UCLA STAT 110 A

Applied Probability \& Statistics for Engineers

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistant: Maria Chang, UCLA Statistics

University of California, Los Angeles, Spring 2003
http://www.stat.ucla.edu/~dinov/

Continuous RV's

- A RV is continuous if it can take on any real value in a non-trivial interval (a;b).
- PDF, probability density function, for a cont. RV, Y, is a non-negative function $p_{Y}(y)$, for any real value y, such that for each interval $(a ; b)$, the probability that Y takes on a value in $(\mathrm{a} ; \mathrm{b}), \mathrm{P}(\mathrm{a}<\mathrm{Y}<\mathrm{b})$ equals the area under $p_{Y}(y)$ over the interval (a : b).

Computing Probabilities using PDFs

- $P(Y \in A)=\int_{A} p_{r}(y) d y$

$$
p_{r}(y)=e^{-y}, y \geq 0
$$

- Example:

(i) Exponential shape

$$
P(0 \leq Y \leq 3)=\int_{0}^{3} p_{Y}(y) d y=
$$

Convergence of density histograms to the PDF

- For a continuous RV the density histograms converge to the PDF as the size of the bins goes to zero.

Chapters 4: Continuous Variables, Continuous Probability Density Functions
-Continuous RV's PDF's

- Normal, Gamma, Exponential, χ^{2}, F, T distributions - Central Limit Theorem (CLT)

Convergence of density histograms to the PDF

- For a continuous RV the density histograms converge to the PDF as the size of the bins goes to zero.
- AdditionalInstructorAids\BirthdayDistribution_1978_systat.SYD

$$
\int_{0}^{3} e^{-y} d y=-e_{0}^{-y} / 3=1-e^{-3} \cong 1
$$

CDF (cumulative distribution function)

$F_{Y}(y)=P(Y \leq y)=\int_{-\infty}^{y} p_{Y}(y) d y$

$$
p_{Y}(y)=e^{-y}, y \geq 0
$$

- Example:

$$
\begin{aligned}
& F_{Y}(3)=P(Y \leq 3)=\int_{0}^{3} p_{Y}(y) d y= \\
& \int_{0}^{3} e^{-y} d y=-e^{-y} / 3=1-e^{-3} \cong 1
\end{aligned}
$$

Facts about PDF's of continuous RVs

- Non-negative

$$
p_{Y}(y) \geq 0, \forall y
$$

- Completeness $\int_{-\infty}^{\infty} p_{Y}(y) d y=1$
- Probability

$$
P(a<Y<b)=\int_{a}^{b} y \times p_{Y}(y) d y
$$

Uniform Distribution

(Continuous) Uniform Distribution

Uniform Distribution - CDF, mean, variance

- Uniform Distribution CDF:
$F_{Y}(y)=\int_{-\infty}^{y} p_{y}(x) d x=\int_{a}^{\min (y, b)} \frac{1}{b-a} d x=$ $\frac{x}{b-a} / y= \begin{cases}0, & y<a \\ \frac{y-a}{b-a}, & a \leq y \leq b \\ 1, & b<y\end{cases}$

Continuous Distributions - Normal

- (General) Normal distribution
$y=\frac{e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi \sigma^{2}}}$

(Standard) Normal distribution ($\mu=0, \sigma=1$)

$$
y=\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} \quad Z=\frac{Y-\mu}{\sigma}
$$

Standard Normal (Gaussian) Distribution

Normal Distribution PDF: Y $\sim \operatorname{Normal}\left(\mu=0, \sigma^{2}=1\right) \leftrightarrow$

$$
p_{Y}(y)=\frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}}, \forall-\infty<y<\infty
$$

$$
F_{Y}(y)=\int_{-\infty}^{y} p_{Y}(x) d x=\int_{-\infty}^{y} \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} d x
$$

Uniform Distribution - CDF, mean, variance

- Mean:
$\mu_{Y}=\int_{-\infty}^{\infty} y p_{Y}(y) d y=\int_{a}^{b} \frac{y}{b-a} d y=\overline{2(b-a)} b=\frac{a+b}{2}$
- Variance:
$\sigma_{Y}^{2}=\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} p_{Y}(y) d y=\int_{a}^{b} \frac{(2 y-(a+b))^{2}}{4(b-a)} d y=\frac{(b-a)^{2}}{12}$
- SD: $\sigma_{Y}=\sqrt{\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} p_{Y}(y) d y}=\frac{(b-a)}{\sqrt{12}}$

$$
\sigma_{Y}=\sqrt{\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} p_{y}(y) d y}=\frac{(b-a)}{\sqrt{12}}
$$

(General) Normal Distribution

- Normal Distribution PDF: Y~Normal $\left(\mu, \sigma^{2}\right)$
$p_{Y}(y)=\frac{e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi \sigma^{2}}}, \forall-\infty<y<\infty$

$$
F_{Y}(y)=\int_{-\infty}^{y} p_{Y}(x) d x=\int_{-\infty}^{y} \frac{e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi \sigma^{2}}} d x
$$

Two standardized histograms with approximating Normal density curve

Basic method for obtaining probabilities

(a) Chest measurements of Quetelet's Scottish soldiers (in.)

