Stats 110B

HW4 Suggested Solutions

http://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/STAT110B.html http://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/assignments.html

1. (a) df = 2n = 30

$$\begin{split} &2\lambda\Sigma \; X_i \text{ has a chi-squared distribution with df} = 30, \\ &\chi^2_{0.025} = 46.979, \; \chi^2_{0.975} = 16.791 \\ &P(16.791 < 2\lambda\Sigma \; X_i < 46.979) = 0.95 \\ &P((2\lambda\Sigma \; X_i)/46.979 < 1/\lambda < (2\lambda\Sigma \; X_i)/16.791) = 0.95 \\ &\Sigma \; X_i = 63.2 \\ &\text{the } 95\% \; \text{CI} = (2.96, 7.53) \end{split}$$

- (b) use $\chi^2_{0.995} = 13.787$ and $\chi^2_{0.005} = 53.672$ instead. The interval would be wider.
- (c) Since the distribution is exponential, $\sigma = \mu = 1/\lambda$. Therefore the 95% CI for σ is the same as that of the mean calculated in part (a).
- 2. variance = 25.368, n = 22 99% CI for variance = ((21)25.368/ $\chi^{2}_{0.005, 21}$, (21)25.368/ $\chi^{2}_{0.995, 21}$) = (12.87, 66.317) 99% CI for SD = (12.87^{1/2}, 66.317^{1/2}) = (3.59, 8.14)

The distribution has to be normal and independent.

- 3. (a) $R_1 = \{x : x \le 7 \text{ or } x \ge 18\}$ since the test is a two-sided test
 - (b) Type I error : judging one of the two companies favored over the other when in fact the split of the market is half-half.
 - Type II error : judging the split is half-half when it is not.
 - (c) X has a binomial distribution with n = 25 and p = 0.5 P(Type I error) = P(x \le 7 or x \ge 18 when p = 0.5) = 0.044
 - (d) $\beta(0.4) = P(8 \le x \le 17 \text{ when } p = 0.4) = 0.845$. $\beta(0.6) = 0.845$ similarly $\beta(0.3) = \beta(0.7) = 0.488$
 - (e) Since x = 6 is in the rejection region, we would reject H_0 and conclude that the split is not even.
- 4. (a) $H_o: \mu = 10$

H_a : μ ≠10

- (b) P(recalibration is carried out when it is actually unnecessary)
 - = P(Type I error)
 - = $P(x^- \ge 10.1032 \text{ or } x^- \le 9.8968 \text{ when } \mu = 10)$
 - $= P(z \ge (10.1032 10)/(0.2/5) \text{ or } z \le (9.8968 10)/(0.2/5))$

 $= P(z \ge 2.58 \text{ or } z \le -2.58) = 0.0049 + 0.0049 = 0.0098$ (c) P(recalibration is judged unnecessary when in fact $\mu = 10.1$) = P(Type II error) = P(9.8968< x⁻ < 10.1032 when $\mu = 10.1$) = P(-5.08 < z < 0.08) = 0.5319 Similarly for $\mu = 9.8$ P(2.42 < z < 7.58) = 0.0078

- (d) α = 0.05, rejection region should be z \leq -1.96 or z \geq 1.96 i.e. x^- \leq 9.9216 or x^- \geq 10.0784
- 5. (a) Normal probability plots

The points in both plots generally form a straight line. Therefore the assumption of normal distribution is not violated (b) Boxplots :

The boxplots do not suggest a difference

(c) $H_o: \mu_1 - \mu_2 = 0$ $H_a: \mu_1 - \mu_2 \neq 0$ $\mu_1 = \text{population mean of H}$ $\mu_2 = \text{population mean of P}$ The two samples are independent, we use $df = \min(24-1, 8-1) = 7$, $\alpha = 0.05$ $t = (1.508 - 1.588)/(0.444^2/24 + 0.53^2/8)^{1/2}$ $= -0.3843 < t_{0.025, 7}$ Therefore we do not reject the null hypothesis and conclude that there is not enough evidence to claim that the true average extensibility differs for the two types of

3

fabrics.

6. $f(x, \vartheta) = (\vartheta + 1)x^{\vartheta}$ for $0 \le x \le 1$ (a) method of moments :

E(x) = $\int_0^1 x(9+1)x^9 dx = (9+1)/(9+2)$ = 1 - 1/(9+2) estimate of 9 = 1/(1 - x⁻) - 2 x⁻ = 0.8 estimate of 9 = 3

(b) Maximum-likelihood :

 $f(x_1, \dots, x_n, \vartheta) = (\vartheta + 1)^n (x_1, \dots, x_n)^\vartheta$ log likelihood $l(x) = n \ln(\vartheta + 1) + \vartheta \Sigma \ln(x_i)$ d l/d $\vartheta = 0$ n/($\vartheta + 1$) = - $\Sigma \ln(x_i)$ estimate of $\vartheta = -n/\Sigma \ln(x_i) - 1$ $\Sigma \ln(x_i) = -2.4295, n = 10$ estimate of $\vartheta = 3.116$