ugo 984	0.5913	59
G – Compr. w	rinkle 15	0.0090	4
I - Tip crushe	d 303	0.1821	18
- Tot. destruc	ction 15	0.0090	

Experiments, Models, RV's

- An <u>experiment</u> is a naturally occurring <u>phenomenon</u>, a scientific <u>study</u>, a sampling <u>trial</u> or a <u>test</u>., in which an object (unit/subject) is selected at random (and/or treated at random) to *observe/measure* different outcome characteristics of the process the experiment studies.
- <u>Model</u> generalized hypothetical description used to analyze or describe a phenomenon.
- A <u>random variable</u> is a type of measurement taken on the outcome of a random experiment.

Definitions								
 The <i>probability function</i> for a discrete random variable X gives the chance that the observed value for the process equals a specific outcome, x. P(X=x) [denoted pr(x) or P(x)] for every value x that the R.V.X can take E.g., number of heads when a coin is tossed twice 								
	x 0 1 2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								

Stopping at <u>one of each</u> or <u>3</u> children Sample Space – complete/unique description of the possible outcomes from this experiment.									
Out Prol	come	GGG 1 8	GGB 1 8	GB 1 4	BG 1 4	BBG 1 8	BBB 1 8		
• For R.V. $X =$ number of girls, we have									
	X pr(x)	0 <u>1</u> 8	$\frac{1}{\frac{5}{8}}$	$\frac{2}{\frac{1}{8}}$	$\frac{3}{\frac{1}{8}}$	_		
Skida 9. State line list to have									

Binomial(N, p) – the probability distribution of the number of Heads in an N-toss coin experiment, where the probability for Head occurring in each trial is p. E.g., Binomial(6, 0.7)									
		x	0	(1)	2	3	4	5	6
Individua	ıl	pr(X = x)	0.001	0.010	0.060	` 0.185	0.324	0.303	0.118
Cumulati	ve	$pr(X \leq x)$	0.001	,0.011	0.070	,0.256	0.580	0.882	1.000
For example $P(X=0) = P(all \ 6 \ tosses are \ Tails) =$ $(1-0.7)^6 = 0.3^6 = 0.001$									

Binary random process

The *biased-coin tossing model* is a physical model for situations which can be characterized as a series of trials where:

- each trial has only two outcomes: success or failure;
- $\blacksquare p = P(success) \text{ is the same for every trial; and}$ $\blacksquare trials are independent.$
- The distribution of X = number of successes (heads) in N such trials is

Binomial(*N*, *p*)

Sampling from a finite population – Binomial Approximation

If we take a sample of size *n*

- from a much larger population (of size *N*)
- in which a proportion *p* have a characteristic of interest, then the distribution of *X*, the number in the sample with that characteristic,
- is approximately Binomial(n, p).
 Goperating Rule: Approximation is adequate if n/N<0.1.)
- Example, polling the US population to see what proportion is/has-been married.

Exam	ples –	Birthday	y Paradox

- The Birthday Paradox: In a random group of N people, what is the change that at least two people have the same birthday?
- E.x., if N=23, P>0.5. Main confusion arises from the fact that in real life we rarely meet people having the same birthday as us, and we meet more than 23 people.
- The reason for such high probability is that any of the 23 people can compare their birthday with any other one, not just you comparing your birthday to anybody else's.
- There are N-Choose-2 = 20*19/2 ways to select a pair or people. Assume there are 365 days in a year, P(one-particular-pair-same-B-day)=1/365, and
- P(one-particular-pair-failure)=1-1/365 ~ 0.99726.
- For N=20, 20-Choose-2 = 190. E={No 2 people have the same birthday is the event all 190 pairs fail (have different birthdays)}, then P(E) = P(failure)¹⁹⁰ = 0.99726¹⁹⁰ = 0.59.
- Hence, P(at-least-one-success)=1-0.59=0.41, quite high.
- Note: for N=42 → P>0.9

				a a a a a a a a a a a a a a a a a a a	an a						
	Expected values										
 The game of chance: cost to play:\$1.50; Prices {\$1, \$2, \$3}, probabilities of winning each price are {0.6, 0.3, 0.1}, respectively. Should we play the game? What are our chances of winning/loosing? 											
P	rize (\$)	x	1	2	3						
Pi	robability	pr(x)	0.6	0.3	0.1						
Wh	at we would "expec	t" from 100	games		ada	across row					
Nu	mber of games won		0.6 × 100	0.3 ×100	0.1 × 100	Sum					
Ş	won		1 × 0.0 × 100	2 × 0.5 × 100	3 × 0.1 × 100	Sum					
Total prize money = Sum; Average prize money = $\frac{Sum/100}{1 + 2 \times 0.3 + 3 \times 0.1}$ = 1.5											
	<u>Theoretically</u> Fair Game: price to play EQ the expected return!										
			Slide	23 ST4	T 110A. UCLA. Ivo Di	BOY					

			-	-	
		lars(x)	won in doll	Prize	Number
25	Average winning	3	2	1	of games
	p er game	3	frequencies		played
So far we looked	(\overline{x})	ncies)	ative freque	(Rela	(N)
at the theoretical expectation of the	1.7	11 (.11)	25 (.25)	64 (.64)	100
game. Now we	1.538	111 (.111)	316 (.316)	573 (.573)	1,000
on a computer	1.4995	990 (.099)	3015 (.3015)	5995 (.5995)	10,000
samples from	1.5042	2000 (.1001)	6080 (.3040)	11917 (.5959)	20,000
our distribution, according to the	1.5020	3005 (.1002)	9049 (.3016)	17946 (.5982)	30,000
probabilities {0.6, 0.3, 0.1}.	1.5	(.1)	(.3)	(.6)	∞

	Example										
	In the at least one of each or at most 3 children example, where $X = \{number \text{ of } Girls\}$ we have:										
	X	0	1	2	3						
	$pr(x)$ $\frac{1}{8}$ $\frac{5}{8}$ $\frac{1}{8}$ $\frac{1}{8}$										
$E(X) = \sum_{x} x P(x)$ = $0 \times \frac{1}{8} + 1 \times \frac{5}{8} + 2 \times \frac{1}{8} + 3 \times \frac{1}{8}$ = 1.25											

Linear Scaling (affine transformations) aX + b

And why do we care?

E(aX+b) = a E(X)+b SD(aX+b) = |a| SD(X)

-<u>completely general</u> strategy for computing the distributions of RV's which are obtained from other RV's with known distribution. E.g., $X \sim N(0,1)$, and Y=aX+b, then we need **not** calculate the mean and the SD of Y. We know from the above formulas that E(Y) = b and SD(Y) = |a|.

-These formulas hold for all distributions, not only for Binomial and Normal.

Example using Poisson approx to Binomial
• Suppose P(defective chip) = 0.0001=10⁻⁴. Find the
probability that a lot of 25,000 chips has > 2 defective!
• Y~ Binomial(25,000, 0.0001), find P(Y>2). Note that
Z-Poisson(
$$\lambda = n p = 25,000 \times 0.0001=2.5$$
)
 $P(Z > 2) = 1 - P(Z \le 2) = 1 - \sum_{z=0}^{2} \frac{2.5^{z}}{z!} e^{-2.5} = 1 - \left(\frac{2.5^{0}}{0!}e^{-2.5} + \frac{2.5^{1}}{1!}e^{-2.5} + \frac{2.5^{2}}{2!}e^{-2.5}\right) = 0.456$