(b) Heights of the 4294 men in the workforce database (cm)

- Sketch a Normal curve, marking the mean and other values of interest.
- Shade the area under the curve that gives the desired probability.
- Devise a way of getting the desired area from lowertail areas.
- Obtain component lower-tail probabilities from a computer program

Since total area under curve $=1, \quad \operatorname{pr}(X>25)=1-\operatorname{pr}(X \leqslant 25)$
Generally, $\operatorname{pr}(X>x)=1-\operatorname{pr}(X \leqslant x)$

Density curves for Student's \boldsymbol{t}

We will come back to the T-distribution at the end of this chapter!

Bias and Precision

- The precision of an estimator is a measure of how variable is the estimator in repeated sampling.

value of parameter
(a) No bias, high precision

(c) Biased, high precision

value of $\uparrow \uparrow$
(b) No bias, low precision

(d) Biased, low precision

Continuous Distributions - Student's T

Student's T distribution [approx. of $\operatorname{Normal}(0,1)$]
$\square Y_{1}, Y_{2}, \ldots, Y_{N} \operatorname{IID}$ from a $\operatorname{Normal}(\mu ; \sigma)$

- Variance σ^{2} is unknown
- In 1908, William Gosset (pseudonym Student) derived the exact sampling distribution of the following statistics
$T=\frac{Y-\mu_{Y}}{\hat{\sigma}_{Y}}$
T $\sim \operatorname{Student}(\mathbf{d} \mathbf{f}=\mathbf{N}-1)$, where

$$
\hat{\sigma}_{Y}=\sqrt{\frac{\sum_{k=1}^{N}\left(Y_{k}-\bar{Y}\right)^{2}}{N-1}}
$$

Bias and Precision

- The bias in an estimator is the distance between between the center of the sampling distribution of the estimator and the true value of the parameter being estimated. In math terms, bias $=E(\hat{\Theta})-\boldsymbol{\theta}$, where theta $\hat{\Theta}$ is the estimator, as a RV, of the true (unknown) parameter $\boldsymbol{\theta}$.
- Example, Why is the sample mean an unbiased estimate for the population mean? How about $3 / 4$ of the sample mean?

$$
E(\hat{\Theta})-\mu=E\left(\frac{3}{4} \frac{1}{n} \sum_{k=1}^{n} X_{k}\right)-\mu=
$$

$E(\hat{\Theta})-\mu=E\left(\frac{1}{n} \sum_{k=1}^{n} X_{k}\right)-\mu=0$
$\frac{3}{4} \boldsymbol{\mu}-\boldsymbol{\mu}=\frac{\boldsymbol{\mu}}{4} \neq 0, \quad$ in general.

Bias and Precision - 2 unbiased estimators of μ

- Suppose: $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots \ldots \ldots \ldots . ., \mathrm{Y}_{4 \mathrm{~N}}\right\}$ IID (μ, σ).
- Let $\bar{Y}_{1}=1 / 3 N \sum_{k=1}^{3 N} Y_{k} ; \quad \bar{Y}_{2}=1 / N \sum_{k=3 N+1}^{4 N} Y_{k}$
- And $\bar{Y}=\frac{\overline{Y_{1}}+\overline{Y_{2}}}{2} \quad \bar{Y}=\sum_{k=1}^{4 N} Y_{k}$;
- Which estimator is better? \bar{Y} or $\overline{\bar{Y}}$?

$$
\begin{aligned}
& E(\bar{Y})=E(\overline{\bar{Y}})=\mu \\
& \operatorname{Var}(\bar{Y})=\sigma^{2} / 3 N
\end{aligned}>\operatorname{Var}(\overline{\bar{Y}})=\sigma^{2} / 4 N
$$

- Both are unbiased, but variance of second one is smaller \rightarrow estimator is more precise!!!

