UCLA STAT 110 A

Applied Probability \& Statistics for Engineers
-Instructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology

- Teaching Assistant: Maria Chang, UCLA Statistics

University of California, Los Angeles, Spring 2003 http://www.stat.ucla.edu/~dinov/ Slide 1

Inference \& Estimation

- C + E model
- Types of Inference
- Sampling distributions
- CI's for $\mu \& \mathrm{p}$
- Comparing 2 proportions
- How big should my study be?
- Paired vs. unpaired tests Slide 2

Types of inference

- Estimation of model parameters: Data-driven estimates of the model parameters. Also, includes how much uncertainty about those estimates is there.
- Prediction of new (future) observations: Uses past and current data to predict the value of new observations from the population.
- Tolerance level: a range of values that has userspecified probability of containing a particular
proportion of the population.
Model (population) parameter - a quantity describing the model that can take on many values. Ex., μ.

Estimation of model parameter(s) $-\mu$
Estimation of model parameter(s) $-\mu$ (Example)

- Data: ball-bearing diameter: $\mu=$? (unknown) given the observed $\mathbf{Y}=\left\{\mathbf{Y}_{\mathbf{1}}=\mathbf{0 . 1 8 9 6}, \mathbf{Y}_{\mathbf{2}}=0.1913, \mathrm{Y}_{\mathbf{1 0}}=\mathbf{0 . 1 9 0 0}\right\}$.
$\mathbf{S A E}=\Sigma\left|\mathbf{Y}_{\mathbf{k}}-\mathbf{m}\right| \quad \& \quad \mathbf{S S E}=\Sigma\left(\mathbf{Y}_{\mathbf{k}}-\mathbf{m}\right)^{\mathbf{2}}$

Parameters, Estimators, Estimates

- A parameter is a characteristic of the data mean, $1^{\text {st }}$ quartile, SD , etc.)
- An estimator is an abstract rule for calculating a quantity (or parameter) from the sample data.
- An estimate is the value obtained when real data are plugged-in the estimator rule.

20 replicated measurements to estimate the speed of light. Obtained by Simon Newcomb in 1882, by using distant (3.721 km) rotating mirrors.

(General) Confidence Interval (CI)

- A level L confidence interval for a parameter (θ), is an interval $\left(\theta_{1} \wedge, \theta_{2} \wedge\right)$, where $\theta_{1} \wedge \& \theta_{2} \wedge$, are estimators of θ, such that $\mathbf{P}\left(\theta_{1}{ }^{\wedge}<\theta<\theta_{2} \wedge\right)=\mathbf{L}$.
- E.g., $\mathbf{C + E}$ model: $\mathrm{Y}=\mu+\varepsilon$. Where $\varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)$, then by CLT we have \mathbf{Y}_{-}bar $\sim \mathrm{N}\left(\mu, \sigma^{2} / \mathbf{n}\right)$
$\rightarrow \mathbf{n}^{1 / 2}\left(\mathbf{Y} _\right.$bar $\left.-\mu\right) / \sigma \sim \mathrm{N}\left(0, \sigma^{2}\right)$.

- $L=P\left(\mathbf{z}_{(1-L) / 2}<\mathbf{n}^{1 / 2}\left(\mathbf{Y}_{-}\right.\right.$bar $\left.\left.-\mu\right) / \sigma<\mathbf{z}_{(1+\mathrm{L}) / 2}\right)$, where z_{q} is the $\mathrm{q}^{\text {th }}$ quartile.
E.g., $\mathbf{0 . 9 5}=\mathbf{P}\left(\mathbf{z}_{0.025}<\mathbf{n}^{1 / 2}\left(\mathbf{Y}_{-}\right.\right.$bar $\left.\left.-\mu\right) / \sigma<\mathrm{z}_{0.975}\right)$,

A 95\% confidence interval

- A type of interval that contains the true value of a parameter for 95% of samples taken is called a 95% confidence interval for that parameter, the ends of the CI are called confidence limits.
- (For the situations we deal with) a confidence interval (CI) for the true value of a parameter is given by estimate $\pm t$ standard errors (SE)

