### UCLA STAT 110 A

Applied Probability & Statistics for Engineers

•<u>Instructor</u>: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

• Teaching Assistant: Maria Chang, UCLA Statistics

University of California, Los Angeles, Spring 2003 http://www.stat.ucla.edu/~dinov/

STAT 1104 UCLA Ivo Dino

Slide

### **Inference & Estimation**

- C + E model
- Types of Inference
- Sampling distributions
- CI's for μ & p
- Comparing 2 proportions
- How big should my study be?
- Paired vs. unpaired tests

T 1104 PCL4 Iva Dinov SI

### The C + E Model

### • Data = Center + Error : $Y = \mu + \epsilon$ ;

- The response value Y is equal to unknown constant (μ), but because of normal variability we almost never observe μ exactly.
- Example Speed of light (SOL), μ = 2.998 x 10<sup>9</sup> m/s. However, 100 measurements of the SOL are all going to be slightly different.
- Model (population) parameter a quantity describing the model that can take on many values. Ex., μ.

lide 3 STAT

### Types of inference

- Estimation of model parameters: Data-driven estimates of the model parameters. Also, includes how much uncertainty about those estimates is there.
- Prediction of new (future) observations: Uses past and current data to predict the value of new observations from the population.
- Tolerance level: a range of values that has userspecified probability of containing a particular proportion of the population.

Slide 4 STAT 110A, UCLA, Ivo Dino

### Estimation of model parameter(s) – $\mu$

- Least-Absolute-Error-Estimate(m) Suppose,  $\mu$  = 3.5 (unknown) and Y={Y<sub>1</sub>= $\mu$ +e<sub>1</sub>, Y<sub>2</sub>= $\mu$ +e<sub>2</sub>, ...,Y<sub>10</sub>= $\mu$ +e<sub>10</sub>} are our observed data. Cost function = Sum-of-Absolute-Errors = SAE =  $\Sigma$ |Y<sub>k</sub> m|  $\rightarrow$  m = MinArg(SAE).
- Least-Squares(m) (in the same setting). Cost function = Sum-of-Squared-Errors =  $SSE = \Sigma(Y_k m)^2 \rightarrow$ 
  - m = MinArg(SSE), least-squares-estimate.
- Solution (differentiate):

 $d SSE(m) / d m = -2 \Sigma(Y_k - m) = 0$ , solve for m!

Slide 5 STAT 110A, UCLA, Ivo

### Estimation of model parameter(s) – $\mu$ (Example)

- Data: ball-bearing diameter:  $\mu$  =? (unknown) given the observed Y={Y<sub>1</sub>= 0.1896, Y<sub>2</sub>= 0.1913, Y<sub>10</sub>=0.1900}. SAE =  $\Sigma$ |Y<sub>k</sub> - m| & SSE =  $\Sigma$ (Y<sub>k</sub> - m)<sup>2</sup>
- Plot the Cost functions against  $\mu$ :

  MinArg(Cost)

  0.186

  0.188

  0.190

  0.192

  0.194

  m

### Parameters, Estimators, Estimates ...

- A parameter is a characteristic of the data mean, 1<sup>st</sup> quartile, SD, etc.)
- An estimator is an abstract <u>rule</u> for calculating a quantity (or parameter) from the sample data.
- An estimate is the value obtained when real data are plugged-in the estimator rule.

Slide 7 STATILIA UCLA Iva Dinav

### Parameters, Estimators, Estimates ...

• E.g., We are interested in the population mean diameter (<u>parameter</u>) of washers the sample-average formula represents <u>an estimator</u> we can use, where as the value of the sample average for a particular dataset is the <u>estimate</u> (for the <u>mean</u> parameter).

mean parameter).

parameter = 
$$\mu_Y$$
; estimator =  $\overline{Y} = \frac{1}{N} \sum_{k=1}^{N} Y_k$ 

Data:  $Y = \{0.1896, 0.1913, 0.1900\}$ 

estimate =  $\overline{y} = \frac{1}{3} (0.1896 + 0.1913 + 0.1900)$ 
 $\overline{y} = 0.1903$ . How about  $\overline{y} = \frac{2}{3} (0.1896 + 0.1913 + 0.1900)$ 

Slide 8 STATION UCLA by Dinay

20 replicated measurements to estimate the speed of light. Obtained by Simon Newcomb in 1882, by using distant (3.721 km) rotating mirrors.