Continuous Distributions - F-distribution

- F-distribution k-samples of different sizes.
- Snedecor's F distribution is most commonly used in tests of variance (e.g., ANOVA). The ratio of two chi-squares divided by their respective degrees of freedom is said to follow an F distribution
$\int\left\{\mathrm{Y}_{1 ; 1}, \mathrm{Y}_{1 ; 2}, \ldots \ldots \ldots \ldots ., \mathrm{Y}_{1: \mathrm{N} 1}\right\}$ IID from a $\operatorname{Normal}\left(\mu_{1} ; \sigma_{1}\right)$
- $\left\{\mathrm{Y}_{2 ; 1}, \mathrm{Y}_{2 ; 2,2}, ., \mathrm{Y}_{2 ; \mathrm{N} 2}\right\}$ IID from a $\operatorname{Normal}\left(\mu_{2} ; \sigma_{2}\right)$
k
■ $\left\{\mathrm{Y}_{\mathrm{k}, 1}, \mathrm{Y}_{\mathrm{k}, 2}, \ldots \ldots, \mathrm{Y}_{\mathrm{k}, \mathrm{N} 2}\right\}$ IID from a $\operatorname{Normal}\left(\mu_{2} ; \sigma_{2}\right)$
- $\sigma_{1}=\sigma_{2}=\sigma_{3}=\ldots \sigma_{\mathrm{n}_{\mathrm{k}}}=\sigma .\left(1 / 2<=\sigma_{\mathrm{k}} / \sigma_{\mathrm{j}}<=2\right)$
- Samples are independent!

Slide 31 STATHOA, UCLA, wo Dinov

Continuous Distributions - F-distribution

F-distribution k-samples of different sizes

Continuous Distributions - Cauchy's

Cauchy's distribution, $\mathrm{X} \sim$ Cauchy $(\mathrm{t}, \mathrm{s}), \mathrm{t}=$ location; $\mathrm{s}=\mathrm{scale}$

- $\operatorname{PDF}(\mathrm{X}): f(x)=\frac{1}{\left.s \pi(1+(x-t) / s)^{2}\right)} ; \quad \mathrm{x} \in \boldsymbol{R}$ (reals)
- PDF(Std Cauchy's(0,1)):
$f(x)=\frac{1}{s \pi\left(1+x^{2}\right)}$
- The Cauchy distribution is (theoretically) important as an example of a pathological case. Cauchy distributions look similar to a normal distribution. However, they have much heavier tails. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of how sensitive the tests are to heavy-tail departures from normality. The mean and standard deviation of the Cauchy distribution are undefined!!! The practical meaning of this is that collecting 1,000 data points gives no more accurate of an estimate of the mean and standard deviation than does a single point (Cauchy $\rightarrow \mathrm{T}_{\mathrm{df}} \rightarrow$ Normal).

Continuous Distributions - Review

- Uniform, (General/Std) Normal, Student's T, F, χ^{2}, Cauchy distributions.
- Remained to see a good ANOVA (F-distribution Example)
- SYSTAT \rightarrow File \rightarrow Load (Data)
\rightarrow C:\Ivo.dir\Research\Data.dirlWM_GM_CSF_tissueMap s.dir\ATLAS_IVO_WM_GM.xls
\rightarrow Statistics \rightarrow ANOVA \rightarrow Est.Model \rightarrow Dependent(Value) \rightarrow Factors(Method, Hemi, TissueType)
[For 1/2/3-Way ANOVA]

Continuous Distributions - Exponential

- Exponential distribution, X Exponential(λ)

- The exponential model, with only one unknown parameter, is the simplest of all life distribution models.

$$
f(x)=\lambda e^{-\lambda x} ; \quad x \geq 0
$$

- $E(X)=1 / \lambda ; \quad \operatorname{Var}(X)=1 / \lambda^{2}$;
- Another name for the exponential mean is the Mean Time To Fail or MTTF and we have MTTF $=1 / \lambda$.
- If \boldsymbol{X} is the time between occurrences of rare events that happen on the average with a rate 1 per unit of time, then X is distributed exponentially with parameter λ. Thus, the exponential distribution is frequently used to model the time interval between successive random events. Examples of variables distributed in this manner would be the gap length between cars crossing an intersection, life-times of electronic devices, or arrivals of customers at the check-out counter in a grocery store.

Continuous Distributions - Exponential

Exponential distribution, Example:
By-hand vs. ProbCalc.htm

- On weeknight shifts between 6 pm and 10 pm , there are an average of 5.2 calls to the UCLA medical emergency number. Let X measure the time needed for the first call on such a shift. Find the probability that the first call arrives (a) between 6:15 and 6:45 (b) before 6:30. Also find the median time needed for the first call ($34.578 \% ; 72.865 \%$).
- We must first determine the correct average of this exponential distribution. If we consider the time interval to be $4 \times 60=240$ minutes, then on average there is a call every $240 / 5.2$ (or 46.15) minutes. Then $X \sim \operatorname{Exp}(1 / 46),[E(X)=46]$ measures the time in minutes after 6:00 pm until the first call.