Value of the Multiplier, \boldsymbol{t}, for a 95% CI										
$d f: \quad 7$	8	9	10	11	12	13	14	15	16	17
$t: 2.365$	2.306	2.262	2.228	2.201	2.179	2.160	2.145	2.131	2.120	2.110
$d f: 18$	19	20	25	30	35	40	45	50	60	∞
$t: 2.101$	2.093	2.086	2.060	2.042	2.030	2.021	2.014	2.009	2.000	1.960
Slide 10 stat woan vila										

CI for population mean

- E.g., SYSTAT \rightarrow Data:

BirthdayDistribution_1978_systat.SYD

- Statistics \rightarrow Descriptive Statistics \rightarrow Stem-\&-Leaf-Plot
- Statistics \rightarrow Descriptive Statistics \rightarrow CI_for_mean

CI for population mean - Example

E.g., Lab rats blood glucose levels:\{266, 149, 161, 220\} Estimate μ, the mean population blood sugar level. Assume the variance $\sigma^{2}=2958, \rightarrow \sigma=54.4$, from prior experience. Also assume data comes from $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Sample-avg=199, Compute the 95% CI, $\mathrm{L}=0.95$.

- $(1-\mathrm{L}) / 2=0.025,(1+\mathrm{L}) / 2=0.975$,
$-\mathrm{Z}_{(1-\mathrm{L}) / 2}=\mathrm{Z}_{0.025}=-1.96 \quad \& \mathrm{Z}_{(1+\mathrm{L}) / 2}=\mathrm{Z}_{0.975}=1.96$
- $\mathbf{L}=\mathbf{P}\left(\mathbf{z}_{(1-\mathrm{L}) / 2}<\mathbf{n}^{1 / 2}\left(\mathbf{Y}_{-}\right.\right.$bar $\left.\left.-\mu\right) / \sigma<\mathbf{z}_{(1+\mathrm{L}) / 2}\right)$,
- $\mathbf{C I}(\mu)=\left(\mathrm{Y}_{-}\right.$bar $-\sigma \mathrm{z}_{(1+\mathrm{L}) / 2} / \mathbf{n}^{1 / 2} ; \mathrm{Y}_{-}$bar $\left.-\sigma \mathrm{z}_{(1-\mathrm{L}) / 2} / \mathbf{n}^{1 / 2}\right)$
$\bullet C I(\mu)=\left(199-54.4 \times 1.96 / 4^{1 / 2} ; 199+54.4 \times 1.96 / 4^{1 / 2}\right)$
$\mathrm{CI}(\mu)=(145.7: 252.3)$

Comparison of the CI using T (unknown σ) \& Z (known σ) distributions

- For the old data: glucose levels :
$\{266,149,161,220\} \quad \hat{\sigma}=\sqrt{\frac{1}{N-1} \sum_{k=1}^{N}\left(y_{k}-\bar{y}\right)^{2}}$
- $\mathbf{C I}(\mu)$, when σ is unknown (T-distr.), small-sample-size, and data comes from (approx.) Normal distribution.

$$
\bar{x}=199
$$

$$
\hat{\sigma}=54.39
$$

$\mathbf{L}=\mathbf{P}\left(\mathbf{t}_{\mathrm{N}-1,(1-\mathrm{L}) / 2}<\mathbf{n}^{1 / 2}\left(\mathbf{Y}_{\text {bar }}-\mu\right) / \sigma^{\wedge}<\mathbf{t}_{\mathrm{N}-1,(1+\mathrm{L}) / 2}\right)$, $\mathbf{C I}(\mu)=\left(\mathbf{Y}_{\text {bar }}-\sigma^{\wedge} \mathbf{t}_{\mathrm{N}-1,(1+\mathrm{L}) / 2} / \mathbf{n}^{1 / 2} ; \mathbf{Y}_{\text {bar }}-\sigma^{\wedge} \mathbf{t}_{\mathrm{N}-1,(1+\mathrm{L}) / 2} / \mathbf{n}^{1 / 2}\right)$ 95\% CI $(\mu)=\left(199-54.39 \times 3.18 / 4^{1 / 2} ; 199+54.39 \times 3.18 / 4^{1 / 2}\right)$

a new value of the process Y is defined by:
$\left(\hat{Y}_{\text {new }}-\hat{\sigma} \times \mathrm{t}_{\text {n-l, (l+L)/2 }} ; \hat{Y}_{\text {new }}+\hat{\sigma} \times \mathrm{t}_{\mathrm{n}-1,((1+L) / 2}\right)$ where the predicted value $\hat{Y}_{\text {new }}=\bar{Y}$, is
obtained as an estimator of the unknown process mean μ.

