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Chapters 4:  Continuous Variables, 
Continuous Probability Density Functions

Continuous RV’s PDF’s
Normal, Gamma, Exponential, χ2, F, T distributions
Central Limit Theorem (CLT)
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Continuous RV’s

A RV is continuous if it can take on any real value in a 
non-trivial interval (a ; b).

PDF, probability density function, for a cont. RV, Y, is 
a non-negative function pY(y), for any real value y, 
such that for each interval (a; b), the probability that Y 
takes on a value in (a; b), P(a<Y<b) equals the area 
under pY(y) over the interval (a: b).

pY(y)

a            b

P(a<Y<b)
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Convergence of density histograms to the PDF

For a continuous RV the density histograms converge 
to the PDF as the size of the bins goes to zero.

AdditionalInstructorAids\BirthdayDistribution_1978_systat.SYD
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Convergence of density histograms to the PDF

For a continuous RV the density histograms converge 
to the PDF as the size of the bins goes to zero.
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Computing Probabilities using PDFs

Example: 
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(i)   Exponential shape
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CDF (cumulative distribution function)

Example: 
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Measures of central tendency/variability for 
Continuous RVs

Mean

Variance

SD
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Facts about PDF’s of continuous RVs

Non-negative

Completeness

Probability
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Continuous Distributions

Uniform distribution

Normal distribution

Student’s T distribution

F-distribution

Chi-squared (     )

Cauchy’s distribution

Exponential distribution

Poisson distribution, …

2χ
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Uniform Distribution

Uniform Distribution PDF:  Y~Uniform(a;b)
pY(y)=1/(b-a), for each a<=y<=b, and pY(y)=0, otherwise.

a

1/(b-a)

b

Area = 1
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(Continuous) Uniform Distribution 

f(x) =
,αβ −

1
βα << x

0        , otherwise
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• X ~ Uniform Distribution with parameters α and β if

• random numbers follow 
Uniform between 0 and 1
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Uniform Distribution – CDF, mean, variance

Uniform Distribution CDF:
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Uniform Distribution – CDF, mean, variance

Mean:

Variance:

SD: 
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Continuous Distributions - Normal

(General) Normal distribution

(Standard) Normal distribution (µ=0, σ=1)
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(General) Normal Distribution

Normal Distribution PDF:  Y~Normal(µ, σ2)
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Standard Normal (Gaussian) Distribution

Normal Distribution PDF:  Y~Normal(µ=0, σ2=1)
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Effects of µ and σ (on the graphs of Normal Distribution)

140 160 180

shifts the curve along the axis

200

2 =174

2 = 61 =

(a)  Changing

1 = 160

160 180 200140

1 = 6

2 = 12

2 =1701 =

increases the spread and flattens the curve

(b)  Increasing

Mean is a measure of …
central tendency

Standard deviation is 
a measure of …

variability/spread
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Is symmetric about the mean! Bell-shaped and 
unimodal.

Mean = Median!

50% 50%

Mean

2.2

The Normal distribution density curve

N(µ, σ)

STAT 110A, UCLA, Ivo DinovSlide 20

Understanding the standard deviation: σ

(c)  Probabilities and numbers of standard deviations

Shaded area = 0.683 Shaded area = 0.954 Shaded area = 0.997

    68% chance of falling
between             and

− +

+
     95% chance of falling
between              and

+ 2

+2

3+

     99.7% chance of falling
between              and 3+

− 2 − 3

− 3− − 2

Probabilities/areas and numbers of standard deviations
for the Normal distribution

NormalCurveInteractive.html
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4035 45
0.0

0.1

0.2

150 160 170 180 190 200
.00

.02

.04

.06

(a)  Chest measurements of Quetelet’s Scottish soldiers (in.)

(b)  Heights of the 4294 men in the workforce database  (cm)

= 39.8 in.,      = 2.05 in.

= 174 cm,      = 6.57 cm

Normal density curve has

Normal density curve has

Two standardized histograms with 
approximating Normal density curve
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Basic method for obtaining probabilities

Sketch a Normal curve, marking the mean and other 
values of interest.

Shade the area under the curve that gives the desired 
probability.

Devise a way of getting the desired area from lower-
tail areas.

