Stats 110B
HW2 Suggested Solutions
http://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/STAT110B.html http://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/assignments.html

1. (a)

| Outcome | Probability | X |
| :---: | :--- | :--- |
| SSSS | $0.3^{\wedge} 4=0.0081$ | 4 |
| FSSS | $0.3^{\wedge} 3^{*} 0.7=0.0189$ | 3 |
| SFSS | $0.3^{\wedge} 3^{*} 0.7=0.0189$ | 3 |
| SSFS | $0.3^{\wedge} 3^{*} 0.7=0.0189$ | 3 |
| SSSF | $0.3^{\wedge} 3^{*} 0.7=0.0189$ | 3 |
| FFSS | $0.3^{\wedge} 2^{*} 0.7^{\wedge} 2=0.0441$ | 2 |
| SSFF | $0.3^{\wedge} 2^{*} 0.7^{\wedge} 2=0.0441$ | 2 |
| SFSF | $0.3^{\wedge} 2^{*} 0.7^{\wedge} 2=0.0441$ | 2 |
| FSFS | $0.3^{\wedge} 2^{*} 0.7^{\wedge} 2=0.0441$ | 2 |
| SFFS | $0.3^{\wedge} 2^{*} 0.7^{\wedge} 2=0.0441$ | 2 |
| FSSF | $0.3^{\wedge} 2^{*} 0.7^{\wedge} 2=0.0441$ | 2 |
| SFFF | $0.3^{*} 0.7^{\wedge} 3=0.1029$ | 1 |
| FSFF | $0.3^{*} 0.7^{\wedge} 3=0.1029$ | 1 |
| FFSF | $0.3^{*} 0.7^{\wedge} 3=0.1029$ | 1 |
| FFFS | $0.3^{*} 0.7^{\wedge} 3=0.1029$ | 1 |
| FFFF | $0.7^{\wedge} 4=0.2401$ | 0 |

(b)

(c) expected value $=$ mean $=4^{*} 0.3=1.2$. Most likely value is the value with the largest probability, i.e., 3 .
(d) $\mathrm{P}($ at least two have insurance $)=\mathrm{P}(\mathrm{X} \geq 2)=1-\mathrm{P}(\mathrm{X}=0)-\mathrm{P}(\mathrm{X}=1)$

$$
=1-0.2401-0.4116=0.3483
$$

2. (a)

(b) pdf :

| y | -1 | 0 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{y})$ | 0.2 | 0.3 | 0.3 | 0.2 |

(c) $\mathrm{P}(0 \leq \mathrm{Y} \leq 2)=\mathrm{P}(\mathrm{Y}=0)+\mathrm{P}(\mathrm{Y}=1)=0.6$
(d) mean $=(-1 \times 0.2+0 \times 0.3+1 \times 0.3+3 \times 0.2)=0.7$

Variance $=(-1-0.7)^{2} \times 0.2+(0-0.7)^{2} \times 0.3+(1-0.7)^{2} \times 0.3+(3-0.7)^{2} \times 0.2$

$$
=1.81
$$

(e) $Z=e^{\sin (\pi Y / 2)}$

| y | -1 | 0 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| Z | 0.36788 | 1 | 2.71828 | 0.36788 |

Therefore pdf for Z

| Z | 0.3688 | 1 | 2.71828 |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}(\mathrm{Z})$ | 0.4 | 0.3 | 0.3 |

$\mu_{\mathrm{z}}=0.3688 \times 0.4+1 \times 0.3+2.71828 \times 0.3=1.263$
Variance $=(0.3688-1.263)^{2} \times 0.4+(1-1.263)^{2} \times 0.3+(2.71828-1.263)^{2} \times 0.3=0.9759$
$\mu_{z} / \sigma_{z}=1.263 /(0.9759)^{\wedge} 0.5=1.2785$
3. Assume that the number of calls per hour follows a Poisson distribution.
$\lambda=2$ per hour $=0.5$ per 15 mins
(a) $\mathrm{P}($ no calls $)=\mathrm{P}(\mathrm{x}=0)$
$=\left(0.5^{0} \times \mathrm{e}^{-0.5}\right) / 0!=0.6065$
(b) $\mathrm{P}($ no more than I call $)=\mathrm{P}(\mathrm{x} \leq 1)=\mathrm{P}(\mathrm{x}=0)+\mathrm{P}(\mathrm{x}=1)$