Prediction vs. Confidence intervals

- Confidence Intervals (for the population mean μ):

$$
\left(\overline{\mathrm{Y}}-\frac{\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}}{\sqrt{\mathrm{n}}} ; \overline{\mathrm{Y}}+\frac{\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}}{\sqrt{\mathrm{n}}}\right)
$$

- Prediction Intervals: L-level prediction interval (PI) for unkown process mean μ.

Why \uparrow in sample-size \downarrow CI?

Confidence Interval for the true (population) mean μ : sample mean $\pm \boldsymbol{t}$ standard errors $\bar{x} \pm t \operatorname{se}(\bar{x})$, where $\operatorname{se}(\bar{x})=\frac{s_{x}}{\sqrt{n}}$ and $d f=n-1$

Comparison of the CI using T (unknown σ) \& \mathbf{Z} (known σ) distributions

- $\mathrm{CI}(\mu)$, when $\sigma=\mathbf{5 4 . 4}$ is known (Normal distr.)
$\mathbf{C I}(\mu)=\left(\mathbf{Y}_{\text {bar }}-\sigma \mathbf{z}_{(1+\mathrm{L}) / 2} / \mathbf{n}^{1 / 2} ; \mathbf{Y}_{\text {bar }}-\sigma \mathrm{z}_{(1+\mathrm{L}) / 2} / \mathbf{n}^{1 / 2}\right)$, $\mathrm{z}_{(1+\mathrm{L}) / 2}=1.96$
$95 \% \mathrm{CI}(\mu)=\left(199-54.4 \times 1.96 / 4^{1 / 2} ; 199+54.4 \times 1.96 / 4^{1 / 2}\right)$
$\mathrm{CI}_{\mathrm{Z}}(\mu)=(145.7: 252.3)$
- Comparison:
$\mathrm{CI}_{\mathrm{T}}(\mu)=(112.4: 285.6) \leftarrow$ compare \rightarrow
$\mathrm{CI}_{\mathbf{Z}}(\mu)=(145.7: 252.3)$
Which one is better?!? More appropriate?!?

Prediction vs. Confidence intervals - Differences?

- Confidence Intervals (for the population mean μ):

$\hat{\sigma}=\hat{\sigma}(\bar{Y})=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(y_{k}-\bar{y}\right)^{2}}$
- Prediction Intervals:
 $\hat{\sigma}=\hat{\sigma}\left(Y_{\text {naw }}-\hat{Y}_{\text {neas }}\right)=\sqrt{\frac{1}{n-1}} \sum_{k=1}^{n}\left(y_{k}-\bar{y}\right)^{2} \times \sqrt{1+\frac{1}{n}}$

Classical Prediction for the $\mathrm{C}+\mathrm{E}$ model

- $Y=C+E$. When why, how to use prediction?
- When: $\mathbf{E} \sim N\left(\mathbf{0}, \sigma^{2}\right) \leftrightarrow \rightarrow \mathbf{Y} \sim N\left(\mu, \sigma^{2}\right)$, there are more general situations, of course. Here we only consider this case.
- Why: Future predictions are of paramount importance in any area of science/engineering/medicine.
- How: μ is mostly unknown, so we estimate it by: m^, (the sample average).

If population proportion, \mathbf{p}, is unknown we estimate it by the sample-proportion, \mathbf{p}^{\wedge}, etc.