### A 95% confidence interval

- A type of interval that contains the <u>true value of a parameter</u> for 95% of samples taken is called a 95% confidence interval for that parameter, the ends of the CI are called confidence limits.
- (For the situations we deal with) a confidence interval (CI) for the true value of a <u>parameter</u> is given by

estimate  $\pm t$  standard errors (SE)

| Value of the Multiplier, t, for a 95% CI |       |       |       |       |       |          |       |             |             |       |       |  |
|------------------------------------------|-------|-------|-------|-------|-------|----------|-------|-------------|-------------|-------|-------|--|
| df:                                      | 7     | 8     | 9     | 10    | 11    | 12       | 13    | 14          | 15          | 16    | 17    |  |
|                                          |       |       |       |       |       |          |       | 2.145       |             |       |       |  |
| df:                                      | 18    | 19    | 20    | 25    | 30    | 35       | 40    | 45<br>2.014 | 50          | 60    | 08    |  |
| t:                                       | 2.101 | 2.093 | 2.086 | 2.060 | 2.042 | 2.030    | 2.021 | 2.014       | 2.009       | 2.000 | 1.960 |  |
|                                          |       |       |       |       |       | Slide 10 |       | STAT 110A   | . UCLA. Ivo | Dinov |       |  |

### (General) Confidence Interval (CI)

- A <u>level L confidence interval</u> for a parameter  $(\theta)$ , is an interval  $(\theta_1^{\wedge}, \theta_2^{\wedge})$ , where  $\theta_1^{\wedge} \& \theta_2^{\wedge}$ , are estimators of  $\theta$ , such that  $P(\theta_1^{\wedge} < \theta < \theta_2^{\wedge}) = L$ .
- E.g., <u>C+E model</u>:  $Y = \mu + \epsilon$ . Where  $\epsilon \sim N(0, \sigma^2)$ , then by CLT we have  $Y_bar \sim N(\mu, \sigma^2/n)$ 
  - $\rightarrow$  n<sup>1/2</sup>(Y\_bar  $\mu$ )/ $\sigma$  ~ N(0,  $\sigma$ <sup>2</sup>).
- L = P (  $z_{(1-L)/2}$  <  $n^{\frac{1}{2}}(Y_bar \mu)/\sigma$  <  $z_{(1+L)/2}$  ), where  $z_\alpha$  is the  $q^{th}$  quartile.
- E.g.,  $0.95 = P (z_{0.025} < n^{\frac{1}{2}} (Y_bar \mu)/\sigma < z_{0.975}),$

Slide 11 STAT 110A, UCLA, Ivo Din

- CI are constructed using the sample <u>x</u> and s=SE. But <u>different samples yield different estimates</u> and → diff. CI's?!?
- Below is a <u>computer simulation</u> showing how the process of taking samples effects the estimates and the Cl's.







### CI for population mean

- ◆ E.g., SYSTAT → Data:
   BirthdayDistribution 1978 systat.SYD
- Statistics → Descriptive Statistics → Stem-&-Leaf-Plot
- Statistics → Descriptive Statistics → CI for mean

lide 15 STAT 110A, UCLA, Ivo Di

### CI for population mean - Example

- E.g., Lab rats blood glucose levels: {266, 149, 161, 220} Estimate  $\mu$ , the mean population blood sugar level. Assume the variance  $\sigma^2 = 2958$ ,  $\rightarrow \sigma = 54.4$ , from prior experience. Also assume data comes from  $N(\mu, \sigma^2)$ . Sample-avg=199, Compute the 95% CI, L=0.95.
- $\bullet$  (1-L)/2 = 0.025, (1+L)/2 = 0.975,
- $Z_{(1-L)/2} = Z_{0.025} = -1.96$  &  $Z_{(1+L)/2} = Z_{0.975} = 1.96$
- L = P (  $z_{(1-L)/2} < n^{1/2}(Y_bar \mu)/\sigma < z_{(1+L)/2}$ ),
- $CI(\mu) = (Y_bar \sigma z_{(1+L)/2}/n^{1/2}; Y_bar \sigma z_{(1-L)/2}/n^{1/2})$
- CI( $\mu$ )= (199 54.4x1.96 /  $4^{\frac{1}{2}}$ ; 199 + 54.4x1.96 /  $4^{\frac{1}{2}}$ ) CI( $\mu$ )= (145.7 : 252.3)

Slide 16 STAT 110A, UCLA, Ivo Din

### **CI** - Interpretation

 Consider taking all possible samples from the population with parameter of interest (θ).