Continuous Distributions - Exponential Examples

- Customers arrive at a certain store at an average of 15 per hour. What is the probability that the manager must wait at least 5 minutes for the first customer?
- The exponential distribution is often used in probability to model (remaining) lifetimes of mechanical objects for which the average lifetime is known and for which the probability distribution is assumed to decay exponentially.
- Suppose after the first 6 hours, the average remaining lifetime of batteries for a portable compact disc player is 8 hours. Find the probability that a set of batteries lasts between 12 and 16 hours.
Solutions:
- Here the average waiting time is $60 / 15=4$ minutes. Thus $X \sim \exp (1 / 4)$. $E(X)=4$. Now we want $\mathrm{P}(\mathrm{X}>5)=1-\mathrm{P}(\mathrm{X}<=5)$. We obtain a right tail value of .2865 . So around 28.65% of the time, the store must wait at least 5 minutes for the first customer.
- Here the remaining lifetime can be assumed to be $X \sim \exp (1 / 8) . E(X)=8$. For the total lifetime to be from 12 to 16 , then the remaining lifetime is from 6 to 10 . We find that $\mathrm{P}(6<=\mathrm{X}<=10)=.1859$.

Recall the example of Poisson approx to Binomial

- Suppose $P($ defective chip $)=0.0001=10^{-4}$. Find the probability that a lot of 25,000 chips has >2 defective!
- $\mathrm{Y} \sim \operatorname{Binomial}(25,000,0.0001)$, find $\mathrm{P}(\mathrm{Y}>2)$. Note that $\mathrm{Z} \sim \operatorname{Poisson}(\lambda=\mathrm{n} p=25,000 \times 0.0001=2.5)$
$P(Z>2)=1-P(Z \leq 2)=1-\sum_{z=0}^{2} \frac{2.5^{z}}{z!} e^{-2.5}=$
$1-\left(\frac{2.5^{0}}{0!} e^{-2.5}+\frac{2.5^{1}}{1!} e^{-2.5}+\frac{2.5^{2}}{2!} e^{-2.5}\right)=0.456$

Normal approximation to Binomial - Example

- Roulette wheel investigation:
- Compute $\mathrm{P}(\mathrm{Y}>=58)$, where $\mathrm{Y} \sim \operatorname{Binomial}(100,0.47)^{-}$
- The proportion of the Binomial $(100,0.47)$ population having more than 58 reds (successes) out of 100 roulette spins (trials).
$■$ Since $n p=47>=10 \quad \& \quad n(1-p)=53>10$ Normal approx is justified.

Roulette has 38 slots
$\bullet Z=(Y-n p) / \operatorname{Sqrt}(n p(1-p))=18$ red 18black 2 neutral $58-100 * 0.47) / \operatorname{Sqrt}(100 * 0.47 * 0.53)=2.2$

- $\mathrm{P}(\mathrm{Y}>=58) \longleftrightarrow \quad \mathrm{P}(\mathrm{Z}>=2.2)=0.0139$
- True $\mathrm{P}(\mathrm{Y}>=58)=0.177$, using SOCR (demo!)
- Binomial approx useful when no access to SOCR avail.

Normal approximation to Binomial

- Suppose $\mathbf{Y} \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$
- Then $Y=Y_{1}+Y_{2}+Y_{3}+\ldots+Y_{n}$, where - $\quad \mathrm{Y}_{\mathrm{k}} \sim \operatorname{Bernoulli}(\mathrm{p}), \mathrm{E}\left(\mathrm{Y}_{\mathrm{k}}\right)=\mathrm{p} \& \operatorname{Var}\left(\mathrm{Y}_{\mathrm{k}}\right)=\mathrm{p}(1-\mathrm{p}) \rightarrow$
- $\mathbf{E}(\mathbf{Y})=n \mathrm{p} \quad \& \quad \operatorname{Var}(\mathbf{Y})=\mathbf{n p}(1-\mathrm{p}), \operatorname{sD}(\mathbf{Y})=(\mathrm{np}(1-\mathrm{p}))^{1 / 2}$
- Standardize Y:
$\mathbf{Z}=(\mathbf{Y}-\mathbf{n p}) /(\mathbf{n p}(\mathbf{1}-\mathbf{p}))^{1 / 2}$
\square By CLT $\rightarrow \mathrm{Z} \sim \mathbf{N}(\mathbf{0}, \mathbf{1})$. So, $\underline{\mathrm{Y} \sim N\left[\mathrm{np},(\mathrm{np}(1-\mathrm{p}))^{1 / 2}\right]}$
- Normal Approx to Binomial is
reasonable when $\mathrm{np}>=10$ \& $\mathrm{n}(1-\mathrm{p})>10$ ($\mathrm{p} \&(1-\mathrm{p})$ are NOT too small relative to n).

