

•Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

• Teaching Assistant: Maria Chang, UCLA Statistics

University of California, Los Angeles, Spring 2003 http://www.stat.ucla.edu/~dinov/

at 1104, UCLA, Ivo Dinov

# Chapter 5: Marginal & Joint PDF's Central Limit Theorem (CLT)

- Jointly distributed RV's
- •Expected Value, Covariance, Correlation
- Distributions of sample statistics
- •Central Limit Theorem (CLT)

Introduction

• If X and Y are two random variables, the probability distribution that defines their simultaneous behavior is a *Joint Probability Distribution*.

## Examples:

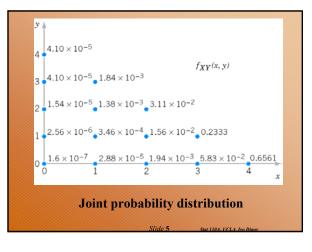
- Signal transmission: X is high quality signals and Y low quality signals.
- Molding: X is the length of one dimension of molded part, Y is the length of another dimension.
- THUS, we may be interested in expressing probabilities expressed in terms of X and Y, e.g., <u>*P*(2.95<X<3.05 and 7.60<Y<7.8)</u>

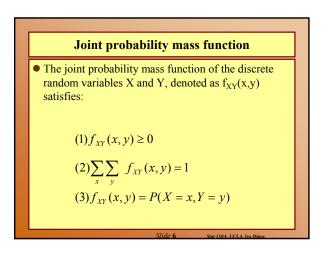
## Two discrete random variables

- <u>Range of random variables (X,Y)</u> is the set of points (x,y) in 2D space for which the probability that X=x and Y=y is positive.
- If X and Y are discrete random variables, the joint probability distribution of X and Y is a description of the set of points (x,y) in the range of (X,Y) along with the probability of each point.

Stat 110 A UCLA Inc. D.

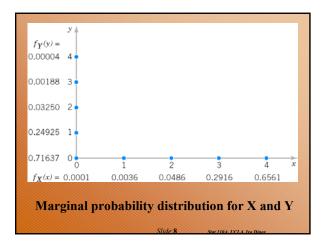
• Sometimes referred to as *Bivariate probability distribution*, or *Bivariate distribution*.

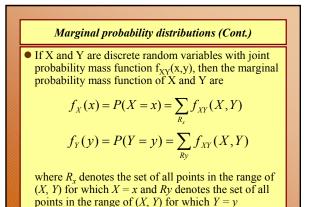


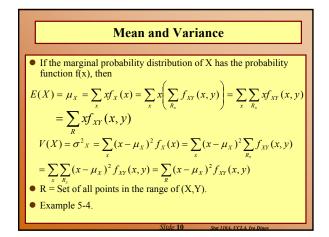


### **Marginal probability distributions**

- Individual probability distribution of a random variable is referred to as its <u>Marginal Probability</u> <u>Distribution.</u>
- Marginal probability distribution of X can be determined from the joint probability distribution of X and other random variables.
- Example 5-3: <u>Marginal probability distribution of X</u> <u>is found by summing the probabilities in each</u> <u>column</u>, <u>for y, summation is done in each row.</u>



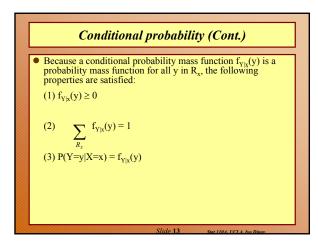


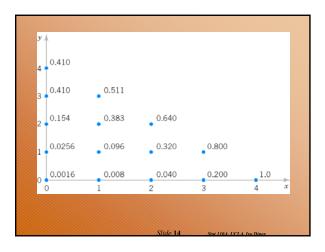


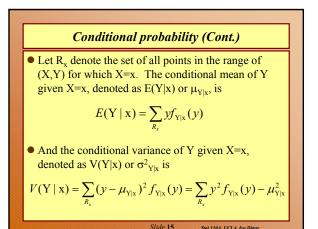
| J     | oint proba                                                | bility       | mass         | funct        | ion – exampl                                        | le        |
|-------|-----------------------------------------------------------|--------------|--------------|--------------|-----------------------------------------------------|-----------|
|       |                                                           |              |              |              | iting to catch the first<br>fish, Y, is given below |           |
|       | $P \{X=i, Y=k\}$                                          | 1            | k<br>2       | 3            | Row Sum<br>$P\{X=i\}$                               |           |
|       | i 2                                                       | 0.01<br>0.01 | 0.02<br>0.02 | 0.08<br>0.08 | 0.11<br>0.11                                        |           |
|       | 3<br>Column Sum P<br>{Y=k}                                | 0.07<br>0.09 | 0.08         | 0.63         | 0.78<br>1.00                                        |           |
|       | <u> </u>                                                  |              | 3 minutes    | to catch t   | he first fish and 3 m                               | inutes to |
|       |                                                           |              |              |              | ch the first fish is:<br>ch the first fish is (c    | ircle all |
|       | are correct):<br>chance of waiting                        | at least     | two minu     | ites to cat  | <b>ch the first fish</b> is (ci                     | ircle     |
| • The | e, one or more):<br>chance of waiting<br>minutes to catch |              |              |              | ch the first fish and                               | at most   |

