Stats 110B
HW3 Suggested Solutions
http://www.stat.ucla.edu/~dinov/courses students.dir/03/Spr/Stat110B.dir/STAT110B.html http://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/assignments.html

1. (a) $f_{X}(x)=\mathbf{c} x^{2} e^{-\gamma x}$
$\mathrm{K}=\mathrm{mX}^{2} / 2$
$\mathrm{X}=(2 \mathrm{~K} / \mathrm{m})^{1 / 2}$
$\mathrm{F}_{\mathrm{K}}(\mathrm{k})=\mathrm{P}(\mathrm{K} \leq \mathrm{k})=\mathrm{P}\left(\left(\mathrm{mX}^{2} / 2\right) \leq \mathrm{k}\right)$
$=\mathrm{P}\left(\mathrm{X} \leq(2 \mathrm{k} / \mathrm{m})^{1 / 2}\right)$
$=\int_{0}^{(2 \mathrm{k} / \mathrm{m})^{\wedge} 0.5} \mathbf{c} \mathrm{x}^{2} \mathrm{e}^{-\gamma \mathrm{x}} \mathrm{dx}$
Therefore $\mathrm{f}_{\mathbf{K}}(\mathrm{k})=$ derivative of $\int_{0}^{(2 \mathrm{k} / \mathrm{m})^{\wedge} 0.5} \mathbf{c} \mathrm{x}^{2} \mathrm{e}^{-\gamma \mathrm{x}} \mathrm{dx}$

$$
=2^{1 / 2} \mathrm{~m}^{-3 / 2} \mathrm{k}^{1 / 2} \mathrm{ce}^{-\gamma(2 \mathrm{k} / \mathrm{m})^{\wedge} 0.5}
$$

Jacobian transformation approach :
If we have a function $x=v(k)$
Then $\mathrm{f}(\mathrm{k})=\mid \mathrm{v}$ ' $(\mathrm{k}) \mid \mathrm{f}(\mathrm{v}(\mathrm{k}))$
Here $v(x)=x=(2 k / m)^{1 / 2}$
$\mathrm{v}^{\prime}(\mathrm{x})=(2 / \mathrm{m})^{1 / 2} 1 / 2\left(\mathrm{k}^{-1 / 2}\right)$
So $f_{K}(\mathrm{k})=(2 / \mathrm{m})^{1 / 2} 1 / 2\left(\mathrm{k}^{-1 / 2}\right) \mathbf{c} 2 \mathrm{k} / \mathrm{m}^{-\gamma(2 \mathrm{k} / \mathrm{m})^{0} 0.5}$
$=2^{1 / 2} \mathrm{~m}^{-3 / 2} \mathrm{k}^{1 / 2} \mathrm{ce}^{-\gamma(2 \mathrm{k} / \mathrm{m})^{0} 0.5}$
(b) $\mathrm{f}_{\mathrm{K}}(\mathrm{k})=2^{1 / 2} \mathrm{~m}^{-3 / 2} \mathrm{k}^{1 / 2} \mathrm{c} \mathrm{e}^{-\gamma(2 \mathrm{k} / \mathrm{m})^{\wedge} 0.5}$

$$
\begin{aligned}
\mathrm{E}(\mathrm{k}) & =\int_{0}^{\infty} \mathrm{k}^{1 / 2} \mathrm{~m}^{-3 / 2} \mathrm{k}^{1 / 2} \mathrm{ce}^{-\gamma(2 \mathrm{k} / \mathrm{m})^{\wedge} 0.5} \mathrm{dk} \\
& =\int_{0}^{\infty} 2^{1 / 2} \mathrm{~m}^{-3 / 2} \mathrm{k}^{3 / 2} \mathrm{ce}^{-\gamma(2 \mathrm{k} / \mathrm{m})^{\wedge} 0.5} \mathrm{dk}
\end{aligned}
$$

Now let $\mathrm{t}=(2 \mathrm{k} / \mathrm{m})^{1 / 2}$
$\mathrm{k}=\left(\mathrm{mt}^{2}\right) / 2$
$\mathrm{dk}=\mathrm{mt} \mathrm{dt}$