Obtain component lower-tail probabilities from a 
computer program
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180160 =174160 =174180=174

pr(X    180) pr(X    160) pr(160 < X    180) = difference

Shaded
area

(a)  Computing   pr(160 < X     180)

Shaded
area

Shaded
area

Programs supply We want

and

pr(160 < X    180)  =  pr(X   180)     pr(X   160)
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(c)  More Normal probabilities
        (values obtained from Minitab)

Note: 152.4cm = 5ft, 167.6cm = 5ft 6in., 177.8cm = 5ft 10in., 182.9cm = 6ft

pr(a < X  b) = differenceb
167.6
177.8
177.8
182.9

pr(X  b)
0.165
0.718
0.718
0.912

a
152.4
167.6
152.4
167.6

pr(X  a)
0.001
0.165
0.001
0.165

0.164
0.553
0.717
0.747

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Tabular representation of probabilities
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Programs supply

pr(X    25)

25 =27.2

We want

pr(X > 25)

25 =27.2

= 0.2874= ??

Since total area under curve = 1,    pr(X > 25) = 1 - pr(X     25)

Obtaining an upper-tail probability

pr(X > 25)

Generally,    pr(X > x)  =  1  -  pr(X     x)
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Continuous Distributions – Student’s T

Student’s T distribution [approx. of Normal(0,1)]
Y1, Y2, …, YN IID from a Normal(µ;σ)
Variance σ2 is unknown

In 1908, William Gosset (pseudonym Student)  derived the 
exact sampling distribution of the following statistics

T~Student(df=N-1), where 
Y

YYT
σ
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Density curves for Student’s t

∞

0 2 4- 2- 4

df  =  ×
[i.e., Normal(0,1)]

df  =  5
df  =  2

Figure 7.6.1 Student(df) density curves for various df.

We will come back to the
T-distribution at the end
of this chapter!
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Bias and Precision

The bias in an estimator is the distance between 
between the center of the sampling distribution of the 
estimator and the true value of the parameter being 
estimated. In math terms, bias = , where 
theta      is the estimator, as a RV,  of the true 
(unknown) parameter      .

Example, Why is the sample mean an unbiased
estimate for the population mean? How about ¾ of 
the sample mean? 
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Bias and Precision

The precision of an estimator is a measure of how 
variable is the estimator in repeated sampling. 

(a)   No bias, high precision (b)  No bias,  low precision

(c)  Biased, high precision (d)  Biased,  low precision

value of parameter value of parameter

value of parameter value of parameter
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Bias and Precision – 2 unbiased estimators of µ

Suppose: {Y1, Y2, ………….., Y4N}  IID (µ, σ).
Let 

And
Which estimator is better?      or      ?

Both are unbiased, but variance of second one is 
smaller estimator is more precise!!!
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Continuous Distributions – F-distribution

F-distribution k-samples of different sizes.

Snedecor's F distribution is most commonly used in tests of 
variance (e.g., ANOVA). The ratio of two chi-squares divided 
by their respective degrees of freedom is said to follow an F 
distribution 

{Y1;1, Y1;2, ………….., Y1;N1}  IID from a Normal(µ1;σ1)
{Y2;1, Y2;2,.., Y2;N2}  IID from a Normal(µ2;σ2)
.,..
{Yk;1, Yk;2, ….., Yk;N2}  IID from a Normal(µ2;σ2)

σ1= σ2= σ3=… σnk
= σ. (1/2 <= σk/σj<=2)

Samples are independent!

k
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Continuous Distributions – F-distribution

F-distribution k-samples of different sizes

s2
B is a measure of variability  of

sample means, how far apart they are.
s2

W reflects the avg. internal
variability within the samples.

TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squaresa F -statistic P -value

Between k -1 pr(F    f 0)

Within n tot - k

Total n tot - 1
aMean sum of squares = (sum of squares)/df

ni(x i . −x ..)2∑
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Continuous Distributions – χ2 [Chi-Square]
χ2 [Chi-Square] goodness of fit test:

Let {X1, X2, …, XN} are IID N(0, 1)
W = X1

2 + X2
2 + X3

2 + …+ XN
2

W ~ χ2(df=N)
Note: If {Y1, Y2, …, YN} are IID N(µ, σ), then

And the Statistics W ~ χ2(df=N-1)

