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The C + E Model

®Data = Center + Error: Y=p+¢;

® The response value Y is equal to unknown constant
(L), but because of normal variability we almost
never observe [ exactly.

® Example Speed of light (SOL), i =2.998 x 10° m/s.
However, 100 measurements of the SOL are all
going to be slightly different.

® Model (population) parameter — a quantity describing
the model that can take on many values. Ex., L.

Estimation of model parameter(s) — pt

® | cast-Absolute-Error-Estimate(m) — Suppose, p=3.5
(unknown) and Y={Y = u +e,, Y,=p +e,, ....,Y ;=ute,o}
are our observed data. Cost function = Sum-of-Absolute-
Errors = SAE = Z|Y, - m| 2 m = MinArg(SAE).

® [ cast-Squares(m) (in the same setting). Cost function =
Sum-of-Squared-Errors = SSE = X(Y,, — m)> >

m = MinArg(SSE), least-squares-estimate.

® Solution (differentiate):

d SSE(m)/dm =-22(Y,—m) =0, solve for m!

Inference & Estimation

® C + E model

® Types of Inference

® Sampling distributions

® Cl'sforu&p

® Comparing 2 proportions

® How big should my study be?

® Paired vs. unpaired tests

Types of inference

Estimation of model parameters: Data-driven
estimates of the model parameters. Also, includes
how much uncertainty about those estimates is there.

® Prediction of new (future) observations: Uses past
and current data to predict the value of new
observations from the population.

® Tolerance level: a range of values that has user-
specified probability of containing a particular
proportion of the population.

Estimation of model parameter(s) — i (Example)

® Data: ball-bearing diameter: p =? (unknown) given the
observed Y={Y,= 0.1896, Y,= 0.1913, Y,,=0.1900}.

SAE=3|Y,-m| & SSE=3(Y, —m)

® Plot the Cost functions against p.:

MinArg(Cost)

Cost Function

0.186 0.188 0.190 0.192 0.194 m




Parameters, Estimators, Estimates ...

® A parameter is a characteristic of the data —
mean, 1% quartile, SD, etc.)

® An estimator is an abstract rule for calculating a
quantity (or parameter) from the sample data.

® An estimate is the value obtained when real data
are plugged-in the estimator rule.

20 replicated measurements to estimate the speed of light. Obtained by
Simon Newcomb in 1882, by using distant (3.721 km) rotating mirrors.
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(General) Confidence Interval (CI)

® A level L confidence interval for a parameter (0), is
an interval (6,”, 6,"), where 6, & 6,", are
estimators of 0, such that P(6;* <6 < 6,%)=L.

® E.g., C+E model: Y = pu+¢e. Where & ~ N(0, 62), then by CLT
we have Y_bar ~ N(, %/n)

Area=?
3 n%(Y_bar - w)/G ~ N(0, ?). % />~L

OL=P (24, < wHY_bar-p)/C < z4.),),
where z, is the ¢ quartile.

® E.g., 0.95=P (75

< n*(Y_bar-p)/c < z5975),

Parameters, Estimators, Estimates ...

® E 2., We are interested in the population mean
diameter (parameter) of washers the sample-
average formula represents an estimator we can
use, where as the value of the sample average
for a particular dataset is the estimate (for the
mean parameter).

. - 1 &
parameter = x,;  estimator=Y = I Z Y,

Data: ¥ ={0.1896, 0.1913, 0.1900}
estimate =y = 1£(0.1896+0.1913+0.1900)

¥ =0.1903. How about ¥ = 4(0.1896 +0.1913 + 0.1900

A 95% confidence interval

® A type of interval that contains the true value of a
parameter for 95% of samples taken is called a 95%
confidence interval for that parameter, the ends of
the CI are called confidence limits.

@ (For the situations we deal with) a confidence interval
(CI) for the true value of a parameter is given by

estimate * t standard errors (SE)

Value of the Multiplier, ¢, for a 95% CI

df: 7 8 9 10 11 12 13 14 15 16 17
t: 2365 2306 2262 2228 2201 2179 2160 2.145 2.131 2120 2.110
df: 18 19 20 25 30 35 40 45 50 60
t: 2101 2.093 2086 2.060 2.042 2.030 2.021 2.014 2.009 2.000

® (I are constructed using the sample X and s=SE. But different
samples vield different estimates and = diff. CI’s?!?

® Below is a computer simulation showing how the process of
taking samples effects the estimates and the CI’s.

True mean
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How many of the
previous
samples
contained the]
true mean?
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True mean

Samples of size 10 from a Normal(u=24.83, 5=.005)
distribution and their 95% confidence intervals for ..