de 11

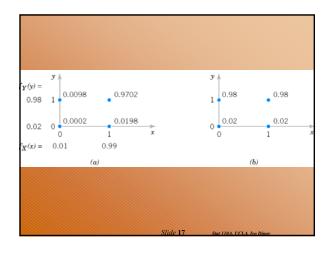
| Conditional probabi                                                                                                       | lity             |
|---------------------------------------------------------------------------------------------------------------------------|------------------|
| Given discrete random variables X a probability mass function f <sub>XY</sub> (X,Y), probability mass function of Y giver | the conditional  |
| $f_{Y x}(y x) = f_{Y x}(y) = f_{XY}(x,y)/f_X(x)$                                                                          | for $f_X(x) > 0$ |



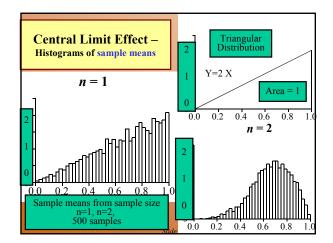


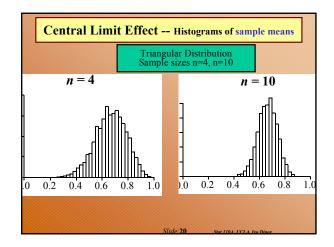


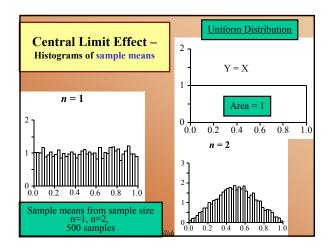
| Independence                                                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| • For discrete random variables X and Y, if any one of the following properties is true, the others are also true, and X and Y are independent. |  |
| (1) $f_{XY}(x,y) = f_X(x) f_Y(y)$ for all x and y                                                                                               |  |
| (2) $f_{Y x}(y) = f_Y(y)$ for all x and y with $f_X(x) > 0$                                                                                     |  |
| (3) $f_{X y}(y) = f_X(x)$ for all x and y with $f_Y(y) > 0$                                                                                     |  |
| (4) $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for any sets A and B in the range of X and Y respectively.                                     |  |
| Slide 16 Sout 1104, UCL4, Ivy Dingo                                                                                                             |  |

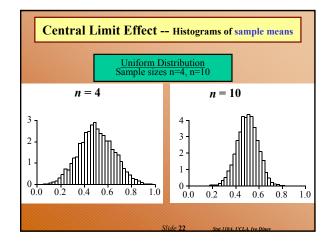


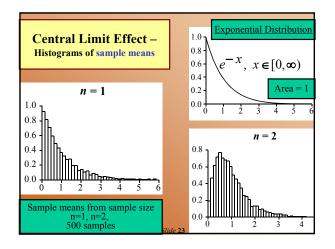
| Recall we looked at the sampling distribution of $\overline{X}$ |  |  |  |  |  |
|-----------------------------------------------------------------|--|--|--|--|--|
| ple,                                                            |  |  |  |  |  |
|                                                                 |  |  |  |  |  |
| ple<br>ne<br>f                                                  |  |  |  |  |  |
|                                                                 |  |  |  |  |  |

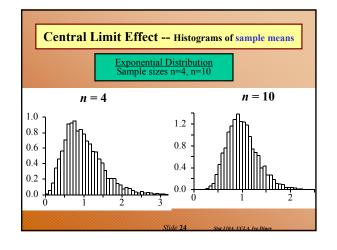


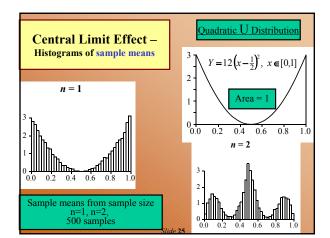


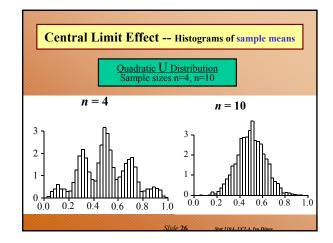












# Central Limit Theorem – heuristic formulation Central Limit Theorem: When sampling from almost any distribution, $\overline{X}$ is approximately Normally distributed in large samples. Show Sampling Distribution Simulation Applet: file://C./vo.dir/UCLA\_Classes/Winter2002/AdditionalInstructorAids/ Simpling Distribution Simulation Applet: file://C./vo.dir/UCLA\_Classes/Winter2002/AdditionalInstructorAids/ Simpling Distribution Applet Inni

# Central Limit Theorem – theoretical formulation

Let  $\{X_1, X_2, ..., X_k, ...\}$  be a sequence of independent observations from one specific random process. Let and  $E(X) = \mu$  and  $SD(X) = \sigma$  and both be finite  $(0 < \sigma < \infty; |\mu| < \infty)$ . If  $\overline{X}_n = \frac{1}{n} \sum_{k=1}^{n} X_k$  sample-avg, Then  $\overline{X}$  has a <u>distribution</u> which approaches

Then X has a <u>distribution</u> which approa N( $\mu$ ,  $\sigma^2/n$ ), as  $n \rightarrow \infty$ .