E(W)=N;  Var(W)=2N
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Continuous Distributions – Cauchy’s

Cauchy’s distribution, X~Cauchy(t,s), t=location; s=scale

PDF(X):

PDF(Std Cauchy’s(0,1)):

The Cauchy distribution is (theoretically) important as an example of 
a pathological case. Cauchy distributions look similar to a normal
distribution. However, they have much heavier tails. When studying 
hypothesis tests that assume normality, seeing how the tests perform 
on data from a Cauchy distribution is a good indicator of how 
sensitive the tests are to heavy-tail departures from normality. The 
mean and standard deviation of the Cauchy distribution are 
undefined!!! The practical meaning of this is that collecting 1,000 
data points gives no more accurate of an estimate of the mean and 
standard deviation than does a single point (Cauchy Tdf Normal).
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Continuous Distributions – Review

Uniform, (General/Std) Normal, Student’s T, F, χ2, 
Cauchy distributions.

Remained to see a good ANOVA (F-distribution Example)

SYSTAT File Load (Data) 
C:\Ivo.dir\Research\Data.dir\WM_GM_CSF_tissueMap

s.dir\ATLAS_IVO_WM_GM.xls

Statistics ANOVA Est.Model 
Dependent(Value) Factors(Method, Hemi, TissueType)

[For 1/2/3-Way ANOVA]
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Continuous Distributions – Exponential

Exponential distribution, X~Exponential(λ)

The exponential model, with only one unknown parameter, is the 
simplest of all life distribution models.

E(X)=1/ λ;    Var(X)=1/ λ2; 

Another name for the exponential mean is the Mean Time To Fail
or MTTF and we have MTTF = 1/ λ. 
If X is the time between occurrences of rare events that happen on the average 
with a rate l per unit of time, then X is distributed exponentially with parameter λ. 
Thus, the exponential distribution is frequently used to model the time interval 
between successive random events. Examples of variables distributed in this 
manner would be the gap length between cars crossing an intersection, life-times 
of electronic devices, or arrivals of customers at the check-out counter in a grocery 
store. 

0     ;)( ≥= − xexf xλλ
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Continuous Distributions – Exponential

Exponential distribution, Example:

On weeknight shifts between 6 pm and 10 pm, there are an 
average of 5.2 calls to the UCLA medical emergency 
number. Let X measure the time needed for the first call on 
such a shift. Find the probability that the first call arrives 
(a) between 6:15 and 6:45 (b) before 6:30. Also find the 
median time needed for the first call  ( 34.578%; 72.865% ). 

We must first determine the correct average of this exponential 
distribution. If we consider the time interval to be 4x60=240 
minutes, then on average there is a call every 240 / 5.2 (or 46.15) 
minutes. Then X ~ Exp(1/46), [E(X)=46] measures the time in 
minutes after 6:00 pm until the first call. 

By-hand vs. ProbCalc.htm
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Continuous Distributions – Exponential Examples

Customers arrive at a certain store at an average of 15 per hour. What is the 
probability that the manager must wait at least 5 minutes for the first customer? 

The exponential distribution is often used in probability to model (remaining) 
lifetimes of mechanical objects for which the average lifetime is known and for 
which the probability distribution is assumed to decay exponentially. 

Suppose after the first 6 hours, the average remaining lifetime of batteries for a 
portable compact disc player is 8 hours. Find the probability that a set of batteries 
lasts between 12 and 16 hours. 

Solutions: 

Here the average waiting time is 60/15=4 minutes. Thus X ~ exp(1/4). E(X)=4.
Now we want P(X>5)=1-P(X <= 5).  We obtain a right tail value of .2865. So 
around 28.65% of the time, the store must wait at least 5 minutes for the first 
customer. 

Here the remaining lifetime can be assumed to be X ~ exp(1/8). E(X)=8. For the 
total lifetime to be from 12 to 16, then the remaining lifetime is from 6 to 10. We 
find that P(6 <= X <= 10) = .1859.
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Recall the example of Poisson approx to Binomial

Suppose P(defective chip) = 0.0001=10-4. Find the 
probability that a lot of 25,000 chips has > 2 defective!