ClI for population mean

® E.g., SYSTAT > Data:
BirthdayDistribution_1978_systat.SYD

® Statistics = Descriptive Statistics 2 Stem-&-Leaf-Plot
@ Statistics > Descriptive Statistics >CI_for_mean

CI - Interpretation

® Consider taking all possible samples from the population
with parameter of interest (0).

® Suppose we construct the level L confidence interval
for a parameter (0) for each sample. Then a proportion L
of all constructed CI’s will contain the value of 0.

® Note that this interpretation of CI’s is in terms of
repeated sampling from the same population ...

CI for population mean

Confidence Interval for the true (population) mean g

sample mean + t standard errors

sX

or¥ +¢se(X), where SE(X)=—anddf =n-1

n

Value of the Multiplier, ¢, for a 95% CI

df: 7 8 9 10 11 12 13 14 15 16 17
t: 2365 2306 2262 2228 2201 2179 2160 2.145 2.131 2.120 2.110
df: 18 19 20 25 30 35 40 45 50 60 ©
t: 2101 2093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 1.960

CI for population mean - Example |

® E.g., Lab rats blood glucose levels: {266, 149, 161, 220}
Estimate [, the mean population blood sugar level.
Assume the variance 62 =2958, 2 6=54.4, from prior

experience. Also assume data comes from N(, 62).
Sample-avg=199, Compute the 95% CI, L=0.95.

® (1-L)/2 =0.025, (1+L)/2 = 0.975,

L Z(1-L)/2 =Zyps=-196 & Z(1+L)/2 =Zy975=1.96
O®L=P(zqy, < n”*(Y_bar - B)/c < Zasyn )

® CI(w= (Y_bar - Gz, ),/n* ; Y_bar - Oz y,,/n*)
® CI(n)= (199 — 54.4x1.96 / 4% ; 199 + 54.4x1.96 / 4%)
CI(p)=(145.7 : 252.3)

Effect of increasing the confidence level

99% CI, x=+2.576 se(x)

95% CI, x=+1.960 se(x)

90% CI, x+1.645 se(x)

(80% CI_x+ 1282 se(),

The greater the confidence level, the wider the interval

Fom Charnce 5 CT Wild 0 G AT Seber, © Tohm Wiley & Sor. 2000




Effect of increasing the sample size
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Passage time

Three random samples from a Normal(n=24.83, s =.005
distribution and their 95% confidence intervals for p.

ers by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,

To double the precision we need four times as
many observations.

Comparison of the CI using T (unknown G) &
Z_(known o) distributions

OFor the old data: glucose levels :

(266, 149,161,220} o= [ S5y

® CI()), when G is unknown (T-distr.), small-
sample-size, and data comes from (approx.)
Normal distribution. ¥ =199

 6=5439

L=P (tN-l, a-L~ n/l(Ybar' w/oc <t\., (1+L)/2) )
CIW=(Ypar— Oty (11y2/M% Yiarm Oty (1412 /%)
95% CI(1)=(199-54.39x3.18 /4”; 199+54.39x3.18 / 4%)

= 0575318 & by (1) = b 0n=-3-18 D Cly()=(112.4:285.6)

N, s

Prediction vs. Confidence intervals |

A

® Confidence Intervals (for the population mean p):
O xt

A
v_ % Xbaoe .y, T Xbaan
b
Jn Jn

® Prediction Intervals: L-level prediction interval (PI) for
a new value of the process Y is defined by

(Ynew -0 x tn 1,(1+L)2 5 Ynew + G x tn 1,(1+L)/2)
where the predicted value Y, =Y ,is

obtained as an estimator of the
unknown process mean .

Why 4 in sample-size { CI?

Confidence Interval for the true (population) mean g
sample mean * t standard errors

or X ttse(x), where se(x) = % and df =n-1
n

Comparison of the CI using T (unknown G) &
Z_(known o) distributions

® Cl(u), when ¢ = 54.4 is known (Normal distr.)
CIW = (Ypar— O Zyipyn/*5 Yo~ O Zigiryn /%),

2y = 1.96

95% CI(K) = (199 — 54.4 x 1.96 /4% ; 199+54.4 x 1.96 / 4%)

CI,(n)=(145.7 : 252.3)

©® Comparison:

Cl(1)=(112.4:285.6) € compare=>

CI ()= (145.7:252.3)

Which one is better?!? More appropriate?!?

Prediction vs. Confidence intervals — Differences?