## Review

- What does the central limit theorem say? Why is it useful? (If the sample sizes are large, the mean in Normally distributed, as a RV)
- In what way might you expect the central limit effect to differ between <u>samples from a symmetric</u> distribution and <u>samples from a very skewed</u> <u>distribution</u>? (Larger samples for non-symmetric distributions to see CLT effects)
- What other important factor, apart from skewness, slows down the action of the central limit effect?

Slide 20

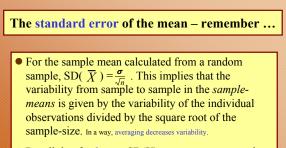
tat 110A. UCLA. I

(Heavyness in the tails of the original distribution.)

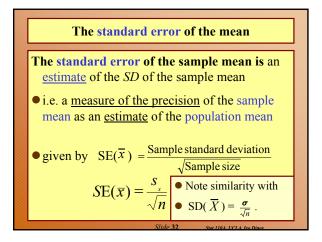
# Review

- When you have data from a moderate to small sample and want to use a normal approximation to the distribution of  $\overline{X}$  in a calculation, what would you want to do before having any faith in the results? (30 or more for the sample-size, depending on the skewness of the distribution of X. Plot the data - non-symmetry and heavyness in the tails slows down the CLT effects).
- Take-home message: CLT is an application of statistics of paramount importance. Often, we are <u>not</u> <u>sure of the distribution of an observable process</u>. However, the CLT gives us a theoretical description of the distribution of the sample means as the samplesize increases (N(μ, σ<sup>2</sup>/n)).

ide 30 Stat 110A, UCLA, Ivo I



• Recall that for *known* SD(X)= $\sigma$ , we can express the SD( $\overline{X}$ ) =  $\frac{\sigma}{\sqrt{n}}$ . How about if SD(X) is *unknown*?!?



|                                                                |                         | 111111    | 111111    | <u></u>  | <u>010000</u> | <u>1999 - 1999</u> | 000000 | <u> 111111</u>    | <u>11111111</u> |          |
|----------------------------------------------------------------|-------------------------|-----------|-----------|----------|---------------|--------------------|--------|-------------------|-----------------|----------|
|                                                                | Ca                      | vend      | ish's     | 1798     | data          | l on n             | nean ( | densit            | y of t          | he       |
| Earth, g/cm <sup>3,</sup> relative to that of H <sub>2</sub> O |                         |           |           |          |               |                    |        |                   |                 |          |
|                                                                | 5.50                    | 5.61      | 4.88      | 5.07     | 5.26          | 5.55               | 5.36   | 5.29              | 5.58            | 5.65     |
|                                                                | 5.57                    | 5.53      | 5.62      | 5.29     | 5.44          | 5.34               | 5.79   | 5.10              | 5.27            | 5.39     |
|                                                                | 5.42                    | 5.47      | 5.63      | 5.34     | 5.46          | 5.30               | 5.75   | 5.68              | 5.85            |          |
| 5                                                              | Source: C               | Cavendisl | h [1798]. |          |               |                    |        |                   |                 |          |
|                                                                | al of 29 i<br>isuring I |           | attractio | on to ma |               | 0 000              | *      | /o-stand<br>യെ യാ | for t           | true val |
| 5.0                                                            |                         |           |           |          |               |                    |        |                   |                 |          |
|                                                                | 5.                      | 0         | 5         | .2       |               | 5.4                |        | 5.6               |                 | 5.8      |
|                                                                | 5.                      | 0         | -         |          | red de        |                    | g/cm   | 2.0               |                 | 5.8      |

| Cavendish's 1798 data on mean density of the<br>Earth, g/cm <sup>3,</sup> relative to that of H <sub>2</sub> O                                                                       |      |      |      |      |      |      |              |              |      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|--------------|--------------|------|--|
| 5.50                                                                                                                                                                                 | 5.61 | 4.88 | 5.07 | 5.26 | 5.55 | 5.36 | 5.29         | 5.58         | 5.65 |  |
| 5.57<br>5.42                                                                                                                                                                         |      | 5.62 |      |      | 5.34 |      | 5.10<br>5.68 | 5.27<br>5.85 | 5.39 |  |
| 5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85<br>Source: Cavendis h [1798].                                                                                                           |      |      |      |      |      |      |              |              |      |  |
| Sample mean $\bar{x} = 5.447931 \text{ g/cm}^3$<br>and sample SD = $s_x = 0.2209457 \text{ g/cm}^3$                                                                                  |      |      |      |      |      |      |              |              |      |  |
| and sample SD = $S_X = 0.2209437 \text{ g/cm}$<br>Then the standard error for these data is:<br>$SE(\overline{X}) = \frac{S_X}{\sqrt{n}} = \frac{0.2209457}{\sqrt{29}} = 0.04102858$ |      |      |      |      |      |      |              |              |      |  |