Y~ Binomial(25,000, 0.0001), find P(Y>2). Note that 
Z~Poisson(λ =n p =25,000 x 0.0001=2.5)
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Normal approximation to Binomial

Suppose Y~Binomial(n, p)
Then Y=Y1+ Y2+ Y3+…+ Yn, where

Yk~Bernoulli(p) , E(Yk)=p  & Var(Yk)=p(1-p) 

E(Y)=np &  Var(Y)=np(1-p), SD(Y)= (np(1-p))1/2

Standardize Y:
Z=(Y-np) / (np(1-p))1/2

By CLT Z ~ N(0, 1). So, Y ~ N [np, (np(1-p))1/2]

Normal Approx to Binomial is 
reasonable when  np >=10   &   n(1-p)>10
(p & (1-p) are NOT too small relative to n).
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Normal approximation to Binomial – Example

Roulette wheel investigation:
Compute P(Y>=58),  where Y~Binomial(100, 0.47) –

The proportion of the Binomial(100, 0.47) population having 
more than 58 reds (successes) out of 100 roulette spins (trials).

Since np=47>=10   &   n(1-p)=53>10 Normal 
approx is justified.

Z=(Y-np)/Sqrt(np(1-p))   =                                  
58 – 100*0.47)/Sqrt(100*0.47*0.53)=2.2
P(Y>=58)   P(Z>=2.2) = 0.0139
True P(Y>=58) = 0.177, using SOCR (demo!)
Binomial approx useful when no access to SOCR avail.

Roulette has 38 slots
18red 18black 2 neutral
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Normal approximation to Poisson

Let X1~Poisson(λ) & X2~Poisson(µ)  X1+ X2~Poisson(λ+µ)

Let X1, X2, X3, …, Xk ~ Poisson(λ), and independent,
Yk = X1 + X2 + ··· + Xk ~ Poisson(kλ), E(Yk)=Var(Yk)=kλ.

The random variables in the sum on the right are 
independent and each has the Poisson distribution 
with parameter  λ.
By CLT the distribution of the standardized variable 
(Yk − kλ) / (kλ)1/2 N(0, 1), as k increases to infinity.

So, for  kλ >= 100,  Zk = {(Yk − kλ) / (kλ)1/2 }  ~  N(0,1).
Yk ~  N(kλ, (kλ)1/2).
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Normal approximation to Poisson – example

Let X1~Poisson(λ) & X2~Poisson(µ)  X1+ X2~Poisson(λ+µ)

Let X1, X2, X3, …, X200 ~ Poisson(2), and independent,
Yk = X1 + X2 + ··· + Xk ~ Poisson(400), E(Yk)=Var(Yk)=400.

By CLT the distribution of the standardized variable 
(Yk − 400) / (400)1/2 N(0, 1), as k increases to infinity.

Zk = (Yk − 400) / 20 ~ N(0,1) Yk ~ N(400, 400).
P(2 < Yk < 400) = (std’z 2 & 400) = 
P( (2−400)/20 < Zk < (400−400)/20 ) = P( -20< Zk<0) 
= 0.5
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Poisson or Normal approximation to Binomial?

Poisson Approximation (Binomial(n, pn) Poisson(λ) ):

n>=100  &  p<=0.01  &   λ =n p <=20
Normal Approximation

(Binomial(n, p) N ( np, (np(1-p))1/2) )
np >=10   &   n(1-p)>10
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Exponential family and arrival numbers/times

First, let Tk denote the time of the k'th arrival for k = 
1, 2, ... The gamma experiment is to run the process 
until the k'th arrival occurs and note the time of this 
arrival. 

Next, let Nt denote the number of arrivals in the time 
interval (0, t] for t ≥ 0. The Poisson experiment is to run 
the process until time t and note the number of 
arrivals. 

How are Tk &  Nt related?

Nt ≥ k Tk ≤ t

density function of the k'th arrival time is
fk(t) = (rt)k − 1re−rt / (k − 1)!, t > 0.
This distribution is the gamma

distribution with shape parameter k
and rate parameter r. Again, 1/r

is knows as the scale parameter. A more general
version of the gamma distribution,

allowing non-integer k,
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Independence  of continuous RVs

The RV’s {Y1, Y2, Y3, …, Yn} are independent if for any 
n-tuple {y1, y2, y3, …, yn}
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Standard Normal Curve 

The standard normal curve is described by the equation:

π2

2

2x

ey
−

=

Where remember, the natural number e ~ 2.7182…
We say: X~Normal(µ, σ), or simply X~N(µ, σ)
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Quincunx – Galton Board
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Standard Normal Approximation 

The standard normal curve can be used to estimate the percentage of 
entries in an interval for any process. Here is the protocol for this 
approximation:

Convert the interval (we need the assess the percentage of entries in) to 
standard units. We saw the algorithm already.
Find the corresponding area under the normal curve (from tables or online 
databases);

12         18        22

Data

What percentage of the 
density scale histogram
is shown on this graph?