® Confidence Intervals (for the population mean p):

[Y O-th-l,(HL)/Z - Y4+ O-th-l,(m_)/zJ

N Jn
Y. 1 =z
o=6)= Ekzl Y ~Y)" Which sp
gger?!?
® Prediction Intervals: Is bigger?
5 xt where ¥ =Y

n-l (I+L)/Z




Classical Prediction for the C+E model

(the sample average).

by the sample-proportion, p*, etc.

® Y =C+ E. When why, how to use prediction?

©® When: E ~ N(0, 62) € = Y ~ N(u, 62), there are more
general situations, of course. Here we only consider this case.

® Why: Future predictions are of paramount importance in
any area of science/engineering/medicine.

® How: p is mostly unknown, so we estimate it by: m”*,

If population proportion, p, is unknown we estimate it

Classical Prediction for the C+E model

® How: Let Y,

new

BSD (Yoo~ Y hew) = [S2(1+1/n) 1%
® We can show that T= Y

new

L=P(t <T<t ) —

be the predicted value

® Error Ynew - Y/\new=(l‘L - snew)' YAnew =(u' - YAnew )+ Enew
B Var(Y oy - Y new)=Var(p - Y oy J+Var(€pe,)= 0¥n + o2
M Often o is unknown, and we estimate it by the sample SD, S =

-Y -0
® > The L-level prediction interval (PI(Y ) is:

A (L2 L2/
Ynew +0 x tn-l,(I-L)/Z 5 Ynew +0 x tn-l,(l+L)/2 By sifmmetr
A _ A . ~ A 0 ~ 1
Ynew O x tnfl,(1+L)/2 > Ynew +0 x tn—l,(1+L)/2 ik

new "’t

Solve for T

Example — higher blood thiol concentrations
associated with rheumatoid arthritis?!?

"Thiol Concentration (mmol)

Normal Rheumatoid

1.84
1.92
1.94
1.92

1.85
Thiol-levels 1.91
rheumatoid arthritis 2.07

2.81
4.06
3.62
3.27
3.27
3.76

Sample size 7 6
Sample mean 1.92143 3.46500
Sample standard deviation 0.07559 0.44049

Classical Prediction for the C+E model

® How: p is mostly unknown, so we estimate it by: m”,
B Let Y' ., be the predicted value

B Error made by using Y",,,, instead of observing a new value, Y, is:

new?
M Ynew - YAnew=(P‘ - enew)_ YAnew =(u- YAnew )t €new

B But if we use p to predict a new value for Y, Y" . = p'.

B Var(u - Y',.,) = Var(Y',.,,) = Var(u") = Var(SampleAvg) = 6%*/n.

new. new.

B The variance of the second term is just 2.
M Since the first-term in (1) is obtained from {Y,, Y,,..., Y.}, and

Enew™

B Var(Y,

€,+1> We have two independent terms =» Variances add up!

Y o= Var(p - Y o )HVar(€yen)= 60 + o2,

new ~

CI for a population proportion

Confidence Interval for the true (population) proportion p:
sample proportion * z standard errors

N A N p(1-p
or ptzse(p), where se(p) = 2A=p)
n

with rheumatoid arthritis

Rheumatoid o 8 [o}Ne] o
Normal 0& o
T

T T T T |
1.5 2.0 2.5 3.0 35 4.0 4.5
Thiol concentration (mmol)

Dot plot of Thiol concentration data.

statistical evidence



Difference between means

Confidence Interval for a difference between population
means (x4, - 4,):
Difference between sample means
T tstandard errors of the difference

X, X, t1se(F - %,)

Difference between proportions

Confidence Interval for a difference between population
proportions (P —P):
Difference between sample proportions

t g standard errors of the difference

Py~ P, T zse(p, — p,)

Single sample, several response categories

S T

'

Example — higher blood thiol concentrations
with rheumatoid arthritis

Confidence Interval for a difference between population
means (¢, - i,):

X, —Xx, ttse(x, —X,)

or X, —X,ttse(X —X,)=
1.92-3.47£t,,,,,7/0.08 +0.44" =
-1.55£2.571x0.45 =
-1.55+1.15

Proportions from 2 independent samples

A occurs?
ﬁl(l— ﬁl) ﬁz(l— ﬁz)

+

Pre-election Polls Election Results

[State n |Clinton Doll Perot Other/Undecided [Clinton Doll Perot]
ew Jersey 1,000 |51 33N 8 8 53 36 9
ew York 1,000 7 9 9 31 8

[Connecticutt 51 52 35 10

proportions

<

independence-case SE formula

pre-election poll election results




Example — 1996 US Presidential Election

Connecticutt

(a) Proportions from two independent samples

Pre-election Polls Election Results

S tate n |Clinton Doll Perot Other/Undecided [Clinton Doll Perot|
ew Jersey 1,000 $ 33 8 8 53 36 9
ew York 1,000 25 7 9 59 31 8