Classical Prediction for the $\mathbf{C}+\mathbf{E}$ model

- How: Let $\mathrm{Y}^{\wedge}{ }_{\text {new }}$ be the predicted value
\square Error $\mathbf{Y}_{\text {new }}-\mathbf{Y}^{\wedge}{ }_{\text {new }}=\left(\mu-\varepsilon_{\text {new }}\right)-\mathbf{Y}^{\wedge}{ }_{\text {new }}=\left(\mu-\mathbf{Y}_{\text {new }}^{\wedge}\right)+\varepsilon_{\text {new }}$
$■ \operatorname{Var}\left(\mathbf{Y}_{\text {new }}-\mathbf{Y}^{\wedge}{ }_{\text {new }}\right)=\operatorname{Var}\left(\boldsymbol{\mu}-\mathbf{Y}^{\wedge}{ }_{\text {new }}\right)+\operatorname{Var}\left(\boldsymbol{\varepsilon}_{\text {new }}\right)=\boldsymbol{\sigma}^{2} / \mathrm{n}+\boldsymbol{\sigma}^{2}$.
■ Often $\boldsymbol{\sigma}$ is unknown, and we estimate it by the sample SD, S $\boldsymbol{\rightarrow}$
$\square \mathrm{SD}\left(\mathbf{Y}_{\text {new }}-\mathbf{Y}^{\wedge}{ }_{\text {new }}\right)=\left[\mathrm{S}^{2}(\mathbf{1}+\mathbf{1} / \mathbf{n})\right]^{1 / 2}$
- We can show that

$$
T=\frac{Y_{\text {nev }}-\hat{Y}_{\text {new }}-0}{\sigma\left(Y_{\text {new }}-\hat{Y}_{\text {new }}\right)} \sim t_{n-1}
$$

\rightarrow The L-level prediction interval $\left(\operatorname{PI}\left(\mathbf{Y}_{\text {new }}\right)\right)$ is:
$\mathrm{L}=\mathrm{P}\left(\mathrm{t}_{\mathrm{n}-1,(1-\mathrm{L}) / 2}<\mathrm{T}<\mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}\right) \rightarrow \quad$ Solve for T $\left(\hat{Y}_{\text {new }}+\hat{\sigma} \times \mathrm{t}_{\mathrm{n}-1,(1-\mathrm{L}) / 2} \quad ; \quad \hat{Y}_{\text {new }}^{\mathrm{n}-1(1-\mathrm{L} / 2}+\hat{O} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}\right)$ By symmetr $\left(\hat{Y}_{\text {new }}^{\text {new }}-\hat{\sigma} \times \mathrm{t}_{\mathrm{n}-1,(1+L) / 2} ; \hat{Y}_{\text {new }}+\hat{\sigma} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) 2}\right) \quad$ of $\mathrm{t}_{\mathrm{n}-1 .}$.

Example - higher blood thiol concentrations

 associated with rheumatoid arthritis?!?| Thiol Concentration (mmol) | | |
| :--- | :---: | :---: |
| | Normal | Rheumatoid |
| Research question: | 1.84 | 2.81 |
| Is the change in the Thiol status | 1.92 | 4.06 |
| in the lysate of packed blood | 1.94 | 3.62 |
| cells substantial to be indicative | 1.92 | 3.27 |
| of a non trivial relationship | 1.85 | 3.27 |
| between Thiol-levels and | 1.91 | 3.76 |
| rheumatoid arthritis? | 2.07 | |
| Sample size | 7 | 6 |
| Sample mean | 1.92143 | 3.46500 |
| Sample standard deviation | 0.07559 | 0.44049 |

Classical Prediction for the $\mathbf{C}+\mathbf{E}$ model

- How: μ is mostly unknown, so we estimate it by: \mathbf{m}^{\wedge}, - Let $\mathrm{Y}_{\text {new }}^{\wedge}$ be the predicted value

■ Error made by using $\mathrm{Y}_{\text {new }}^{\wedge}$, instead of observing a new value, $\mathrm{Y}_{\text {new }}$ is:
(1) $\mathbf{Y}_{\text {new }}-\mathbf{Y}^{\wedge}{ }_{\text {new }}=\left(\mu-\varepsilon_{\text {new }}\right)-\mathbf{Y}^{\wedge}{ }_{\text {new }}=\left(\mu-\mathbf{Y}_{\text {new }}^{\wedge}\right)+\varepsilon_{\text {new }}$
\square But if we use μ^{\wedge} to predict a new value for $\mathrm{Y}, \mathrm{Y}_{\text {new }}^{\wedge}=\mu^{\wedge}$.