Transform to Std.Units

Compute %

Report back %
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General Normal Curve 

The general normal curve is defined by:
Where µ is the average of (the symmetric) 
normal curve, and σ is the standard
deviation (spread of the distribution).

Why worry about a standard and general normal curves?
How to convert between the two curves? 

2

22

2)(

2πσ

σ
µ−

−

=

x

ey

STAT 110A, UCLA, Ivo DinovSlide 64

Areas under Standard Normal Curve –
Normal Approximation

Protocol: 
Convert the interval (we need to assess the percentage of entries in) 
to Standard units. Actually convert the end points in Standard units.

In general, the transformation  X  (X-µ)/σ, standardizes the 
observed value X, where µ and σ are the average and the 
standard deviation of the distribution X is drawn from.

Find the corresponding area under the normal curve (from tables or 
online databases);

Sketch the normal curve and shade the area of interest
Separate your area into individually computable sections
Check the Normal Table and extract the areas of every sub-
section
Add/compute the areas of all 
sub-sections to get the total area.
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Areas under Standard Normal Curve – Example 

Many histograms are similar in shape to the standard normal curve. For 
example, persons height. The height of all incoming female army 
recruits is measured for custom training and assignment purposes (e.g., 
very tall people are inappropriate for constricted space positions, and 
very short people may be disadvantages in certain other situations). The 
mean height is computed to be 64 in and the standard deviation is 2 in. 
Only recruits shorter than 65.5 in will be trained for tank operation and 
recruits within ½ standard deviations of the mean will have no 
restrictions on duties.

What percentage of the incoming recruits will be trained to operate 
armored combat vehicles (tanks)?

About what percentage of the recruits will have no restrictions on 
training/duties?
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Areas under Standard Normal Curve - Example 
The mean height is 64 in and the standard deviation is 2 in. 

Only recruits shorter than 65.5 in will be trained for tank operation.
What percentage of the incoming recruits will be trained to operate 
armored combat vehicles (tanks)?

Recruits within ½ standard deviations of the mean will have no 
restrictions on duties. About what percentage of the recruits will 
have no restrictions on training/duties?

60     62     64    65.5 66   68

X (X-64)/2
65.5 (65.5-64)/2 = ¾
Percentage is   77.34%

X (X-64)/2
65 (65-64)/2 = ½
63 (63-64)/2 = -½

Percentage is   38.30%60     62  63   64  65  66   68
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Percent 1% 5% 10% 20% 30% 70% 80% 90% 95% 99%
Propn 0.01 0.05 0.1 0.2 0.3 0.7 0.8 0.9 0.95 0.99
Percentile

(cm) 148.3 152.5 154.8 157.5 159.4 166.0 167.9 170.6 172.9 177.1
(ft'in") 4'10" 5'0" 5'0" 5'2" 5'2" 5'5" 5'6" 5'7" 5'8” 5'9"

 (+ frac) 3/8" 7/8" 3/4" 3/8" 1/8" 1/8" 1/8" 3/4"

(c)  Further percentiles of women’s heights

prob = 0.8

=162.7

prob = p

(a)  p-Quantile

x  = ??p

(b)  80th percentile (0.8-quantile)
of women’s heights

Programs supply  x p

Program returns 167.9.
Thus 80% lie below 167.9.

Normal(   = 162.7,    = 6.2)

(or quantile)

x   = ??0.8

x-value for which  pr(X    x  ) = pp

The inverse problem – Percentiles/quantiles

80% of people have 
height below the 
80th percentile. 
This is EQ to 
saying there’s 
80% chance that a 
random 
observation from 
the distribution 
will fall below the 
80th percentile.