Normal approximation to Poisson

\bullet Let $X_{1} \sim$ Poisson $(\lambda) \& X_{2} \sim \operatorname{Poisson}(\mu) \rightarrow X_{1}+X_{2} \sim \operatorname{Poisson}(\lambda+\mu)$

- Let $X_{1}, X_{2}, X_{3}, \ldots, X_{k} \sim \operatorname{Poisson}(\lambda)$, and independent,
- $Y_{k}=X_{1}+X_{2}+\cdots+X_{k} \sim \operatorname{Poisson}(\mathrm{k} \lambda), \mathrm{E}\left(Y_{k}\right)=\operatorname{Var}\left(Y_{k}\right)=k \lambda$.
- The random variables in the sum on the right are independent and each has the Poisson distribution with parameter λ.
- By CLT the distribution of the standardized variable $\left(Y_{k}-k \lambda\right) /(k \lambda)^{1 / 2} \rightarrow \mathrm{~N}(0,1)$, as k increases to infinity.
- So, for $k \lambda>=100, Z_{k}=\left\{\left(Y_{k}-k \lambda\right) /(k \lambda)^{1 / 2}\right\} \sim \mathbf{N}(0,1)$.
$\bullet Y_{k} \sim \mathrm{~N}\left(k \lambda,(k \lambda)^{1 / 2}\right)$.

Normal approximation to Poisson- example
\bullet Let $\mathbf{X}_{1} \sim \operatorname{Poisson}(\lambda) \& X_{2} \sim \operatorname{Poisson}(\mu) \rightarrow X_{1}+X_{2} \sim \operatorname{Poisson}(\lambda+\mu)$

- Let $X_{1}, X_{2}, X_{3}, \ldots, X_{200} \sim$ Poisson(2), and independent, - $Y_{k}=X_{1}+X_{2}+\cdots+X_{k} \sim \operatorname{Poisson}(400), \mathrm{E}\left(Y_{k}\right)=\operatorname{Var}\left(Y_{k}\right)=400$.
- By CLT the distribution of the standardized variable $\left(Y_{k}-400\right) /(400)^{1 / 2} \rightarrow \mathrm{~N}(0,1)$, as k increases to infinity.
- $Z_{k}=\left(Y_{k}-400\right) / 20 \sim \mathrm{~N}(0,1) \rightarrow Y_{k} \sim \mathrm{~N}(400,400)$.
- $\mathrm{P}\left(2<Y_{k}<400\right)=\left(\right.$ std $\left.^{\prime} z 2 \& 400\right)=$
- $\mathrm{P}\left((2-400) / 20<Z_{k}<(400-400) / 20\right)=\mathrm{P}\left(-20<Z_{k}<0\right)$ $=0.5$

Exponential family and arrival numbers/times

- First, let $\underline{T}_{\underline{k}}$ denote the time of the k^{\prime} th arrival for $k=$ $1,2, \ldots$ The gamma experiment is to run the process until the k^{\prime} th arrival occurs and note the time of this arrival.
- Next, let \underline{N}_{t} denote the number of arrivals in the time interval $(0, t]$ for $t \geq 0$. The Poisson experiment is to run the process until time t and note the number of arrivals.
density function of the k 'th arrival time is density function of the k^{\prime} th a arrival time
$f_{k}(t)=(r)^{k-1} \mathrm{re}^{n-r} /(k-1)!, t>0$. This distribution is the gamma - How are $\underline{T}_{\underline{k}} \& N_{\underline{t}}$ related? $\bigcirc \underline{N}_{t} \geq k \in \underline{T}_{\underline{k}} \leq t$

Poisson or Normal approximation to Binomial?

- Poisson Approximation (Binomial($\left.\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\lambda)$):

$$
\binom{n}{y} p_{n}{ }^{y}\left(1-p_{n}\right)^{n-y} \xrightarrow[\substack{n \longrightarrow \infty \\ n \times p_{n} \longrightarrow \lambda}]{\mathbf{W H Y}} \frac{\lambda^{y} e^{-\lambda}}{y!}
$$

$$
\square_{n}>=100 \& p<=0.01 \& \quad \lambda=n p<=20
$$

- Normal Approximation
$\left(\operatorname{Binomial}(\mathrm{n}, \mathrm{p}) \rightarrow \boldsymbol{N}\left(\underline{\mathbf{n p}},(\mathbf{n p}(\mathbf{1 - p}))^{\mathbf{1 / 2}}\right)\right)$
$\square n p>=10 \quad \& \quad n(1-p)>10$

Independence of continuous RVs

- The RV's $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$ are independent if for any n-tuple $\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$
$P\left(\left\{Y_{1} \leq y_{1}\right\} \cap\left\{Y_{2} \leq y_{2}\right\} \cap\left\{Y_{3} \leq y_{3}\right\} \cap \ldots \cap\left\{Y_{n} \leq y_{n}\right\}\right)$ $=P\left(Y_{1} \leq y_{1}\right) \times P\left(Y_{2} \leq y_{2}\right) \times P\left(Y_{3} \leq y_{3}\right) \times \ldots \times P\left(Y_{n} \leq y_{n}\right.$

Quincunx - Galton Board

Areas under Standard Normal Curve -

 Normal Approximation- Protocol:
- Convert the interval (we need to assess the percentage of entries in) to Standard units. Actually convert the end points in Standard units.
DIn general, the transformation $\mathrm{X} \rightarrow(\mathrm{X}-\mu) / \sigma$, standardizes the observed value X, where μ and σ are the average and the standard deviation of the distribution X is drawn from.
- Find the corresponding area under the normal curve (from tables or online databases);
\square Sketch the normal curve and shade the area of interest -Separate your area into individually computable sections Check the Normal Table and extract the areas of every subsection
\square Add/compute the areas of all sub-sections to get the total area.

