Stats 110B HW1 Suggested Solutions

http://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/STAT110B.htmlhttp://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/assignments.html

1. 3/365 = 0.008219 = relatively frequency Similarly 5/365 = 0.013699 = relatively frequency for interval 2 Cumulative frequency = 0.008219 + 0.013699 = 0.02192

The histogram is (negatively) skewed to the left. We can see that the bars are increasing in height except for the last one.

Proportion of days that are cloudy. = 0.008219 + 0.013699 + 0.016438 + 0.021918 = 0.06027(from table)

Proportion of clear days = 0.230137 + 0.030137 = 0.260274

2. (a) We first calculate the probability of blackout

P(Blackout|A)*P(A) + P(Blackout|B)*P(B) + P(Blackout|C)*P(C) + P(Blackout|2 or more overload)*P(2 or more)

$$= 0.01*0.6+0.02*0.2+0.03*0.15+0.05*0.05 = 0.017$$

P(overload occurred at substance A alone) = P(A|Blackout)

- = $P(Blackout \cap A)/P(Blackout)$
- = P(Blackout|A)*P(A)/P(Blackout)
- = 0.01*0.6/0.017 = 0.3529

similarly for (b) P(B|Blackout) = P(Blackout|B)*P(B)/P(Blackout)

= 0.02*0.2/0.017 = 0.2353

for (c)
$$P(C|Blackout) = P(Blackout|C)*P(C)/P(Blackout)$$

= 0.03*0.15/0.017 = 0.2647

for (d) P(2 or more simultaneously|Blackout)

- = P(Blackout|2 or more)*P(2 or more)/P(Blackout)
- = 0.05*0.05/0.017 = 0.1471

3. (a) $P(A|B) = P(A \cap B)/P(B)$

$$= (P(A)+P(B)-P(A \cup B))/P(B)$$

$$= (a + b - c)/b$$
 for $c = P(A \cup B)$

since
$$c = P(A \cup B) \le 1$$

$$P(A|B) \ge (a + b - 1)/b$$

(b)
$$P(A \cup B \mid C) = P((A \cup B) \cap C))/P(C) = P((A \cap C) \cup (B \cap C))/P(C)$$

$$= P(A \cap C)/P(C) + P(B \cap C)/P(C) - P((A \cap C) \cap (B \cap C))/P(C)$$

$$= P(A|C) + P(B|C) - P(A \cap B \cap C)/P(C)$$

$$= P(A|C) + P(B|C) - P(A \cap B \mid C)$$

(c) Given
$$P(A|B) < P(A)$$

$$P(A \cap B)/P(B) < P(A)$$

$$P(A \cap B) < P(A) * P(B)$$

$$P(A \cap B)/P(A) \le P(B)$$

P(B|A) < P(B)

4. (a) uniform distribution. A=-5 B=5. The distribution is symmetric.

as P(A), P(B) must be non-negative

$$P(X<0) = 0.5$$

(b)
$$P(-2.5 \le x \le 2.5) = 0.5$$

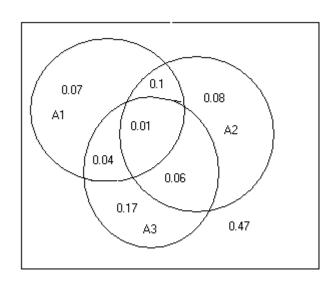
(c)
$$P(-2 \le x \le 3) = P(-2 \le x \le 3) = 0.5$$

$$(d) -5 \le k \le k+4 \le 5$$

$$-5 < k < 1$$

$$P(k < x < k+4) = 0.4$$

5.



Note: not drawn to scale

(a) $A_1 \cup A_2$

$$A_1$$
 or A_2

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

$$= 0.22 + 0.25 - 0.11 = 0.36$$

(b) Not A_1 and not A_2

From venn diagram, we can see that the probability is .17+.47 = 0.64

(c) A_1 or A_2 or A_3

From diagram, the probability is the total area within the three circles = 0.53

(d) Not A_1 and not A_2 and not A_3

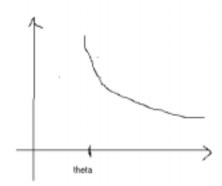
The probability is the area of anything that is beyond the circles.

$$= 1 - 0.53 = 0.47$$

(e) Not A_1 and not A_2 and A_3

from diagram = 0.17

- (f) Not A_1 and not A_2 , or A_3 from diagram, probability = 0.47+0.28 = 0.75
- 6. (a) P(exactly one) = $(e^{-0.2} (0.2)^1)/1! = 0.1637$
 - (b) P(at least two) = 1-P(exactly 1)-P(exactly 0) = $1 - (e^{-0.2} (0.2)^1)/1! - (e^{-0.2} (0.2)^0)/0! = 0.01752$
 - (c) Since they are independently selected, P(neither contains a missing pulse)
 - $= (P(\text{exactly 0 missing}))^2$
 - $=(0.8187)^2$
 - = 0.6703
- 7. (a)



- (b) $\int_{\theta}^{\infty} (k\theta^k)/x^{k+1} dx = (-\theta^k/x^k)|_{\theta}^{\infty} = \theta^k/\theta^k = 1$
- $(c) \int_{\theta}^{b} (k\theta^{k})/x^{k+1} \ dx = (-\theta^{k}/x^{k})|_{\theta}^{b} = 1 (\theta/b)^{k}_{bvbvbvbvbvbvgfgfgfgfgfgfg}$
- 8. (a) $P(x \ge 10) = 1 P(x \le 10)$ = $1 - P(z \le (10 - 8.8)/2.8) = 1 - P(z \le 0.42857) = 0.334$ Since inch is continuous, $P(x > 10) = P(x \ge 10) = 0.334$
 - (b) $P(x > 20) = 1 P(x \le 20) = 1 P(z \le (20 8.8)/2.8)$ = $1 - P(z \le 4) = 3.17 \times 10^{-5} \approx 0$
 - (c) $P(5 \le x \le 10) = P((5 8.8)/2.8 \le z \le (10 8.8)/2.8))$ = $P(-1.357 \le z \le 0.42857)$ = $P(z \le 0.42857) - P(z \le -1.357) = 0.5785$
 - (d) $P(8.8-c \le x \le 8.8+c) = 0.98$ $P((8.8-c-8.8)/2.8 \le z \le (8.8+c-8.8)/2.8) = 0.98$ $P(-c/2.8 \le z \le c/2.8) = 0.98$ c = 2.33*2.8 = 6.524