The inverse problem is what is the height for the 80th percentile/quantile? So 
far we studied given the height value what’s the corresponding percentile?
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Identifying Common Distributions – QQ plots

Plots are useful for identifying candidate 
distribution model(s) in approximating a 
population (data) distribution.
Histograms, can reveal much of the features of 
the data distribution.
Quantile-Quantile plots indicate how well the 
model distribution agrees with the data.
q-th quantile, for 0<q<1, is the (data-space) 
value, Vq, at or below which lies a proportion q 
of the data.
E.g., q=0.80, Y={1,2,3,4,5,6,7,8,9,10}. The q-th

quantile Vq= 8, since 80% of the data is at or 
below 8.
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Identifying Common Distributions – QQ plots

Quantile-Quantile plots indicate how well the model 
distribution agrees with the data.

q-th quantile, for 0<q<1, is the (data-space) value, Vq, at or 
below which lies a proportion q of the data.

1 Graph of the CDF, FY(y)=P(Y<=Vq)=q

0

q

Vq
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Constructing QQ plots

Start off with data {y1, y2, y3, …, yn}
Order statistics y(1) <= y(2) <= y(3) <=…<= y(n)
Compute quantile rank, q(k), for each observation, y(k),

P(Y<= q(k)) = (k-0.375) / (n+0.250),
where Y is a RV from the (target) model distribution.
Finally, plot the points (y(k), q(k)) in 2D plane, 1<=k<=n.
Note: Different statistical packages use slightly 
different formulas for the computation of q(k). However, 
the results are quite similar. This is the formulas 
employed in SAS.
Basic idea: Probability that: 
P((model)Y<=(data)y(1))~ 1/n;  
P(Y<=y(2)) ~ 2/n;   P(Y<=y(3)) ~ 3/n;    …
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Example - Constructing QQ plots

Start off with data {y1, y2, y3, …, yn}.

Plot the points (y(k), q(k)) in 2D plane, 1<=k<=n.
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Data transformations

In practice oftentimes observed data does not directly fit any of 
the models we have available. In these cases transforming the raw data 
may provide/satisfy the requirements for using the distribution models we know.

Common transformations:  Y=T(X), X=raw data, Y=new
Data positively skewed to right use T(X)=Sqrt(X) or 
T(X)=log(X)

If data varies by more than 2 orders of magnitude 
For X>0, use T(X)=log(X)
For any X, use T(X)= –1/X.
If X are counts (categorical var’s), T(X)=Sqrt(X)
X=proportions & largest/ smallest Proportions >=2, use 

Logit transform: T(X) = log[X/(1-X)].
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Data transformations - Example

For the BirthDay data:
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Data transformations - Example

BirthDay data: C:\Ivo.dir\UCLA_Classes\Winter2002\AdditionalInstructorAids
BirthdayDistribution_1978_systat.SYD
SYSTAT, Graph Probability Plot, Var4, Normal Distribution

-3
-2
-1
0
1
2
3
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Data transformations - Example

BirthDay data: C:\Ivo.dir\UCLA_Classes\Winter2002\AdditionalInstructorAids
BirthdayDistribution_1978_systat.SYD
SYSTAT, Graph Probability Plot, COS(Var2), Normal Distribution

T(X)=COS(X)
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For random samples from a Normal distribution, 

is exactly distributed as Student(df = n - 1)
but methods we shall base upon this distribution for T work 
well even for small samples sampled from distributions 
which are quite non-Normal.
df is number of observations –1, degrees of freedom.

)(
)(

XSE
XT µ−

=

Student’s t-distribution

Recall that for samples 
from N( µ , σ )

)1,0(~
/

)(
)(
)( N

n
X

XSD
XZ

σ
µµ −

=
−

=

Approx/Exact
Distributions
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Density curves for Student’s t

∞

0 2 4- 2- 4

df  =  ×
[i.e., Normal(0,1)]

df  =  5
df  =  2

Figure 7.6.1 Student(df) density curves for various df.
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TABLE 7.6.1  Extracts from the Student's t-Distribution Table
prob

df .20 .15 .10 .05  .025 .01 .005 .001 .0005 .0001
6 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959 8.025
7 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408 7.063
8 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041 6.442
… … … … … … … … … … …
10 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587 5.694

 … … … … … … … … … … …
15 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073 4.880
… … … … … … … … … … …

0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.719∞

Reading Student’s t table

t-value

Desired
df

Desired
upper-tail prob

(prob)tdf

0

prob

Student(df) density

Do we need an simulation of T and Z
scores? Use the Online compute-engine …
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Practice Problems –
Areas under Normal Curve

Ex 1) Z = a standard normal R.V.