Areas under Standard Normal Curve - Example

- The mean height is 64 in and the standard deviation is 2 in .
- Only recruits shorter than 65.5 in will be trained for tank operation. What percentage of the incoming recruits will be trained to operate armored combat vehicles (tanks)?

$\mathrm{X} \rightarrow(\mathrm{X}-64) / 2$ $65.5 \rightarrow(65.5-64) / 2=3 / 4$

Percentage is 77.34%

- Recruits within $1 / 2$ standard deviations of the mean will have no restrictions on duties. About what percentage of the recruits will have no restrictions on training/duties?

$\mathrm{X} \rightarrow(\mathrm{X}-64) / 2$
$65 \rightarrow(65-64) / 2=1 / 2$
$63 \rightarrow(63-64) / 2=-1 / 2$
Percentage is 38.30%

Areas under Standard Normal Curve - Example

- Many histograms are similar in shape to the standard normal curve. For example, persons height. The height of all incoming female army recruits is measured for custom training and assignment purposes (e.g., very tall people are inappropriate for constricted space positions, and very short people may be disadvantages in certain other situations). The mean height is computed to be 64 in and the standard deviation is 2 in . Only recruits shorter than 65.5 in will be trained for tank operation and recruits within $1 / 2$ standard deviations of the mean will have no restrictions on duties.
- What percentage of the incoming recruits will be trained to operate armored combat vehicles (tanks)?
- About what percentage of the recruits will have no restrictions on training/duties?

Identifying Common Distributions - QQ plots

- Plots are useful for identifying candidate distribution model(s) in approximating a population (data) distribution.
- Histograms, can reveal much of the features of the data distribution.
- Quantile-Quantile plots indicate how well the model distribution agrees with the data.
- $q^{- \text {th }}$ quantile, for $0<q<1$, is the (data-space) value, V_{g}, at or below which lies a proportion q of the data.
- E.g., $q=0.80, Y=\{1,2,3,4,5,6,7,8,9,10\}$. The $q^{-t h}$ quantile $\mathrm{V}_{\mathrm{q}}=8$, since 80% of the data is at or below 8 .

Constructing QQ plots

- Start off with data $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{\mathrm{n}}\right\}$
- Order statistics $\mathbf{y}_{(1)}<=\mathbf{y}_{(2)}<=\mathbf{y}_{(3)}<=\ldots<=\mathbf{y}_{(\mathrm{n})}$
- Compute quantile rank, $q_{(k)}$, for each observation, $y_{(k)}$,

$$
P\left(Y<=q_{(k)}\right)=(k-0.375) /(n+0.250)
$$

where Y is a RV from the (target) model distribution.

- Finally, plot the points $\left(\mathbf{y}_{(\mathrm{k})}, \mathbf{q}_{(\mathrm{k})}\right)$ in 2D plane, $1<=\mathrm{k}<=\mathrm{n}$.
- Note: Different statistical packages use slightly different formulas for the computation of $\mathbf{q}_{(k)}$. However, the results are quite similar. This is the formulas employed in SAS.
- Basic idea: Probability that:
$P\left((\right.$ model $) Y<=($ data $\left.) y_{(1)}\right) \sim 1 / n ;$
$P\left(Y<=y_{(2)}\right) \sim 2 / n ; \quad P\left(Y<=y_{(3)}\right) \sim 3 / n ;$

Data transformations

- In practice oftentimes observed data does not directly fit any of the models we have available. In these cases transforming the raw data may provide/satisfy the requirements for using the distribution models we know.
- Common transformations: $\mathrm{Y}=\mathrm{T}(\mathrm{X}), \mathrm{X}=\mathrm{raw}$ data, $\mathrm{Y}=$ new
\square Data positively skewed to right use $\mathrm{T}(\mathrm{X})=\operatorname{Sqrt}(\mathrm{X})$ or $\mathrm{T}(\mathrm{X})=\log (\mathrm{X})$
- If data varies by more than 2 orders of magnitude
\square For $X>0$, use $T(X)=\log (X)$
\square For any X, use $T(X)=-1 / X$.
\square If X are counts (categorical var's), $\mathrm{T}(\mathrm{X})=\mathrm{Sqrt}(\mathrm{X})$
- $X=$ proportions \& largest/ smallest Proportions $>=2$, use Logit transform: $\mathrm{T}(\mathrm{X})=\log [\mathrm{X} /(1-\mathrm{X})]$.