- Suppose we construct the <u>level L confidence interval</u> for a parameter (θ) <u>for each sample</u>. Then a proportion L of all constructed CI's will contain the value of θ.
- Note that this interpretation of CI's is in terms of repeated sampling from the same population ...

U-1 45

## Effect of increasing the confidence level 99% CI, $\vec{x} \pm 2.576 \text{ se}(\vec{x})$ 95% CI, $\vec{x} \pm 1.960 \text{ se}(\vec{x})$ 1ncreases the size of the CI 80% CI, $\vec{x} \pm 1.645 \text{ se}(\vec{x})$ Why? The greater the confidence level, the wider the interval Slide 18. STAT HOLD COLUMN TO Diving.





# Comparison of the CI using T (unknown $\sigma$ ) & Z (known $\sigma$ ) distributions • For the old data: glucose levels: {266, 149, 161, 220} $\hat{\sigma} = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(y_k - \overline{y})^2}$ • CI( $\mu$ ), when $\underline{\sigma}$ is unknown (T-distr.), small-sample-size, and data comes from (approx.) Normal distribution. $\overline{\chi} = 199$ $\hat{\sigma} = 54.39$ L= P (t<sub>N-1,(1-L)/2</sub>< n<sup>½</sup>(Y<sub>bar</sub>- $\mu$ )/ $\sigma$ ^^ < t<sub>N-1,(1+L)/2</sub>), CI( $\mu$ )=(Y<sub>bar</sub>- $\sigma$ ^t<sub>N-1,(1+L)/2</sub>/n<sup>½</sup>; Y<sub>bar</sub>- $\sigma$ ^t<sub>N-1,(1+L)/2</sub>/n<sup>½</sup>) 95% CI( $\mu$ )=(199–54.39x3.18 /4½; 199+54.39x3.18 / 4½) t<sub>N-1,(1+L)/2</sub> = t<sub>3,0975</sub>=3.18 & t<sub>N-1,(1+L)/2</sub> = t<sub>3,0025</sub>=3.18 → CI<sub>T</sub>( $\mu$ )=(112.4:285.6)

### Comparison of the CI using T (unknown $\sigma$ ) & Z (known $\sigma$ ) distributions • CI( $\mu$ ), when $\underline{\sigma} = 54.4$ is known (Normal distr.) CI( $\mu$ ) = ( $Y_{bar}$ - $\sigma$ $Z_{(1+L)/2}/n^{\frac{1}{2}}$ ; $Y_{bar}$ - $\sigma$ $Z_{(1+L)/2}/n^{\frac{1}{2}}$ ), $Z_{(1+L)/2} = 1.96$ 95% CI( $\mu$ ) = (199 - 54.4 x 1.96 /4½; 199+54.4 x 1.96 / 4½) CI<sub>Z</sub>( $\mu$ )= (145.7 : 252.3) • Comparison: CI<sub>T</sub>( $\mu$ )=(112.4:285.6) ← compare → CI<sub>Z</sub>( $\mu$ )= (145.7:252.3) Which one is better?!? More appropriate?!?

# Prediction vs. Confidence intervals • Confidence Intervals (for the population mean $\mu$ ): $\left(\overline{Y} - \frac{\hat{\sigma} \times \mathbf{t}_{\text{n-l,(l+L)/2}}}{\sqrt{n}} ; \overline{Y} + \frac{\hat{\sigma} \times \mathbf{t}_{\text{n-l,(l+L)/2}}}{\sqrt{n}}\right)$ • Prediction Intervals: L-level prediction interval (PI) for a new value of the process Y is defined by: $\left(\hat{Y}_{new} - \hat{\sigma} \times \mathbf{t}_{\text{n-l,(l+L)/2}} ; \hat{Y}_{new} + \hat{\sigma} \times \mathbf{t}_{\text{n-l,(l+L)/2}}\right)$ where the predicted value $\hat{Y}_{new} = \overline{Y}$ , is obtained as an estimator of the unknown process mean $\mu$ .



**Prediction vs. Confidence intervals – Differences?** 

Confidence Intervals (for the population mean  $\mu$ ):

### Classical Prediction for the C+E model

- Y = C + E. When why, how to use prediction?
- When:  $E \sim N(0, \sigma^2) \leftarrow Y \sim N(\mu, \sigma^2)$ , there are more general situations, of course. Here we only consider this case.
- Why: Future predictions are of paramount importance in any area of science/engineering/medicine.
- How: μ is mostly unknown, so we estimate it by: m<sup>^</sup> (the sample average).