(a)  

(b) 

(c)

=< )43.1(ZP

=−> )89.0(ZP

=−<<− )65.016.2( ZP

Ex 2) X ~ normal, , 

(a)  

(b) 

(c)

30=µ 6=σ

=> )17( XP

=< )22( XP

=<< )4132( XP
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Application of Normal Distribution
Ex 3) 

Soft-drink machine; µ= 200(milliliters/cup), σ = 15

(a) P(a cup will contain more than 224)

(b) P(a cup contains between 191 and 209)

(c) How many cups will overflow if 230 milliliter cups used for

the next 1000 drinks?

(d) Below what value do we get the smallest 25% of the drinks?
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Normal Approximation to Binomial

,

Poisson  vs.  Binomial

Normal  vs.  Binomial

Theorem X = binomial, 

Approximation becomes better as n gets larger

np=µ npq=2σ

)1,0;(~ zn
npq

npXZ −
= ∞→nThen, as

5.0→p

}5.05.0{}{ 21
21 σ

µ
σ

µ −+
≤≤

−−
≈≤≤

kZkPkXkP







 −+

<<
−−

≈+<<−==
σ

µ
σ

µ 5.05.0}5.05.0{}{ kZkPkXkPkXP
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Normal Approximation to Binomial

Ex 1) X ~ binomial, n = 15, p = 0.4  Find P(X =7)

(1) binomial 

(2) normal

Ex 2)

X ~ binomial, n = 15, p = 0.2 

Find )41( ≤≤ XP
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Gamma and Exponential Distributions

Gamma Distribution
Gamma function : dxex x−

∞

−∫=
0

1)( ααΓ 0>α,

Properties
)1()1()( −−= αΓααΓ

)!1()( −= nnΓ

1)1( =Γ

0>α 0>β

0 , otherwise

=)(xf

βα
α αΓβ

x

ex
−

−1

)(
1

0>x,

where ,

- X ~ Gamma with parameters α and β if

for positive integer n

π=Γ )5.0(
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Gamma and Exponential Distributions

Gamma Distribution (cont’d)

If α =1 ; ,   x > 0, β > 0
Cdf: incomplete gamma function

Ex 4) X ~ Gamma, α = 2, β = 1 Find P(1.8 < X < 2.4)

gamma β = 1

αβ=)( XE 2)( αβ=XVar
β

β

x

exf
−

=
1)(
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Gamma and Exponential Distributions

Exponential Distribution
Useful in modeling time between arrivals at service facilities 

One Parameter ; β

a special case of Gamma 

=)(xf
x

e β

β

11 −
0>x

0  , otherwise

- ,

β=)(XE 2)( β=XVar,

mean=standard deviation

β
1

f(x)

x

β
1 : rate

β
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Gamma and Exponential Distributions

Exponential Distribution (cont’d)
CDF : ββ

β

xxx

edxexXPxF
−−

−==≤= ∫ 11)()(
0

β
x

exFxXP
−

=−=> )(1)(

-

Ex 1)  X =  response time at a certain on-line computer terminal

X ~ exponential with E(X) = 5(sec.). 

(a)

(b)

,   x > 0

,  x > 0

=≤ )10( XP
=≤≤ )105( XP

- Tail probability

P{X>x}
β
1

f(x)

x

F(x)
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#events in t: Poisson w. mean λt

Gamma and Exponential Distributions

Relationship to the Poisson Process
# of events in any time interval t has a Poisson distribution w/
parameter the distribution of the elapsed time between 
two successive events is exponential with parameter 

tλ
λ

β 1
=

Why?   Poisson : P(no events in t) = 

Let  X = time until the first event. 