- $\operatorname{Var}\left(\mu-\mathrm{Y}_{\text {new }}^{\wedge}\right)=\operatorname{Var}\left(\mathrm{Y}_{\text {new }}^{\wedge}\right)=\operatorname{Var}\left(\mu^{\wedge}\right)=\operatorname{Var}($ SampleAvg $)=\sigma^{2} / \mathrm{n}$.
- The variance of the second term is just $\boldsymbol{\sigma}^{2}$.
\square Since the first-term in (1) is obtained from $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$, and
$\boldsymbol{\varepsilon}_{\text {new }}=\boldsymbol{\varepsilon}_{\mathbf{n}+\mathbf{1}}$, we have two independent terms \rightarrow Variances add up!
$■ \operatorname{Var}\left(\mathbf{Y}_{\text {new }}-\mathbf{Y}_{\text {new }}^{\wedge}\right)=\operatorname{Var}\left(\boldsymbol{\mu}-\mathbf{Y}_{\text {new }}^{\wedge}\right)+\operatorname{Var}\left(\varepsilon_{\text {new }}\right)=\boldsymbol{\sigma}^{2} / \mathrm{n}+\boldsymbol{\sigma}^{2}$.

CI for a population proportion

Confidence Interval for the true (population) proportion p : sample proportion $\pm z$ standard errors
or $\hat{p} \pm z \operatorname{se}(\hat{p})$, where $\operatorname{se}(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Difference between means

Confidence Interval for a difference between population means $\left(\mu_{1}-\mu_{2}\right)$:

Difference between sample means

$\pm t$ standard errors of the difference
or

$$
\bar{x}_{1}-\bar{x}_{2} \pm t \operatorname{se}\left(\bar{x}_{1}-\bar{x}_{2}\right)
$$

Difference between proportions

Confidence Interval for a difference between population proportions $\left(p_{1}-p_{2}\right)$:
Difference between sample proportions
$\pm z$ standard errors of the difference

$$
\hat{p}_{1}-\hat{p}_{2} \pm z \operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)
$$

How do we compute the $\operatorname{SE}\left(\hat{p}_{1}-\hat{p}_{2}\right)$ for different cases?

Example - higher blood thiol concentrations with rheumatoid arthritis

Confidence Interval for a difference between population means $\left(\mu_{1}-\mu_{2}\right)$:

$$
\bar{x}_{1}-\bar{x}_{2} \pm t \operatorname{se}\left(\bar{x}_{1}-\bar{x}_{2}\right)
$$

or $\quad \bar{x}_{1}-\bar{x}_{2} \pm t \operatorname{se}\left(\bar{x}_{1}-\bar{x}_{2}\right)=$
$1.92-3.47 \pm \mathrm{t}_{6-1,0.025} \sqrt{0.08^{2}+0.44^{2}}=$ $-1.55 \pm 2.571 \times 0.45=$
-1.55 ± 1.15

Proportions from 2 independent samples

Example - 1996 US Presidential Election

Example - 1996 US Presidential Election

State	n	Pre-election Polls				Election Results		
		Clinton	Doll	Perot	Other/Undecided	Clinton		Perot
New Jersey	1,000	51	$33)$	8	8	53	36	9
New York	1,000	59	25	7	9		31	8
Connecticutt	1,000	51	29	11	9	52	35	10

Single sample, several response categories

How far
is Clinton
ahead of
Dole in NJ?
Diff.proportions $=$
18%
CI: $[12 \%: 24 \%]$
Actual diff $53-36=17$

$$
\begin{gathered}
\hat{p}_{1}-\hat{p}_{2} \pm z \operatorname{Se}\left(\hat{p}_{1}-\hat{p}_{2}\right) \\
\text { estimate } \pm z \times \operatorname{SE}=\hat{p}_{1}-\hat{p}_{2} \pm 1.96 \times \operatorname{SE}\left(\hat{p}_{1}-\hat{p}_{2}\right)= \\
\hat{p}_{1}-\hat{p}_{2} \pm 1.96 \times \sqrt{\frac{\hat{p}_{1}+\hat{p}_{2}-\left(\hat{p}_{1}-\hat{p}_{2}\right)^{2}}{n}}= \\
0.18 \pm 1.96 \times 0.02842=[12 \%: 24 \%]
\end{gathered}
$$

Sample size - proportion

For a 95\% CI, margin $=1.96 \times \sqrt{\hat{p}(1-\hat{p}) / n}$

- Sample size for a desired margin of error:

For a margin of error no greater than m, use a sample size of approximately

$$
n=\left(\frac{z}{m}\right)^{2} \times p^{*}\left(1-p^{*}\right)
$$

- p^{*} is a guess at the value of the proportion -- err on the side of being too close to 0.5
- z is the multiplier appropriate for the confidence level
- m is expressed as a proportion (between 0 and 1), not a percentage (basically, What's n, so that $m>=$ margin?)
- We will discuss these later, when we get to the hypothesis testing (ch6_HTParied_Inde_ Tests.ppt)

Confidence intervals

- We construct an interval estimate of a parameter to summarize our level of uncertainty about its true value.
- The uncertainty is a consequence of the sampling variation in point estimates.
- If we use a method that produces intervals which contain the true value of a parameter for 95% of samples taken, the interval we have calculated from our data is called a 95% confidence interval for the parameter.
- Our confidence in the particular interval comes from the fact that the method works 95% of the time (for $95 \% \mathrm{CI}$'s).

Summary cont.

- For a great many situations,
an (approximate) confidence interval is given by

estimate $\pm t$ standard errors

The size of the multiplier, t, depends both on the desired confidence level and the degrees of freedom $(d f)$.
[With proportions, we use the Normal distribution (i.e., $d f=\infty$) and it is conventional to use z rather than t to denote the multiplier.]

- The margin of error is the quantity added to and subtracted from the estimate to construct the interval (i.e. t standard errors).

Summary cont.

- If we want greater confidence that an interval calculated from our data will contain the true value, we have to use a wider interval.
- To double the precision of a 95% confidence interval (i.e.halve the width of the confidence interval), we need to take 4 times as many observations.

Confidence intervals - non-symmetric case

- A marine biologist wishes to use male angelfish for an experiment and hopes their weights don't vary much. In fact, a previous random sample of $\mathrm{n}=16$ angelfish yielded the data below
- $\left\{\mathrm{y}_{1} ; \ldots ; \mathrm{y}_{\mathrm{n}}\right\}=\{5.1 ; 2.5 ; 2.8 ; 3.4 ; 6.3 ; 3.6 ; 3.9 ; 3.0 ; 2.7 ; 5.7 ; 3.5$; 3.6; 5.3; 5.1; 3.5; 3.3\}
- Sample statistics from these data include Avg. $=3.96 \mathrm{lbs}, \mathrm{s}^{2}=1.35$ $\mathrm{lbs}, \mathrm{n}=16$.
- Problem: Obtain a $100(1-\alpha) \% \mathrm{CI}\left(\sigma^{2}\right)$.
- Point Estimator for σ^{2} ? How about sample variance, s^{2} ?
- Sampling theory for s^{2} ? Not in general, but under Normal assumptions ...
- If a random sample $\left\{\mathrm{Y}_{1} ; \ldots ; \mathrm{Y}_{\mathrm{n}}\right\}$ is taken from a normal population with mean μ and variance σ^{2}, then standardizing, we get a sum of squared $N(0,1)$

Confidence intervals - non-symmetric case

- $\left\{\mathrm{y}_{1} ; \ldots ; \mathrm{y}_{\mathrm{n}}\right\}=\{5.1 ; 2.5 ; 2.8 ; 3.4 ; 6.3 ; 3.6 ; 3.9 ; 3.0 ; 2.7$; $5.7 ; 3.5 ; 3.6 ; 5.3 ; 5.1 ; 3.5 ; 3.3\}$
- Problem: Obtain a $100(1-\alpha) \% \mathrm{CI}\left(\sigma^{2}\right)$.

$$
\frac{\sum_{k=1}^{n}\left(Y_{k}-\bar{Y}\right)^{2}}{\chi_{\left(n-1, \frac{\alpha}{2}\right)}^{2} \leq \sigma^{2} \leq \frac{\sum_{k=1}^{n}\left(Y_{k}-\bar{Y}\right)^{2}}{\chi^{2}\left(n-1,1-\frac{\alpha}{2}\right)}}
$$

- $\chi^{2}(15 ; 0.025)=27: 49$ and $\chi^{2}(15 ; 0.975)=6: 26 \rightarrow$
- This yields the CI, the sample variance is $\mathbf{s}^{\mathbf{2}=\mathbf{1 . 3 5}}$. Note the CI is NOT symmetric $(0.74 ; 3.24)$

