
1

Stat 110A, UCLA, Ivo Dinov Slide 1

UCLA  STAT 110 A
Applied Probability & Statistics for 

Engineers

Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

Teaching Assistant: Maria Chang,  UCLA Statistics

University of California, Los Angeles,  Spring  2003
http://www.stat.ucla.edu/~dinov/

Stat 110A, UCLA, Ivo Dinov Slide 2

Chapter 5:  Marginal & Joint PDF’s
Central Limit Theorem (CLT)

Jointly distributed RV’s
Expected Value, Covariance, Correlation
Distributions of sample statistics
Central Limit Theorem (CLT)
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Introduction

If X and Y are two random variables, the probability 
distribution that defines their simultaneous behavior 
is a Joint Probability Distribution.

Examples:
Signal transmission: X is high quality signals and Y low 
quality signals.
Molding: X is the length of one dimension of molded part, 
Y is the length of another dimension.

THUS, we may be interested in expressing 
probabilities expressed in terms of X and Y, e.g., 

P(2.95<X<3.05 and 7.60<Y<7.8)
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Two discrete random variables

Range of random variables (X,Y) is the set of points 
(x,y) in 2D space for which the probability that X=x 
and Y=y is positive.

If X and Y are discrete random variables, the joint 
probability distribution of X and Y is a description of 
the set of points (x,y) in the range of (X,Y) along 
with the probability of each point.

Sometimes referred to as Bivariate probability 
distribution, or Bivariate distribution.
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Joint probability distribution
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Joint probability mass function

The joint probability mass function of the discrete 
random variables X and Y, denoted as fXY(x,y) 
satisfies:
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Marginal probability distributions

Individual probability distribution of a random 
variable is referred to as its Marginal Probability 
Distribution.

Marginal probability distribution of X can be 
determined from the joint probability distribution of 
X and other random variables.

Example 5-3: Marginal probability distribution of X 
is found by summing the probabilities in each 
column, for y, summation is done in each row.
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Marginal probability distribution for X and Y
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Marginal probability distributions (Cont.)

If X and Y are discrete random variables with joint 
probability mass function fXY(x,y), then the marginal 
probability mass function of X and Y are

where Rx denotes the set of all points in the range of 
(X, Y) for which X = x and Ry denotes the set of all 
points in the range of (X, Y) for which Y = y

∑===
xR

XYX YXfxXPxf ),()()(

∑===
Ry

XYY YXfyYPyf ),()()(

Stat 110A, UCLA, Ivo DinovSlide 10

Mean and Variance

If the marginal probability distribution of X has the probability 
function f(x), then

R = Set of all points in the range of (X,Y).

Example 5-4.
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Joint probability mass function – example
The joint density, P{X,Y}, of the number of minutes waiting to catch the first fish, X , 
and the number of minutes waiting to catch the second fish, Y, is given below. 

P {X = i,Y = k }                    k 
1                 2             3 

          Row Sum 
          P{ X = i } 

           1 
 i         2 
           3 

0.01          0.02        0.08 
0.01          0.02        0.08  
0.07          0.08        0.63  

             0.11 
             0.11 
             0.78 

Column Sum P 
{Y =k } 

0.09          0.12        0.79              1.00 

• The (joint) chance of waiting 3 minutes to catch the first fish and 3 minutes to 
catch the second fish is: 

• The (marginal) chance of waiting 3 minutes to catch the first fish is: 
• The (marginal) chance of waiting 2 minutes to catch the first fish is (circle all 

that are correct): 
• The chance of waiting at least two minutes to catch the first fish is (circle 

none, one or more): 
• The chance of waiting at most two minutes to catch the first fish and at most 

two minutes to catch the second fish is (circle none, one or more):
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Conditional probability

Given discrete random variables X and Y with joint 
probability mass function fXY(X,Y), the conditional 
probability mass function of Y given X=x is

fY|x(y|x) = fY|x(y) = fXY(x,y)/fX(x) for fX(x) > 0
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Conditional probability (Cont.)

Because a conditional probability mass function fY|x(y) is a 
probability mass function for all y in Rx, the following 
properties are satisfied:
(1) fY|x(y) ≥ 0

(2) fY|x(y) = 1

(3) P(Y=y|X=x) = fY|x(y)

∑
xR
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Conditional probability (Cont.)

Let Rx denote the set of all points in the range of 
(X,Y) for which X=x.  The conditional mean of Y 
given X=x, denoted as E(Y|x) or µY|x, is

And the conditional variance of Y given X=x, 
denoted as V(Y|x) or σ2

Y|x is
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Independence

For discrete random variables X and Y, if any one of 
the following properties is true, the others are also 
true, and X and Y are independent.

