Stats 110B

HW2 Suggested Solutions

http://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/STAT110B.html http://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/assignments.html

1. (a)		
Outcome	Probability	Х
SSSS	$0.3^{4} = 0.0081$	4
FSSS	0.3^3*0.7 = 0.0189	3
SFSS	0.3^3*0.7 = 0.0189	3
SSFS	0.3^3*0.7 = 0.0189	3
SSSF	0.3^3*0.7 = 0.0189	3
FFSS	$0.3^{2}*0.7^{2} = 0.0441$	2
SSFF	$0.3^{2}*0.7^{2} = 0.0441$	2
SFSF	$0.3^{2}*0.7^{2} = 0.0441$	2
FSFS	$0.3^{2}*0.7^{2} = 0.0441$	2
SFFS	$0.3^{2}*0.7^{2} = 0.0441$	2
FSSF	$0.3^{2}*0.7^{2} = 0.0441$	2
SFFF	0.3*0.7^3 = 0.1029	1
FSFF	0.3*0.7^3 = 0.1029	1
FFSF	0.3*0.7^3 = 0.1029	1
FFFS	0.3*0.7^3 = 0.1029	1
FFFF	$0.7^{4} = 0.2401$	0

(b)

(c) expected value = mean = 4*0.3 = 1.2. Most likely value is the value with the largest probability, i.e., 3.

(d) P(at least two have insurance) = $P(X \ge 2) = 1 - P(X=0) - P(X=1)$ = 1 - 0.2401 - 0.4116 = 0.3483 2. (a)

у	-1	0	1	3
f(y)	0.2	0.3	0.3	0.2

(c)
$$P(0 \le Y \le 2) = P(Y=0) + P(Y=1) = 0.6$$

(d) mean = $(-1 \times 0.2 + 0 \times 0.3 + 1 \times 0.3 + 3 \times 0.2) = 0.7$
Variance = $(-1 - 0.7)^2 \times 0.2 + (0 - 0.7)^2 \times 0.3 + (1 - 0.7)^2 \times 0.3 + (3 - 0.7)^2 \times 0.2$
= 1.81

(e)
$$Z = e^{\sin(\pi Y/2)}$$

у	-1	0	1	3
Ζ	0.36788	1	2.71828	0.36788
Therefore pdf for Z				

Ζ	0.3688	1	2.71828
P(Z)	0.4	0.3	0.3

 $\mu_z = 0.3688 \times 0.4 + 1 \times 0.3 + 2.71828 \times 0.3 = 1.263$ Variance = $(0.3688 - 1.263)^2 \times 0.4 + (1 - 1.263)^2 \times 0.3 + (2.71828 - 1.263)^2 \times 0.3 = 0.9759$ $\mu_z/\sigma_z = 1.263/(0.9759)^{\circ}0.5 = 1.2785$

3. Assume that the number of calls per hour follows a Poisson distribution.

 $\lambda = 2 \text{ per hour} = 0.5 \text{ per 15mins}$ (a) P(no calls) = P(x = 0) = (0.5⁰ × e^{-0.5})/0! = 0.6065 (b) P(no more than I call) = P(x≤1) = P(x=0) + P(x=1) = (0.5⁰ × e^{-0.5})/0! + (0.5¹ × e^{-0.5})/1! = 0.9098 4. (a) X has a normal distribution.

pdf: f(x) = $1/(5\sqrt{2\pi})e^{-(X-15)^2/(2\times 25)} = 1/(5\sqrt{2\pi})e^{-(X-15)^2/50}$

- (b) P(reach printer within 3 mins) = P($0 \le X \le 3$) = P($X \le 3$) - P($X \le 0$) = P($Z \le (3-15)/5$) - P($Z \le -3$) = P($Z \le -2.4$) = 0.0082 - 0.0013 = 0.0069
- (c) P(10≤X≤20) = P((10-15)/5≤Z≤(20-15)/5) = P(-1≤Z≤1)
 Since the probability of getting a value within one standard deviation of the mean is approximately 68%, it is not unusual for us to stay in queue between 10 and 20mins.
 (d) P(X ≥ 20) = P(Z ≥ (20, 15)5) = P(Z ≥ 2) = 1 = P(X ≤ 2) ≈ 0
- (d) $P(X > 30) = P(Z > (30-15)5) = P(Z > 3) = 1 P(X \le 3) \approx 0$ Since the probability is close to zero, it would be unusual to take more than 30 mins.
- 5. (a) Since the sample size is large, we can use normal approximation. mean = 1600(0.5) = 800, variance = 1600(0.5)(1 - 0.5) = 400Let number of students coming to UCLA be X P(UCLA ends up with more students than it can accommodate) = $P(X > 820) = P(Z > (820 - 800)/20) = P(Z > 1) = 1 - P(X \le 1)$ = 1 - 0.8413 = 0.1587
 - (b) Given P(getting more than UCLA could accommodate) = 0.05 = $P(Z \ge 1.65) = P((820 - \mu_n)/20 \ge 1.65)$ where μ_n is the expected number of student coming to UCLA solve for μ_n , $\mu_n = 787$; $\mu_n = 0.5(n)$, so n must be $787 \times 2 = 1574$
- 6. (a) $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$ = $\operatorname{E}(X^2) - \operatorname{E}(X)^2 + \operatorname{E}(Y^2) - \operatorname{E}(Y)^2 + \operatorname{E}(XY) - \operatorname{E}(X)\operatorname{E}(Y)$ = (41 - 16) + (10 - 1) + 2(6 - (-4)) = 54
 - (b) correlation coefficient $\rho = \text{Cov}(X, Y)/(\sigma_X \sigma_Y) = 10/(5*3) = 2/3$
 - (c) If they are independent, Cov(X,Y) must be 0. Now Cov =10, therefore they are not independent.