If population proportion, p, is unknown we estimate it by the sample-proportion, p^, etc.

### Classical Prediction for the C+E model

- **How:**  $\mu$  is mostly unknown, so we estimate it by:  $\mathbf{m}^{\wedge}$ ,
  - Let Y<sup>^</sup><sub>new</sub> be the predicted value
  - Error made by using Y<sup>^</sup><sub>new</sub>, instead of observing a new value, Y<sub>new</sub> is:

(1) 
$$Y_{\text{new}} - Y_{\text{new}}^{\wedge} = (\mu - \varepsilon_{\text{new}}) - Y_{\text{new}}^{\wedge} = (\mu - Y_{\text{new}}^{\wedge}) + \varepsilon_{\text{new}}$$

- But if we use  $\mu$  to predict a new value for Y,  $Y_{\text{new}}^{\uparrow} = \mu$ .
- The variance of the second term is just  $\sigma^2$ .
- Since the first-term in (1) is obtained from  $\{Y_1, Y_2, ..., Y_n\}$ , and
- $\varepsilon_{\text{new}} = \varepsilon_{n+1}$ , we have two independent terms  $\rightarrow$  Variances add up!

### Classical Prediction for the C+E model

- How: Let Y<sup>^</sup><sub>new</sub> be the predicted value
  - Error  $Y_{new}$   $Y_{new}^{\wedge}$  =  $(\mu \varepsilon_{new})$   $Y_{new}^{\wedge}$  =  $(\mu Y_{new}^{\wedge})$  +  $\varepsilon_{new}$
  - $\text{ Var}(Y_{new} \text{ } Y^{\wedge}_{new}) = \text{Var}(\mu \text{ } Y^{\wedge}_{new}) + \text{Var}(\epsilon_{new}) = \sigma^2/n + \sigma^2.$
  - Often  $\sigma$  is unknown, and we estimate it by the sample SD, S →
  - $\blacksquare$  SD  $(Y_{\text{new}} Y_{\text{new}}^{\land}) = [S^2(1+1/n)]^{\frac{1}{2}}$
- We can show that

We can show that  $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new} - \hat{Y}_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} - \hat{Y}_{new} - 0}{\sigma(Y_{new})} \sim t$   $T = \frac{Y_{new} -$ 

### CI for a population proportion

Confidence Interval for the true (population) proportion *p*: sample proportion  $\pm z$  standard errors

or 
$$\hat{p} \pm z \operatorname{se}(\hat{p})$$
, where  $\operatorname{se}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

### **Example** – higher blood thiol concentrations associated with rheumatoid arthritis?!?

| Thiol Concentration (mmol)         |         |              |  |  |  |  |  |
|------------------------------------|---------|--------------|--|--|--|--|--|
|                                    | Normal  | Rheumatoid   |  |  |  |  |  |
| Research question:                 | 1.84    | 2.81         |  |  |  |  |  |
| Is the change in the Thiol status  | 1.92    | 4.06         |  |  |  |  |  |
| in the lysate of packed blood      | 1.94    | 3.62         |  |  |  |  |  |
| cells substantial to be indicative | 1.92    | 3.27<br>3.27 |  |  |  |  |  |
| of a non trivial relationship      | 1.85    |              |  |  |  |  |  |
| between Thiol-levels and           | 1.91    | 3.76         |  |  |  |  |  |
| rheumatoid arthritis?              | 2.07    |              |  |  |  |  |  |
| Sample size                        | 7       | 6            |  |  |  |  |  |
| Sample mean                        | 1.92143 | 3.46500      |  |  |  |  |  |
| Sample standard deviation          | 0.07559 | 0.44049      |  |  |  |  |  |

### **Example** – higher blood thiol concentrations with rheumatoid arthritis



Dot plot of Thiol concentration data.

Two groups of subjects are studied: 1. NC (normal controls)

2. RA (rheumatoid arthritis).

Observations: 1. The avg. levels of thiol seem diff. in NC & RA

2. NC and RA groups are separated completely.

Question: Is there statistical evidence that thiol-level correlates with the disease?