(1) fXY(x,y) = fX(x) fY(y) for all x and y

(2) fY|x(y) = fY(y) for all x and y with fX(x) > 0

(3) fX|y(y) = fX(x) for all x and y with fY(y) > 0

(4) P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for any 
sets A and B in the range of X and Y respectively.
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For the sample mean calculated from a random sample, 
E(    )  = µ and SD(      ) =          , provided 

= (X1+X2+ … + Xn)/n, and Xk~N(µ, σ). Then

~ N(µ,      ). And variability from sample to sample 
in the sample-means is given by the variability of the 
individual observations divided by the square root of 
the sample-size. In a way, averaging decreases variability.

X n
σ

Recall we looked at the sampling distribution of

n
σ

X 

X 
X 
X 
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Central Limit Effect –
Histograms of sample means
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Central Limit Effect -- Histograms of sample means

0.0 0.2 0.4 0.6 0.8 1.0

n = 4

0.0 0.2 0.4 0.6 0.8 1.0

n = 10

Triangular Distribution
Sample sizes n=4, n=10

Stat 110A, UCLA, Ivo DinovSlide 21

Central Limit Effect –
Histograms of sample means
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Central Limit Effect -- Histograms of sample means
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Central Limit Effect –
Histograms of sample means

Sample means from sample size
n=1, n=2, 
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Central Limit Effect -- Histograms of sample means
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Central Limit Effect –
Histograms of sample means

Sample means from sample size
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Central Limit Effect -- Histograms of sample means
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Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Central Limit Theorem – heuristic formulation

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/
SamplingDistributionApplet.html
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Let                              be a sequence of independent
observations from one specific random process. Let    
and                      and                        and both be 
finite (                           ). If                    , sample-avg,

Then      has a distribution which approaches 
N(µ, σ2/n), as            .

Central Limit Theorem –
theoretical formulation

{ },...,...,X,XX
k21

µ=)(XE σ=)(XSD
∞<∞<< || ;0 µσ ∑
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Review

What does the central limit theorem say? Why is it 
useful? (If the sample sizes are large, the mean in Normally distributed, as a RV)

In what way might you expect the central limit effect 
to differ between samples from a symmetric
distribution and samples from a very skewed 
distribution? (Larger samples for non-symmetric distributions to see CLT effects)

What other important factor, apart from skewness, 
slows down the action of the central limit effect?

(Heavyness in the tails of the original distribution.)
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Review

When you have data from a moderate to small sample 
and want to use a normal approximation to the 
distribution of in a calculation, what would you 
want to do before having any faith in the results? (30 or 
more for the sample-size, depending on the skewness of the distribution of X. Plot 
the data - non-symmetry and heavyness in the tails slows down the CLT effects).

Take-home message: CLT is an application of 
statistics of paramount importance. Often, we are not 
sure of the distribution of an observable process. 
However, the CLT gives us a theoretical description 
of the distribution of the sample means as the sample-
size increases (N(µ, σ2/n)).

X 
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For the sample mean calculated from a random 
sample, SD(      ) =      . This implies that the 
variability from sample to sample in the sample-
means is given by the variability of the individual 
observations divided by the square root of the 
sample-size. In a way, averaging decreases variability.

Recall that for known SD(X)=σ, we can express the 
SD(     ) =       .  How about if SD(X) is unknown?!?X 

X n
σ

The standard error of the mean – remember …

n
σ
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The standard error of the mean

The standard error of the sample mean is an 
estimate of the SD of the sample mean

i.e. a measure of the precision of the sample 
mean as an estimate of the population mean

given by   SE(   )
size Sample
deviation standard Sample =

n
s

xS x =)E(

x 

Note similarity with

SD(     ) =       . X 
n

σ
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : Cavendis h [1798].

5.0 5.2 5.4 5.6 5.8

Two-standard-error interval
for true value

x

Measured density (g/cm  )3

Newton’s law of gravitation: F = G m1 m2 /r2, the attraction force
F is the ratio of the product (Gravitational const, mass of body1, mass
body2) and the distance between them, r. Goal is to estimate G!

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Total of 29 measurements obtained by 
measuring Earth’s attraction to masses
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : Cavendis h [1798].

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Sample mean 

and sample SD =

Then the standard error for these data is:

3/  447931.5 cmgx =

3/  2209457.0 cmg
X

S =

04102858.0
29

2209457.0)( ===
n

S
XSE X