$$
\begin{aligned}
\text { expected value } & =\int_{0}^{\infty} 2^{1 / 2} \mathrm{~m}^{-3 / 2} \mathrm{k}^{3 / 2} \mathrm{ce}^{-\gamma(2 \mathrm{k} / \mathrm{m})^{\wedge} 0.5} \mathrm{dk} \\
& =\int_{0}^{\infty} 2^{1 / 2} \mathrm{~m}^{-3 / 2}\left(\left(\mathrm{mt}^{2}\right) / 2\right)^{3 / 2} \mathrm{ce}^{-\gamma \mathrm{t}} \mathrm{mt} \mathrm{dt} \\
& =\int_{0}^{\infty} \mathrm{cm} / 2 \mathrm{t}^{4} \mathrm{e}^{-\gamma \mathrm{tt}} \mathrm{dt} \\
& =3 \mathrm{~cm}\left(1 / \gamma^{4}\right) \int_{0}^{\infty} \gamma^{4} / 6 \mathrm{t}^{4} \mathrm{e}^{-\gamma \mathrm{\gamma t}} \mathrm{dt} \\
\int_{0}^{\infty} \gamma^{4} / 6 \mathrm{t}^{4} \mathrm{e}^{-\gamma \mathrm{t}} \mathrm{dt} & =\operatorname{expectation} \text { of gamma distribution with } \alpha=4 \text { and } \beta=1 / \gamma \\
& =\alpha \beta=4 / \gamma \\
\text { expectation of } \mathrm{k} & =3 \mathrm{~cm}(4 / \gamma)=12 \mathrm{~cm} / \gamma
\end{aligned}
$$

2. $f(x ; y)$ should be $(9 / 26)(x y+y)^{2}$ when $0 \leq x \leq 2 ; 0 \leq y \leq 1$
(a) $f(y \mid x)=f(x ; y) / f_{x}(x)$

$$
\begin{aligned}
\mathrm{f}_{\mathrm{x}}(\mathrm{x}) & =\int_{0}^{1}(9 / 26)(\mathrm{xy}+\mathrm{y})^{2} \mathrm{dy}=9 / 26 \times 1 / 3(\mathrm{xy}+\mathrm{y})^{3}\left(1 /\left.(\mathrm{x}+1)\right|_{0} ^{1}\right. \\
& =3 / 26(\mathrm{x}+1)^{2}
\end{aligned}
$$

So $\mathrm{f}(\mathrm{y} \mid \mathrm{x})=\left((9 / 26)(\mathrm{xy}+\mathrm{y})^{2}\right) /\left(3 / 26(\mathrm{x}+1)^{2}\right)$

$$
=3 y^{2}
$$

(b) $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}<1 / 2)=\left(\int_{0}^{0.5} \mathrm{f}(\mathrm{x} ; \mathrm{y})\right) /\left(\int_{0}^{0.5} \mathrm{f}_{\mathrm{x}}(\mathrm{x})\right)$
$=\left(\int_{0}^{0.5}(9 / 26)(x y+y)^{2} d x\right) /\left(\int_{0}^{0.5} 3 / 26(x+1)^{2} d x\right)$
$=\left(3 /\left.26 \mathrm{y}^{2}(\mathrm{x}+1)^{3}\right|_{0} ^{0.5}\right) /\left(1 /\left.26(\mathrm{x}+1)^{3}\right|_{0} ^{0.5}\right)$

$$
\begin{aligned}
& =3 y^{2} \\
& \mathrm{P}(\mathrm{Y}<1 / 2 \mid \mathrm{X}<1 / 2)=\int_{0}^{0.5} 3 \mathrm{y}^{2} \mathrm{dy}=\left.\mathrm{y}^{3}\right|_{0} ^{0.5}=0.125
\end{aligned}
$$

(c) $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})$

$$
=\left(\int_{-\infty}^{\infty} y f(y \mid x) d y=\int_{0}{ }^{1} y 3 y^{2} d y=3 /\left.4 y^{4}\right|_{0}{ }^{1}=3 / 4\right.
$$

3. possible p.d.f. :

Binomial
Poisson
Geometric
Hypergeometric
Negative Binomial
Uniform
Normal
Weibull
Gamma
Exponential
Log
Chi-squared
F (etc.)
(d) If we have a sample $X_{1} \ldots X_{n}$ of size n from a distribution with mean μ and variance σ^{2} and if n is sufficiently(say greater than 30), then the sample mean X-bar would be approximately normally distributed with mean μ and variance σ^{2} / n, regardless of the distribution of X's. Therefore when the sample size is large, we do not have to care about the parent distribution to estimate X-bar, this makes the calculations a lot easier.
4. sample mean $(x-b a r)=\Sigma x_{i} p_{i}$

$$
\begin{aligned}
\mathrm{E}(\mathrm{x}-\mathrm{bar}) & =\mathrm{E}\left(\sum \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}\right) \\
& =\Sigma \mathrm{p}_{\mathrm{i}} \mathrm{E}(\mathrm{xi}) \\
& =\Sigma \mathrm{p}_{\mathrm{i}} \mu \\
& =\mu(\text { unbiased })
\end{aligned}
$$

5. sample mean $=87.67 ; \Sigma(x-\text { bar }-x)^{2}=780.67 ; n=12$

$$
\begin{aligned}
95 \% \mathrm{CI} & =\left(780.67 / \chi_{0.025,11}^{2}, 780.67 / \chi_{0.975,11}^{2}\right) \\
& =(780.67 / 21.92,780.67 / 3.816) \\
& =(35.61,204.58)
\end{aligned}
$$

If we have a wide interval, that means we have a lot of variability in the scores.