### Difference between means

Confidence Interval for a difference between population means  $(\mu_1 - \mu_2)$ :

> Difference between sample means  $\pm$  t standard errors of the difference

or

$$\overline{x}_1 - \overline{x}_2 \pm t \operatorname{se}(\overline{x}_1 - \overline{x}_2)$$

### **Example** – higher blood thiol concentrations with rheumatoid arthritis

Confidence Interval for a difference between population  $\underline{\text{means}} (\mu_1 - \mu_2)$ :

$$\overline{x}_1 - \overline{x}_2 \pm t \operatorname{se}(\overline{x}_1 - \overline{x}_2)$$

or 
$$\overline{x}_1 - \overline{x}_2 \pm t \operatorname{se}(\overline{x}_1 - \overline{x}_2) = 1.92 - 3.47 \pm t_{6-1,0.025} \sqrt{0.08^2 + 0.44^2} = -1.55 \pm 2.571 \times 0.45 = -1.55 \pm 1.15$$







| Example – 1996 US Presidential Election                                                                                                                                                                                                                |       |               |              |                  |                            |         |        |       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|--------------|------------------|----------------------------|---------|--------|-------|--|--|--|--|
|                                                                                                                                                                                                                                                        |       |               | Pro          | Election Results |                            |         |        |       |  |  |  |  |
| State                                                                                                                                                                                                                                                  | n     | Clinton       | Doll         | Perot            | Other/Undecided            | Clinton | Doll 1 | Perot |  |  |  |  |
| New Jersey                                                                                                                                                                                                                                             | 1,000 | 51            | 33           | 8                | 8                          | 53      | 36     | 9     |  |  |  |  |
| New York                                                                                                                                                                                                                                               | 1,000 | 59            | 25           | 7                | 9                          | 59      | 31     | 8     |  |  |  |  |
| Connecticutt                                                                                                                                                                                                                                           | 1,000 | 51            | 29           | 11               | 9                          | 52      | 35     | 10    |  |  |  |  |
| Compare proport of N and N voi supporting Clinto and Dole, pre- an election                                                                                                                                                                            |       | $\hat{p}_1$ - | $-\hat{p}_2$ | ± z(             | $e(\hat{p}_1 - \hat{p}_2)$ |         |        |       |  |  |  |  |
| Note the independence-case SE form to is only applicable for the cases when the samples are independent. In this case, the pre-election poll and the election results are <b>not independent</b> (obviously these are highly correlated observations). |       |               |              |                  |                            |         |        |       |  |  |  |  |

### Example - 1996 US Presidential Election

|              |       |         | Pr   | e-electi | Election Results |         |      |       |
|--------------|-------|---------|------|----------|------------------|---------|------|-------|
| State        | n     | Clinton | Doll | Perot    | Other/Undecided  | Clinton | Doll | Perot |
| New Jersey   | 1,000 | 51      | 33   | 8        | 8                | 53      | 36   | 9     |
| New York     | 1,000 | 59      | 25   | 7        | 9                | 59      | 31   | 8     |
| Connecticutt | 1,000 | 51      | 29   | 11       | 9                | 52      | 35   | 10    |

### **Proportions from 2 independent samples**

How far is Clinton ahead In NY Compared to NJ? Diff proportions= 59-51%=8%

| $\hat{p}_1 - \hat{p}_2 \pm z \operatorname{se}(\hat{p}_1 - \hat{p}_2)$                                                   |
|--------------------------------------------------------------------------------------------------------------------------|
| estimate $\pm z \times SE = \hat{p}_1 - \hat{p}_2 \pm 1.96 \times SE \left(\hat{p}_1 - \hat{p}_2\right) =$               |
| $\hat{p}_1 - \hat{p}_2 \pm 1.96 \times \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} =$ |
| $\hat{p}_1 - \hat{p}_2 \pm 1.96 \times \sqrt{\frac{1}{n_1} + \frac{2}{n_2}} =$                                           |
| $0.08 \pm 1.96 \times 0.02842 = [4\%;12\%]$                                                                              |

### Example - 1996 US Presidential Election

|              |       |            | Pr   | Election Results |                 |         |      |       |
|--------------|-------|------------|------|------------------|-----------------|---------|------|-------|
| State        | n     | Clinton    | Doll | Perot            | Other/Undecided | Clinton | Doll | Perot |
| New Jersey   | 1,000 | <b>5</b> 1 | 33   | - 8              | 8               | 53      | 36   | 9     |
| New York     | 1,000 | 59         | 25   | 7                | 9               | 59      | 31   | 8     |
| Connecticutt | 1,000 | 51         | 29   | 11               | 9               | 52      | 35   | 10    |

