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Introduction

® [f X and Y are two random variables, the probability
distribution that defines their simultaneous behavior
is a Joint Probability Distribution.

Examples:
W Signal transmission: X is high quality signals and Y low
quality signals.
B Molding: X is the length of one dimension of molded part,
Y is the length of another dimension.

® THUS, we may be interested in expressing
probabilities expressed in terms of X and Y, e.g.,
P(2.95<X<3.05 and 7.60<Y<7.8)
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Chapter 5: Marginal & Joint PDF’s
Central Limit Theorem (CLT)

®Jointly distributed RV’s
®Expected Value, Covariance, Correlation
®Distributions of sample statistics

®(Central Limit Theorem (CLT)

Two discrete random variables

® Range of random variables (X,Y) is the set of points
(x,y) in 2D space for which the probability that X=x

and Y=y is positive.

® [f X and Y are discrete random variables, the joint
probability distribution of X and Y is a description of
the set of points (x,y) in the range of (X,Y) along
with the probability of each point.

® Sometimes referred to as Bivariate probability
distribution, or Bivariate distribution.

Joint probability mass function

® The joint probability mass function of the discrete
random variables X and Y, denoted as fyy(x,y)
satisfies:
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Marginal probability distributions

| ® Individual probability distribution of a random
variable is referred to as its Marginal Probability
Distribution.

® Marginal probability distribution of X can be
determined from the joint probability distribution of
X and other random variables.

® Example 5-3: Marginal probability distribution of X
is found by summing the probabilities in each
column, fory, summation is done in each row.

Marginal probability distributions (Cont.)

® [f X and Y are discrete random variables with joint
probability mass function fxy(x,y), then the marginal
probability mass function of X and Y are

fe@)=PX =x)=3 f,(X.Y)
=P =p)=3 fiy(X.Y)

where R, denotes the set of all points in the range of
(X, Y) for which X = x and Ry denotes the set of all
points in the range of (X, Y) for which Y =y

Joint probability mass function — example

The joint density, P{X,¥}, of the number of minutes waiting to catch the first fish, X,
and the number of minutes waiting to catch the second fish, ¥, is given below.

P{X=iY=k} k Row Sum
1 2 3 P{X=i}
1 0.01 0.02 0.08 0.11
i 2 0.01 0.02 0.08 0.11
3 0.07 0.08 0.63 0.78
Column Sum P |0.09 0.12 0.79 1.00
Y=k

e The (joint) chance of waiting 3 minutes to catch the first fish and 3 minutes to
catch the second fish is:

e The (marginal) chance of waiting 3 minutes to catch the first fish is:

o The (marginal) chance of waiting 2 minutes to catch the first fish is (circle all
that are correct):

e The chance of waiting at least two minutes to catch the first fish is (circle
none, one or more):

e The chance of waiting at most two minutes to catch the first fish and at most
two minutes to catch the second fish is (circle none, one or more):
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Xand Y

| Mean and Variance |

® [f the marginal probability distribution of X has the probability
function f(x), then
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® R — Set of all points in the range of (X,Y).

® Example 5-4.

Conditional probability

® Given discrete random variables X and Y with joint
probability mass function fy(X,Y), the conditional
probability mass function of Y given X=x is

(Y1) = fy(@) = by (xy)/ix(x)  for f(x) > 0




Conditional probability (Cont.)

® Because a conditional probability mass function fy,(y) is a
probability mass function for all y in R, the following
properties are satisfied:

(D) fy(y) 20
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Conditional probability (Cont.)

® Let R, denote the set of all points in the range of
(X,Y) for which X=x. The conditional mean of Y
given X=x, denoted as E(Y[x) or py, is

E(Y[X) =) v ()

® And the conditional variance of Y given X=x,
denoted as V(Y[x) or c%y,, is

V(Y|x)= Z(y - ﬂy|x)2fy|x = zyszb( ) _ﬂsz{\x
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Independence

® For discrete random variables X and Y, if any one of
the following properties is true, the others are also
true, and X and Y are independent.