Prediction vs. Confidence intervals

- Confidence Intervals (for the population mean μ): $\left(\overline{\mathrm{Y}}-\frac{\hat{\sigma} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}}{\sqrt{\mathrm{n}}} ; \overline{\mathrm{Y}}+\frac{\hat{\sigma} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}}{\sqrt{\mathrm{n}}}\right)$
- Prediction Intervals: L-level prediction interval (PI) for a new value of the process Y is defined by:
$\left(\hat{Y}_{n e w}-\hat{O} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2} ; \hat{Y}_{\text {new }}+\hat{O} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}\right)$ where the predicted value $\hat{Y}_{\text {new }}=\bar{Y}$, is obtained as an estimator of the unknown process mean μ.

Parameter (Point) Estimation

- Suppose we flip a coin $\mathrm{n}=8$ times and observe $\{\mathrm{T}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{H}\}$. Estimate the value $\mathrm{p}=\mathrm{P}(\mathrm{H})$.
- Method of Moments Estimate \mathbf{p}^{\wedge} :
- Set your k parameters equal to your first k moments.
- Let $X=\{\#$ T's $\} \rightarrow n p=8 p=E(X)=$ Sample\#H's $=5 \rightarrow p^{\wedge}=5 / 8$.
- Method of Maximum Likelihood Estimate p^:
- 1. $\mathrm{f}(\mathrm{x} \mid \mathrm{p})=\binom{8}{5} p^{5}(1-p)^{3} \quad$ likelihood function.
- 2.

$\ln \left(\binom{8}{5} p^{5}(1-p)^{3}\right)=\ln \left(\binom{8}{5}\right)+5 \times \ln (p)+3 \times \ln (1-p)$

- 3. $\frac{d\left(\ln \left(\binom{8}{5}\right)+5 \times \ln (p)+3 \times \ln (1-p)\right)}{d p}=\frac{5}{p}-\frac{3}{1-p}=0$ $5(1-p)-3 p=0 \Rightarrow p=5 / 8$

Parameter (Point) Estimation

- (6.2) Two Ways of Proposing Point Estimators
- Method of Moments (MOMs):
- Set your k parameters equal to your first k moments.
- Solve. (e.g., Binomial, Exponential and Normal)
- Method of Maximum Likelihood (MLEs):
- 1. Write out likelihood for sample of size n .
- 2. Take natural \log of the likelihood.
- 3. Take partial derivatives with respect to your k parameters.
- 4. Take second derivatives to check that a maximum exists(f " >0).
- 5. Set $1^{\text {st }}$ derivatives equal to zero and solve for MLEs. e.g., Binomial, Exponential and Normal

Example - Maximum Likelihood Estimate

\bullet Let $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}=\{0.5,0.3,0.6,0.1,0.2\}$, weights, be IID N $(\mu, 1)$ $\rightarrow \mathrm{f}(\mathrm{x} ; \mu)$. Joint density is $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} ; \mu\right)=\mathrm{f}\left(\mathrm{x}_{1} ; \mu\right) \times \ldots \times \mathrm{f}\left(\mathrm{x}_{\mathrm{n}} ; \mu\right)$.

- The likelihood function $L(p)=f\left(X_{1}, \ldots, X_{n} ; p\right)$
$L(\mu)=\lambda\left(x_{1}, \ldots, x_{n}\right)=$
$=e^{-\frac{(0.5-\mu)^{2}+(0.3-\mu)^{2}+(0.6-\mu)^{2}+(0.1-\mu)^{2}+(0.2-\mu)^{2}}{2}}$
$\ln (L)=(-1 / 2)\left[(0.5-\mu)^{2}+(0.3-\mu)^{2}+(0.6-\mu)^{2}+(0.1-\mu)^{2}+(0.2-\mu)^{2}\right]$
$0=\frac{d \ln (L)}{d \mu}=(0.5-\mu)+(0.3-\mu)+(0.6-\mu)+(0.1-\mu)+(0.2-\mu)=$
$=-5 \mu+1.7 \Rightarrow \mu=0.34 \Rightarrow \frac{d^{2} \ln (L)}{d \mu^{2}}=-5 \Rightarrow L(\mu=0.34)=\max$