### Single sample, several response categories

How far is Clinton ahead of Dole in NJ? Diff.proportions=

18% CI: [12% : 24%] Actual diff 53-36=1  $\hat{p}_{1} - \hat{p}_{2} \pm z \operatorname{se}(\hat{p}_{1} - \hat{p}_{2})$ estimate  $\pm z \times SE = \hat{p}_{1} - \hat{p}_{2} \pm 1.96 \times SE(\hat{p}_{1} - \hat{p}_{2}) =$   $\hat{p}_{1} - \hat{p}_{2} \pm 1.96 \times \sqrt{\frac{\hat{p}_{1} + \hat{p}_{2} - (\hat{p}_{1} - \hat{p}_{2})^{2}}{n}} =$   $0.18 \pm 1.96 \times 0.02842 = [12\%: 24\%]$ 

### SE's for the 2 cases of differences in proportion

(a) Proportions from two independent samples of sizes n 1 and n 2, respectively

$$se(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

(b) One sample of size n, several response categories

$$se(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1 + \hat{p}_2 - (\hat{p}_1 - \hat{p}_2)^2}{n}}$$

Slide 40

### Sample size - proportion

- For a 95% CI, margin =  $1.96 \times \sqrt{\hat{p}(1-\hat{p})/n}$
- Sample size for a desired margin of error:

  For a margin of error no greater than m, use a sample size of approximately

 $n = \left(\frac{z}{m}\right)^2 \times p * (1 - p^*)$ 

- p\* is a guess at the value of the proportion -- err on the side of being too close to 0.5
- z is the multiplier appropriate for the confidence level
- m is expressed as a proportion (between 0 and 1), not a percentage (basically, What's n, so that m >= margin?)

Slide 41 STAT 110A, UCLA, Ivo Dinov

### Sample size -- mean

Sample size for a desired margin of error:
 For a margin of error no greater than m, use a sample size of approximately

$$n = \left(\frac{z\sigma^*}{m}\right)^2$$

- $\sigma^*$  is an estimate of the variability of individual observations
- z is the multiplier appropriate for the confidence level

lide 42 STAT 110A, UCLA, Ivo Dino

### Paired vs. Unpaired comparisons

 We will discuss these later, when we get to the hypothesis testing (ch6\_HT\_Paired\_Indep\_Tests.ppt)

Slide 43 STAT 110A, UCLA, Ivo Din

### **Confidence intervals**

- We construct an interval estimate of a parameter to summarize our level of uncertainty about its true value.
- The uncertainty is a consequence of the sampling variation in point estimates.
- If we use a method that produces intervals which contain the true value of a parameter for 95% of samples taken, the interval we have calculated from our data is called a 95% confidence interval for the parameter.
- Our confidence in the particular interval comes from the fact that the method works 95% of the time (for 95% CI's).

Slide 44 STAT 1104, UCLA, Ivo Dinor

### Summary cont.

For a great many situations,

an (approximate) confidence interval is given by

### estimate + t standard errors

The size of the multiplier, t, depends both on the desired confidence level and the degrees of freedom (df).

[With proportions, we use the Normal distribution (i.e.,  $df = \infty$ ) and it is conventional to use z rather than t to denote the multiplier.]

 The margin of error is the quantity added to and subtracted from the estimate to construct the interval (i.e. t standard errors).

Slide 45 STAT LINA UCLA Ivo Dino

### Summary cont.

- If we want greater confidence that an interval calculated from our data will contain the true value, we have to use a wider interval.
- To double the precision of a 95% confidence interval (i.e.halve the width of the confidence interval), we need to take 4 times as many observations.

Slide 46 STAT 110A, UCLA, Ivo

### Examples – Birthday Paradox

- The Birthday Paradox: In a random group of N people, what is the change that at least two people have the same birthday?
- E.x., if N=23, P>0.5. Main confusion arises from the fact that in real life we rarely meet people having the same birthday as us, and we meet more than 23 people.
- The reason for such high probability is that any of the 23 people can compare their birthday with any other one, not just you comparing your birthday to anybody else's.
- There are N-Choose-2 = 20\*19/2 ways to select a pair or people. Assume there are 365 days in a year, P(one-particular-pair-same-B-day)=1/365, and
- P(one-particular-pair-failure)=1-1/365 ~ 0.99726.
- For N=20, 20-Choose-2 = 190. E={No 2 people have the same birthday is the event all 190 pairs fail (have different birthdays)}, then P(E) = P(failure)<sup>190</sup> = 0.99726<sup>190</sup> = 0.59.
- Hence, P(at-least-one-success)=1-0.59=0.41, quite high.
- Note: for N=42 → P>0.9 ...