Identifying Common Distributions - QQ plots

- Quantile-Quantile plots indicate how well the model distribution agrees with the data.
- $\mathrm{q}^{\text {th }}$ quantile, for $0<\mathrm{q}<1$, is the (data-space) value, V_{q}, at or below which lies a proportion q of the data.

- For random samples from a Normal distribution,

$$
T=\frac{(\bar{X}-\mu)}{S E(\bar{X})}
$$

$$
\text { from } N(\mu, \sigma)
$$

is exactly distributed as $\operatorname{Student}(d f=n-1) \longleftarrow$ Approx/Exact \uparrow
\square but methods we shall base upon this distribution for T work well even for small samples sampled from distributions which are quite non-Normal.
$\square d f$ is number of observations -1 , degrees of freedom.

Slide 76

STAT HOA, UCLAL Vvo Dinov

Practice Problems Areas under Normal Curve

Ex 1) $Z=$ a standard normal R.V.
(a) $P(Z<1.43)=$
(b) $P(Z>-0.89)=$
(c) $P(-2.16<Z<-0.65)=$

Ex 2) $X \sim$ normal, $\mu=30, \sigma=6$
(a) $P(X>17)=$
(b) $P(X<22)=$
(c) $P(32<X<41)=$

Density curves for Student's \boldsymbol{t}

(c) $P(32<X<41)=$

Application of Normal Distribution

Ex 3)
Soft-drink machine; $\mu=200$ (milliliters/cup), $\sigma=15$
(a) $P($ a cup will contain more than 224$)$
(b) $P($ a cup contains between 191 and 209)
(c) How many cups will overflow if 230 milliliter cups used for the next 1000 drinks?
(d) Below what value do we get the smallest 25% of the drinks?

Normal Approximation to Binomial

- Poisson vs. Binomial
- Normal vs. Binomial
- Theorem $X_{\bar{X}}=$ binomial, $, ~ \mu=n p, \sigma^{2}=n p q$

Then, $Z=\frac{X-n p}{\sqrt{n p q}} \sim n(z ; 0,1)$ as $n \rightarrow \infty$
$P\{X=k\}=P\{k-0.5<X<k+0.5\} \approx P\left\{\frac{k-0.5-\mu}{\sigma}<Z<\frac{k+0.5-\mu}{\sigma}\right\}$
$P\left\{k_{1} \leq X \leq k_{2}\right\} \approx P\left\{\frac{k_{1}-0.5-\mu}{\sigma} \leq Z \leq \frac{k_{2}+0.5-\mu}{\sigma}\right\}$

Approximation becomes better as n gets larger $\quad p \rightarrow 0.5$

Gamma and Exponential Distributions

- Gamma Distribution

Gamma function : $\quad \Gamma(\alpha)=\int^{\infty} x^{\alpha-1}, e^{-x} d x \quad \alpha>0$

$$
\text { Properties } \begin{cases}\Gamma(\alpha)=(\alpha-1) \Gamma(\alpha-1) \\ \Gamma(n)=(n-1)! & \text { for positive integer } n \\ \Gamma(1)=1 & \Gamma(0.5)=\sqrt{\pi}\end{cases}
$$

- $X \sim$ Gamma with parameters α and β if

where $\alpha>0, \beta>0$

Gamma and Exponential Distributions

Gamma Distribution (cont'd)

- $E(X)=\alpha \beta \quad \operatorname{Var}(X)=\alpha \beta^{2}$

If $\alpha=1 ; \quad f(x)=\frac{1}{\beta} e^{-\frac{x}{\beta}}, x>0, \beta>0$

- Cdf: incomplete gamma function

Ex 4) $X \sim$ Gamma, $\alpha=2, \beta=1 \rightarrow$ Find $P(1.8<X<2.4)$

Gamma and Exponential Distributions

- Exponential Distribution
- Useful in modeling time between arrivals at service facilities
- One Parameter ; β
- a special case of Gamma
$-f(x)=\left\{\begin{array}{l}\frac{1}{\beta} e^{-\frac{1}{\beta} x}, \quad x>0 \\ 0, \text { otherwise }\end{array}\right.$
$E(X)=\beta \quad \operatorname{Var}(X)=\beta^{2}$ mean=standard deviation

Gamma and Exponential Distributions

Exponential Distribution (cont'd)
CDF : $F(x)=P(X \leq x)=\int_{0}^{x} \frac{1}{\beta} e^{-\frac{x}{\beta}} d x=1-e^{-\frac{x}{\beta}}, x>0$