(D) fiy(xy) = fx(0) fy(y)  forall x and y
(2) fy(y) = fy(y) for all x and y with fx(x) > 0
(3) fy(y) = fx(x) for all x and y with fy(y) > 0

4)P(X e A, Y € B)=P(X € A)P(Y € B) for any
sets A and B in the range of X and Y respectively.

Recall we looked at the sampling distribution of X

® For the sample mean calculated from a random sample,
E(X) =pand SD( X) =7 , provided
_ Vn
X =X +X,+ ... + X )/n, and X,~N(u, c). Then

® X~ Ny, %). And variability from sample to sample
in the sample-means is given by the variability of the
individual observations divided by the square root of
the sample-size. In a way, averaging decreases variability.




Central Limit Effect —

Histograms of sample means
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Central Limit Effect —

Histograms of sample means
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Central Limit Theorem — heuristic formulation

Central Limit Theorem:
When sampling from almost any distribution,

X is approximately Normally distributed in large samples.

Review

® What does the central limit theorem say? Why is it
useful? qs the sample sizes are Jarge, the mean in Normally distibuted, as a RV)

® [n what way might you expect the central limit effect
to differ between samples from a symmetric
distribution and samples from a very skewed
distribution? (Larger samples for non-symmetric distributions to see CLT effects)

® What other important factor, apart from skewness,
slows down the action of the central limit effect?

(Heavyness in the tails of the original distribution.)

Central Limit Effect -- Histograms of sample means
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Central Limit Theorem —
theoretical formulation

Let iX XX J( be a sequence of independent
1. 2 k .
observations from one specific random process. Let
and E(X)=pu and SD(X)=o nand both be
finite (0 <o <o0; | p|<0). If X =1 Y X, sample-avg,
nonp—q é
Then X has a distribution which approaches
N(w, 6%/n), as n— .

Review

® When you have data from a moderate to small sample
and want to use a normal approximation to the
distribution of X in a calculation, what would you
want to do before having any faith in the results? Goor
more for the sample-size, depending on the skewness of the distribution of X. Plot
the data - non-symmetry and heavyness in the tails slows down the CLT effects).

® Take-home message: CLT is an application of
statistics of paramount importance. Often, we are not
sure of the distribution of an observable process.
However, the CLT gives us a theoretical description
of the distribution of the sample means as the sample-

size increases (N, o¥m).




The standard error of the mean — remember ...

® For the sample mean calculated from a random
sample, SD( X ) =% . This implies that the
variability from sample to sample in the sample-
means is given by the variability of the individual
observations divided by the square root of the
sample-size. In a way, averaging decreases variability.

® Recall that for known SD(X)=c, we can express the

SD( X’) = % . How about if SD(X) is unknown?!?

Cavendish’s 1798 data on mean density of the
Earth, g/cm> relative to that of H,0

550 5.61 488 507 526 555 536 529 558 5.65

557 553 562 529 544 534 579 510 527 539

542 547 563 534 546 530 575 568 585

Source:Cavendish [1798].

Total of 29 measurements obtained by x 2 fT wo-standard-error interval
measuring Earth’s attraction to masses H——8&——| for true value
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5.0 52 5.4 5.6 5.8
Measured density (g/cm )3

The standard error of the mean

The standard error of the sample mean is an
estimate of the SD of the sample mean

®i.c. a measure of the precision of the sample
mean as an estimate of the population mean

®givenby SE (f ) = Sample standard deviation

J Sample size

SE (f) = % Note similarity with

/n|e sp(X)= <.

Cavendish’s 1798 data on mean density of the
Earth, g/cm> relative to that of H,O

550 5.61 488 507 526 555 536 529 558 5.65

557 553 562 529 544 534 579 510 527 539

542 547 563 534 546 530 575 5.68 585

Source:Cavendish [1798].

Sample mean x=5447931 g/ om’

and sample SD = 5 =02200457 g/em’

Then the standard error for these data is:

— S 0.2209457
SE(X)=—£="""""""__0.04102858
O == o