Slide 47 STAT 110A, UCLA, Ivo Dino

### **Confidence intervals – non-symmetric case**

- A marine biologist wishes to use male angelfish for an experiment and hopes their weights don't vary much. In fact, a previous random sample of n = 16 angelfish yielded the data below
- $\{y_1; ...; y_n\} = \{5.1; 2.5; 2.8; 3.4; 6.3; 3.6; 3.9; 3.0; 2.7; 5.7; 3.5; 3.6; 5.3; 5.1; 3.5; 3.3\}$
- Sample statistics from these data include Avg. = 3.96 lbs,  $s^2 = 1.35$  lbs, n = 16.
- **Problem**: Obtain a  $100(1-\alpha)\%$  CI( $\sigma^2$ ).
- Point Estimator for σ<sup>2</sup>? How about sample variance, s<sup>2</sup>?
- Sampling theory for s<sup>2</sup>? Not in general, but under Normal assumptions ...
- If a random sample  $\{Y_1; ...; Y_n\}$  is taken from a normal population with mean  $\mu$  and variance  $\sigma^2$ , then standardizing, we get a sum of squared N(0,1)

ide 48 STAT 110A, UCLA, Ivo Dinu

### **Confidence intervals – non-symmetric case**

- $\{y_1; ...; y_n\} = \{5.1; 2.5; 2.8; 3.4; 6.3; 3.6; 3.9; 3.0; 2.7; 5.7; 3.5; 3.6; 5.3; 5.1; 3.5; 3.3\}$
- **Problem**: Obtain a  $100(1-\alpha)\%$  CI( $\sigma^2$ ).
- If a random sample  $\{Y_1; ...; Y_n\}$  is taken from a normal population with mean  $\mu$  and variance  $\sigma^2$ , then standardizing, we get a sum of squared N(0,1)

N(U, 1)
For a=0.05, say. Need:  $\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{k=1}^{n} (Y_k - \overline{Y})^2}{\sigma^2} \sim \chi_{df=n-1}^2$ 100(1-\alpha)% CI(\sigma^2).  $\Rightarrow 1 - \alpha = P \left( \chi_{(n-1, 1 - \frac{\alpha}{2})}^2 \le \frac{\sum_{k=1}^{n} (Y_k - \overline{Y})^2}{\sigma^2} \le \chi_{(n-1, \frac{\alpha}{2})}^2 \right)$ 

Slide 49 STAT 110A, UCLA, Ivo Dina

### Confidence intervals – non-symmetric case

- $\{y_1; \dots; y_n\} = \{5.1; 2.5; 2.8; 3.4; 6.3; 3.6; 3.9; 3.0; 2.7; 5.7; 3.5; 3.6; 5.3; 5.1; 3.5; 3.3\}$
- Problem: Obtain a  $100(1-\alpha)\%$  CI( $\sigma^2$ ).

$$\frac{\sum_{k=1}^{n} (Y_k - \overline{Y})^2}{\chi_{\binom{n-1, \frac{\alpha}{2}}}^2} \leq \sigma^2 \leq \frac{\sum_{k=1}^{n} (Y_k - \overline{Y})^2}{\chi_{\binom{n-1, 1 - \frac{\alpha}{2}}}^2}$$

- $\chi^2(15; 0.025)=27:49$  and  $\chi^2(15; 0.975)=6:26$
- This yields the CI, the sample variance is  $s^2=1.35$ . Note the CI is NOT symmetric (0.74; 3.24)

### **Confidence intervals – non-symmetric case**

- **Problem**: Obtain a 100(1- $\alpha$ )% CI( $\sigma_{v}^{2}/\sigma_{x}^{2}$ ). Diff variances?

Problem: Obtain a 
$$100(1-\alpha)\%$$
  $CI(\sigma_y^2/\sigma_x^2)$ . Diff 
$$\frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{\sum_{j=1}^k (X_j - \overline{X})^2} \sim F(n-1, k-1)$$

$$\Rightarrow 95\% CI \begin{pmatrix} \sigma_y^2 \\ \sigma_X^2 \end{pmatrix} = \dots$$
Particular of two  $\chi^2$  variables is F-distributed ...