- Tail probability
$P(X>x)=1-F(x)=e^{-\frac{x}{\beta}}, x>0$

Ex 1) $X=$ response time at a certain on-line computer terminal
$X \sim$ exponential with $E(X)=5$ (sec.).
(a) $P(X \leq 10)=$
(b) $P(5 \leq X \leq 10)=$

Gamma and Exponential Distributions

- Model for Component Lifetime

■Exponential Dist' is useful due to "Memoryless property"

- Memoryless property
if $\mathrm{T} \sim$ exponential with $(\beta>0)$

$$
P(T>t+\Delta t \mid T>t)=\frac{P(T>t+\Delta t, T>t)}{P(T>t)}=\frac{P(T>t+\Delta t)}{P(T>t)}
$$

$$
=\frac{e^{-\frac{t+\Delta t}{\beta}}}{e^{-\frac{1}{\beta}}}=e^{-\frac{\Delta t}{\beta}}=P(T>\Delta t)
$$

The distribution of the additional lifetime $=$ The original distribution of lifetime (Memoryless Property)

Gamma and Exponential Distributions

Relationship to the Poisson Process

\# of events in any time interval t has a Poisson distribution w parameter $\lambda t \rightarrow$ the distribution of the elapsed time between two successive events is exponential with parameter $\quad \beta=\frac{1}{\lambda}$

w. $1 / \lambda$

\#events in t : Poisson w. mean $\lambda \mathrm{t}$
Why? Poisson : $P($ no events in $t)=P(0 ; \lambda t)=\frac{e^{-\lambda t}(\lambda t)^{0}}{0!}=e^{-\lambda t}$
Let $\mathrm{X}=$ time until the first event. $P(X>t)=e^{-\lambda t}$
Then $P($ no events in $t)=$
i.e., $P(0 \leq X \leq t)=1-e^{-\lambda t}=\begin{gathered}\text { CDF of exponential with } \lambda=\frac{1}{\beta} \text { or } \\ \text { Slide } 87\end{gathered} \quad \beta=\frac{1}{\lambda}$

Gamma and Exponential Distributions

Ex 2) Hotline
\# calls received at a hotline \sim Poisson with $=0.5 /$ day . $X=$ \# days between successive calls
(a) $P(X>2)=$
(b) $P(X>5 \mid X>3)=$

Ex 3)
T (= time to failure (in years) of a component)
~exponential with $\beta=5$
(a) $P(T>8)=$
(b) 5 components are installed.
$P($ at least 2 are functioning at the end of 8 years $)=$

Lognormal Distribution

- $X \sim \operatorname{lognormal}$ with parameters μ and σ, if

$$
\ln (X) \sim N(x ; \mu, \sigma)
$$

- $E(X)=\exp \left(\mu+\sigma^{2} / 2\right)$
$\operatorname{Var}(X)=\exp \left(2 \mu+\sigma^{2}\right)\left\{\exp \left(\sigma^{2}\right)-1\right\}$
Ex) Let $\mathrm{X} \sim \operatorname{lognormal}$ with parameter $\mu=3.2$ and $\sigma,=1$

$$
P(X>8)=
$$

$X \sim$ Weibull Distribution with parameters α and β if

$$
f(x)= \begin{cases}\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}} & , x>0 \\ 0 & , \text { otherwise }\end{cases}
$$

If $\beta=1 ; f(x)=\alpha e^{-\alpha x} \quad\left(\right.$ exponential with parameter $\left.\frac{1}{\alpha}\right)$
$E(X)=\alpha^{-\frac{1}{\beta}} \Gamma\left(1+\frac{1}{\beta}\right)$
$F(x)=1-e^{-\alpha x^{\beta}}$
$\operatorname{Var}(X)=\alpha^{-\frac{2}{\beta}}\left\{\Gamma\left(1+\frac{2}{\beta}\right)-\left[\Gamma\left(1+\frac{1}{\beta}\right)\right]^{2}\right\}$

- Useful in Reliability, life testing problems

Weibull Distribution

Ex)
$X=$ service life of a battery \sim Weibull, $\alpha=\frac{1}{2}, \beta=2$
(a) Expected service life?
(b) $P($ a battery will still be operating after 2 years $)=$?

Beta Distribution

- Provides positive density only in an interval of finite length
$X \sim$ Beta Distribution with parameters α and β if
$f(x)=\left\{\begin{array}{cl}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} & , 0<x<1(\alpha>0, \beta>0) \\ 0 & , \text { otherwise }\end{array}\right.$
$E(X)=\frac{\alpha}{\alpha+\beta}, \operatorname{Var}(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Ex)
$X=$ proportion of TV sets requiring service during the first year \sim beta, $\alpha=3, \beta=2$.
$P($ at least 80% of the model sold this year will require service in 1 year)