51 29 11

52 35 10

n n

(b) One sample of size n, several response categories

.. ,13 +p,—(p=b,)
se(p, = p,) = ————*= n‘ 2

of sizes n | and n,, respectively

Sample size -- mean

® Sample size for a desired margin of error:
For a margin of error no greater than m, use a sample size of
approximately

zo * 2
n=|-"—
m

® o* is an estimate of the variability of individual observations

® 7 is the multiplier appropriate for the confidence level

Example — 1996 US Presidential Election

[Connecticutt

Pre-election Polls Election Results

[State n |Clinton Doll Perot Other/Undecided [Clinton Doll Perot]
ew Jersey 1,000 (<51 33> 8 8 53 36 9
ew York 1,000 59 25 7 9 59 31 8

52 35 10

Sample size - proportion

® For a95% CI, margin=1.96x./p(1— p)/n

® Sample size for a desired margin of error:
For a margin of error no greater than 2, use a sample size of
approximately

)2
n=(*) x p*(1=-p*)
m

® p*is a guess at the value of the proportion -- err on the side of
being too close to 0.5

® 7 is the multiplier appropriate for the confidence level

® m is expressed as a proportion (between 0 and 1), not a
percentage (basically, What’s n, so that m >= margin?)

Paired vs. Unpaired comparisons

® We will discuss these later, when we get to the
hypothesis testing (cus ur paired indep Testsppt)




Confidence intervals

® We construct an interval estimate of a parameter to summarize
our level of uncertainty about its true value.

® The uncertainty is a consequence of the sampling variation in
point estimates.

® [f we use a method that produces intervals which contain the
true value of a parameter for 95% of samples taken, the
interval we have calculated from our data is called a 95%
confidence interval for the parameter.

® Our confidence in the particular interval comes from the fact
that the method works 95% of the time (for 95% CI’s).

Summary cont.

® If we want greater confidence that an interval
calculated from our data will contain the true value,
we have to use a wider interval.

® To double the precision of a 95% confidence interval
(i.e.halve the width of the confidence interval), we
need to take 4 times as many observations.

Summary cont.

® For a great many situations,
an (approximate) confidence interval is given by

estimate + tstandard errors

The size of the multiplier, ¢, depends both on the desired
confidence level and the degrees of freedom (df).

[With proportions, we use the Normal distribution (i.e., df=cc) and it is
conventional to use z rather than 7 to denote the multiplier.]

® The margin of error is the quantity added to and subtracted

from the estimate to construct the interval (i.e. ¢ standard
errors).

Confidence intervals — non-symmetric case

® A marine biologist wishes to use male angelfish for an experiment
and hopes their weights don't vary much. In fact, a previous
random sample of n = 16 angelfish yielded the data below

® {y;..;y.b=1{51;2.5;2.8;34;6.3;3.6;3.9;3.0;2.7,5.7; 3.5;

3.6;5.3;5.1;3.5;3.3}

® Sample statistics from these data include Avg. =3.96 lbs, s>= 1.35
Ibs, n=16.

® Problem: Obtain a 100(1- a)% CI(c?).

® Point Estimator for 62? How about sample variance, s2?

® Sampling theory for s2? Not in general, but under Normal
assumptions ...

® If a random sample {Y; ...;Y,} is taken from a normal population

with mean p and variance o2,then standardizing, we get a
sum of squared N(0,1)

Examples — Birthday Paradox

L] Te Birthday Paradox: In a random group of N people, what is the
change that at least two people have the same birthday?

® E.x., if N=23, P>0.5. Main confusion arises from the fact that in
real life we rarely meet people having the same birthday as us, and
we meet more than 23 people.

® The reason for such high probability is that any of the 23 people
can compare their birthday with any other one, not just you
comparing your birthday to anybody else’s.

® There are N-Choose-2 = 20*19/2 ways to select a pair or people.
Assume there are 365 days in a year, P(one-particular-pair-same-
B-day)=1/365, and

® P(one-particular-pair-failure)=1-1/365 ~ 0.99726.

® For N=20, 20-Choose-2 = 190. E={No 2 people have the same
birthday is the event all 190 pairs fail (have different birthdays)},
then P(E) = P(failure)!** = 0.99726'%° = 0.59.

® Hence, P(at-least-one-success)=1-0.59=0.41, quite high.

® Note: for N=42 = P>0.9 ...