Ratio of two χ<sup>2</sup> variables is F-distributed ...

### **Prediction vs. Confidence intervals**

### • Confidence Intervals (for the population mean μ):

$$\left(\overline{Y} - \frac{\hat{\sigma} \times t_{n-l,(1+L)/2}}{\sqrt{n}} \;\; ; \;\; \overline{Y} + \frac{\hat{\sigma} \times t_{n-l,(1+L)/2}}{\sqrt{n}}\right)$$

• <u>Prediction Intervals</u>: L-level prediction interval (PI) for a new value of the process Y is defined by:

$$(\hat{Y}_{new} - \hat{\sigma} \times \mathbf{t}_{n-1,(1+L)/2} \; ; \; \hat{Y}_{new} + \hat{\sigma} \times \mathbf{t}_{n-1,(1+L)/2})$$
 where the predicted value  $\hat{Y}_{new} = \overline{Y}$ , is obtained as an estimator of the unknown process mean  $\mu$ .

### Parameter (Point) Estimation

- (6.2) Two Ways of Proposing Point Estimators
- Method of Moments (MOMs):
  - Set your k parameters equal to your first k moments.
  - Solve. (e.g., Binomial, Exponential and Normal)
- Method of Maximum Likelihood (MLEs):
- 1. Write out likelihood for sample of size n.
- 2. Take natural log of the likelihood.
- 3. Take partial derivatives with respect to your k parameters.
- 4. Take second derivatives to check that a maximum exists(f ">0).
- 5. Set 1st derivatives equal to zero and solve for MLEs. e.g., Binomial, Exponential and Normal

### **Parameter (Point) Estimation**

- Suppose we flip a coin n=8 times and observe  $\{T,H,T,H,H,T,H,H\}$ . Estimate the value p = P(H).
- Method of Moments Estimate p^:
  - Set your k parameters equal to your first k moments.
- Let  $X = \{\# T's\} \rightarrow np=8p=E(X)= Sample\#H's = 5 \rightarrow p^=5/8$ .
- Method of Maximum Likelihood Estimate p^:
- 1.  $f(x \mid p) = {8 \choose 5} p^5 (1-p)^3$  likelihood function.
- 2.  $\ln\left(\frac{8}{5}\right)^{p} \cdot \left(1-p\right)^{3} = \ln\left(\frac{8}{5}\right) + 5 \times \ln(p) + 3 \times \ln(1-p)$  3.  $\frac{d\left(\ln\left(\frac{8}{5}\right)\right) + 5 \times \ln(p) + 3 \times \ln(1-p)}{dp} = \frac{5}{p} \frac{3}{1-p} = 0$

### Example - Maximum Likelihood Estimate

- Let  $\{X_1, ..., X_n\} = \{0.5, 0.3, 0.6, 0.1, 0.2\}$ , weights, be IID  $N(\mu, 1)$  $\rightarrow$  f(x; $\mu$ ). <u>Joint density</u> is f(x<sub>1</sub>,...,x<sub>n</sub>;  $\mu$ )=f(x<sub>1</sub>; $\mu$ )x... xf(x<sub>n</sub>; $\mu$ ).
- The likelihood function  $L(p) = f(X_1,...,X_n; p)$  $L(\mu) = \lambda(x_1, ..., x_n) =$

$$-e^{-\frac{(0.5-\mu)^2+(0.3-\mu)^2+(0.6-\mu)^2+(0.1-\mu)^2+(0.2-\mu)^2}{2}}$$

$$\ln(L) = (-1/2)[(0.5 - \mu)^2 + (0.3 - \mu)^2 + (0.6 - \mu)^2 + (0.1 - \mu)^2 + (0.2 - \mu)^2]$$

$$\ln(L) = (-1/2) \left[ (0.5 - \mu)^2 + (0.3 - \mu)^2 + (0.6 - \mu)^2 + (0.1 - \mu)^2 + (0.2 - \mu)^2 \right]$$

$$0 = \frac{d \ln(L)}{d\mu} = (0.5 - \mu) + (0.3 - \mu) + (0.6 - \mu) + (0.1 - \mu) + (0.2 - \mu) =$$

$$=-5\mu+1.7 \Rightarrow \mu=0.34 \Rightarrow \frac{d^2 \ln(L)}{d\mu^2} = -5 \Rightarrow L(\mu=0.34) = \max$$