Then P(no events in t) = 

i.e.,                       = CDF of exponential with             or   

t
t

etetP λ
λ λλ −

−

==
!0

)();0(
0

tetXP λ−=> )(

tetXP λ−−=≤≤ 1)0(
β

λ 1
=

λ
β 1

=

Exponential 
w. 1/λ

tX
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Gamma and Exponential Distributions

- The distribution of the additional lifetime = The original
distribution of lifetime (Memoryless Property)

Model for Component Lifetime
Exponential Dist’ is useful due to “Memoryless property”

Memoryless property

if T~ exponential with   (     > 0)β

)(
),()|(

tTP
tTttTPtTttTP

>
>+>

=>+>
∆∆

)(
)(

tTP
ttTP

>
+>

=
∆

)( tTPe
e

e t

t

tt

∆β
∆

β

β
∆

>===
−

−

+
−t  t+∆t

0  ∆t
0
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Gamma and Exponential Distributions
Ex 2) Hotline 

# calls received at a hotline ~ Poisson with  = 0.5/day.

X = # days between successive calls.

(a)  P(X > 2) =

(b) P(X > 5 | X > 3) = 

Ex 3)

T (= time to failure (in years) of a component )

~ exponential with 

(a) P(T > 8) = 

(b) 5 components are installed.

P(at least 2 are functioning at the end of 8 years) =

5=β
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Chi-Square Distribution

Special case of Gamma

α = n / 2, β = 2 where n = a positive integer

X ~ Chi-Square with parameter n (degree of freedom) if

f (x) =
2

1
2

2 )(2

1

2

xn

n ex
n

−−

Γ ,  x > 0

0 ,   otherwise

nnXE =⋅== 2
2

)( αβ

nnXVar 22
2

)( 22 =⋅== αβ

∑
=

=
n

i
iZX

1

2

follows χ2 with df=n, 
where Zi are iid N(0,1)
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Chi-Square Distribution
Useful in statistical inference, hypothesis 
testing
The shape of 

χ2 Distribution
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Lognormal Distribution

X ~ lognormal with parameters µ and σ, if 

f (x) =

E(X) = exp( µ + σ 2/ 2)   

Var(X) = exp ( 2µ + σ 2) {exp (σ 2) –1}
Ex)  Let X ~ lognormal with parameter µ = 3.2 and σ, = 1

P( X > 8) =

),;(~)ln( σµxNX

2

2

2
)(ln

   2
1 σ

µ

σπ

−
−

x

e
x

0≥x

0 ,   otherwise
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Weibull Distribution

X ~ Weibull Distribution with parameters α and β if

f (x) = 

If β = 1 ; (exponential with parameter     )

Useful in Reliability, life testing problems 

βαβαβ xex −− 1 ,  x > 0

0 ,   otherwise

xexf αα −=)(
α
1

)11()(
1

β
Γα β +=

−

XE

})]11([)21({)( 2
2

β
Γ

β
Γα β +−+=

−

XVar

βαxexF −−= 1)(
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Weibull Distribution

The shape of Weibull Distribution
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Weibull Distribution

Ex)

X = service life of a battery ~ Weibull, ,  β =2

(a) Expected service life?

(b) P(a battery will still be operating after 2 years) = ?  

2
1

=α
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Beta Distribution

Provides positive density only in an interval of finite length

X ~ Beta Distribution with parameters α and β if

11 )1(
)()(

)( −− −
+ βα

βΓαΓ
βαΓ xx ,  0 < x < 1 (α>0, β>0 )

0 ,   otherwise

βα
α
+

=)(XE
)1()(

)(
2 +++

=
βαβα

αβXVar,   

Ex)

X = proportion of TV sets requiring service during the first year

~ beta, α = 3 , β = 2 .

P(at least 80% of the model sold this year will require service in 1 year) 

f (x) = 
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Beta Distribution

The shape of Beta Distribution
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Relation among Distributions

Normal (X)
2,σµ

Normal (Z)
1,0

σ
µ−

=
XZ

Lognormal (Y)
2,σµ

YX ln= XeY =
Chi-square (   )

n

2χ

∑ =
=

n
i iZ

1
22χ

Gamma
βα ,

2,2/ == βα n

Exponential(X)
β

1=α

n=2

Weibull
βγ ,

1=γ

Uniform(U)
1,0

UX lnβ−=

Uniform(X)
βα ,

αβ
α

−
−

=
XU ααβ +−= UX )(

Beta
βα , 1== βα

F (df1, df2)

2
1

χ
χ

=F