$$
=\left(0.5^{0} \times \mathrm{e}^{-0.5}\right) / 0!+\left(0.5^{1} \times \mathrm{e}^{-0.5}\right) / 1!
$$

$$
=0.9098
$$

4. (a) $X$ has a normal distribution.
pdf : $\mathrm{f}(\mathrm{x})=1 /(5 \sqrt{2 \pi}) \mathrm{e}^{-(\mathrm{X}-15)^{2} /(2 \times 25)}=1 /(5 \sqrt{2 \pi}) \mathrm{e}^{\left.-(\mathrm{X}-15)^{2}\right) / 50}$
(b) P (reach printer within 3 mins $)=\mathrm{P}(0 \leq \mathrm{X} \leq 3)$
$=\mathrm{P}(\mathrm{X} \leq 3)-\mathrm{P}(\mathrm{X} \leq 0)=\mathrm{P}(\mathrm{Z} \leq(3-15) / 5)-\mathrm{P}(\mathrm{Z} \leq-3)=\mathrm{P}(\mathrm{Z} \leq-2.4)=0.0082-0.0013$
$=0.0069$
(c) $\mathrm{P}(10 \leq \mathrm{X} \leq 20)=\mathrm{P}((10-15) / 5 \leq \mathrm{Z} \leq(20-15) / 5)=\mathrm{P}(-1 \leq \mathrm{Z} \leq 1)$

Since the probability of getting a value within one standard deviation of the mean is approximately $68 \%$, it is not unusual for us to stay in queue between 10 and 20mins.
(d) $\mathrm{P}(\mathrm{X}>30)=\mathrm{P}(\mathrm{Z}>(30-15) 5)=\mathrm{P}(\mathrm{Z}>3)=1-\mathrm{P}(\mathrm{X} \leq 3) \approx 0$

Since the probability is close to zero, it would be unusual to take more than 30 mins .
5. (a) Since the sample size is large, we can use normal approximation.
mean $=1600(0.5)=800$, variance $=1600(0.5)(1-0.5)=400$
Let number of students coming to UCLA be X
P (UCLA ends up with more students than it can accommodate)
$=\mathrm{P}(\mathrm{X}>820)=\mathrm{P}(\mathrm{Z}>(820-800) / 20)=\mathrm{P}(\mathrm{Z}>1)=1-\mathrm{P}(\mathrm{X} \leq 1)$
$=1-0.8413=0.1587$
(b) Given P (getting more than UCLA could accommodate) $=0.05$
$=P(Z \geq 1.65)=P\left(\left(820-\mu_{n}\right) / 20 \geq 1.65\right)$
where $\mu_{\mathrm{n}}$ is the expected number of student coming to UCLA
solve for $\mu_{\mathrm{n}}, \mu_{\mathrm{n}}=787 ; \mu_{\mathrm{n}}=0.5(\mathrm{n})$, so n must be $787 \times 2=1574$
6. (a) $\operatorname{Var}(\mathrm{X}+\mathrm{Y})=\operatorname{Var}(\mathrm{x})+\operatorname{Var}(\mathrm{Y})+2 \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
$=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}+\mathrm{E}\left(\mathrm{Y}^{2}\right)-\mathrm{E}(\mathrm{Y})^{2}+\mathrm{E}(\mathrm{XY})-\mathrm{E}(\mathrm{X}) \mathrm{E}(\mathrm{Y})$
$=(41-16)+(10-1)+2(6-(-4))=54$
(b) correlation coefficient $\rho=\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) /\left(\sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}\right)=10 /\left(5^{*} 3\right)=2 / 3$
(c) If they are independent, $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$ must be 0 . Now $\operatorname{Cov}=10$, therefore they are not independent.