Confidence intervals — non-symmetric case

® {y;...;y, ={5.1;2.5;2.8;3.4;6.3;3.6;3.9; 3.0, 2.7;
5.7;3.5;3.6; 5.3; 5.1; 3.5; 3.3}

® Problem: Obtain a 100(1- a)% CI(c?).

® If a random sample {Y,; ...;Y,} is taken from a normal
population with mean p and variance o2,then
standardizing, we get a sum of squared

N(O,1 n >
5 (n-ns?_ 2y W=7
For a=0.05, say. Need: &2 ) ;(df="*1
100(1- 0))% CI(c?).




Confidence intervals — non-symmetric case |

(@ {y;;...5y, ={5.1;2.5;2.8;3.4;6.3; 3.6, 3.9; 3.0; 2.7;
| 5.7,3.5;3.6;5.3;5.1;3.5; 3.3}

® Problem: Obtain a 100(1- a)% CI(c?).
n -y n _yv
Zk:1<Yk Y)2< 0-2 <Zk:1(Yk Y)z
N -2

2
x x
(n—l,ﬁj (n—1,1—ﬁj
2 2

® 12(15; 0.025)=27:49 and ¥2(15; 0.975)=6:26 >

® This yields the CI, the sample variance is s?=1.35. Note
the CI is NOT symmetric (0.74 ; 3.24)

| Prediction vs. Confidence intervals |

| ® Confidence Intervals (for the population mean p):
| A A
v OX tn-l,(1+L)/2 -, K oxt

Y o . Y + n-1, (1+L)/2
Jn ’ Vn

® Prediction Intervals: L-level prediction interval (PI) for
a new value of the process Y is defined by:

A A A A
(Ynew —O % tn-l,(1+L)/2 > );ew + GﬁX t
where the predlctgd value Y, =7,is

obtained as an estimator of the
unknown process mean .

n-1, (14L)/2 )

Parameter (Point) Estimation

® Suppose we flip a coin n=8 times and observe
| {T,H,T,H,H,T,H,H}. Estimate the value p = P(H).

©® Method of Moments Estimate p”:
® Set your k parameters equal to your first k moments.
® Let X = {# T’s} =» np=8p=E(X)= Sample#H’s = 5 = p"=5/8.
® Method of Maximum Likelihood Estimate p”:
o 1.ix|p)= [i) 50— py likelihood function.

2. (21502 3 |21l (8] ] 5x1n(p) + 3xn(1 = p)
I i

3
dp p 1-p
5(1-p)-3p=0=p=%

| Confidence intervals — non-symmetric case

@ {y,;...;y,} ={5.1;2.5;2.8;3.4;6.3; 3.6; 3.9} &
(x5 ... 5 x}={3.0;2.7;5.7; 3.5, 3.6; 5.3; 5.1; 3.5; 3.3}

| ® Problem: Obtain a 100(1- 0))% CI(c2,/ G2,). Diff variances?

?_1(Yi_YV
(n—1)><0'12/ ~ g
_ F(nl, k1)

Z',]c'=1()"j _7)2
(k-Dxo%

—95% CI {/ ]

%x

® Ratio of two y? variables is F-distributed

Parameter (Point) Estimation

® (6.2) Two Ways of Proposing Point Estimators
| ® Method of Moments (MOMs):

® Set your k parameters equal to your first k moments.

® Solve. (e.g., Binomial, Exponential and Normal)
® Method of Maximum Likelihood (MLEs):
® 1. Write out likelihood for sample of size n.
® 2. Take natural log of the likelihood.

® 3. Take partial derivatives with respect to your k parameters.

® 4. Take second derivatives to check that a maximum exists(f >0).

® 5. Set It derivatives equal to zero and solve for MLEs. e.g.,
Binomial, Exponential and Normal

Example — Maximum Likelihood Estimate

Let {X,, ..., X,}={0.5,0.3, 0.6, 0.1, 0.2}, weights, be IID N(y, 1)
> f(x;p). Joint density is f(X,,....X,; p)=f(x;p)x. .. xE(X5p).
® The likelihood function L(p) = f(X,,....X,; p)
L(ﬂ) = }]’(xl»“"xrz) =
(0.5-42)* +(0.3= 1) +(0.6=p2)" +(0. 1= ) +(0.2-p2)"
=e 2
In(L) = (-1/2)[(0.5 — )2 (03— )% +(0.6— )2 +(0.1— )% +(0.2 - u)?
dIn(L)
au

=s5u+l.7=>pu=034=

0=

= (05— 1)+ (03— )+ (0.6 — i) +(0.1= 1)+ (0.2 — p1) =

a*Inr) _
du

5= L(p =0.34) = max




