Stats 110B

HW4 Suggested Solutions

http://www.stat.ucla.edu/~dinov/courses students.dir/03/Spr/Stat110B.dir/STAT110B.html http://www.stat.ucla.edu/~dinov/courses_students.dir/03/Spr/Stat110B.dir/assignments.html

1. (a) $\mathrm{df}=2 \mathrm{n}=30$
$2 \lambda \Sigma \mathrm{X}_{\mathrm{i}}$ has a chi-squared distribution with $\mathrm{df}=30$,
$\chi^{2}{ }_{0.025}=46.979, \chi^{2}{ }_{0.975}=16.791$
$\mathrm{P}\left(16.791<2 \lambda \Sigma \mathrm{X}_{\mathrm{i}}<46.979\right)=0.95$
$\mathrm{P}\left(\left(2 \lambda \Sigma \mathrm{X}_{\mathrm{i}}\right) / 46.979<1 / \lambda<\left(2 \lambda \Sigma \mathrm{X}_{\mathrm{i}}\right) / 16.791\right)=0.95$
$\Sigma X_{i}=63.2$
the $95 \% \mathrm{CI}=(2.96,7.53)$
(b) use $\chi^{2}{ }_{0.995}=13.787$ and $\chi^{2}{ }_{0.005}=53.672$ instead. The interval would be wider.
(c) Since the distribution is exponential, $\sigma=\mu=1 / \lambda$. Therefore the 95% CI for σ is the same as that of the mean calculated in part (a).
2. variance $=25.368, \mathrm{n}=22$

$$
\begin{aligned}
99 \% \text { CI for variance } & =\left((21) 25.368 / \chi_{0.005,21}^{2},(21) 25.368 / \chi_{0.995,21}^{2}\right) \\
& =(12.87,66.317) \\
99 \% \text { CI for } \mathrm{SD} & =\left(12.87^{1 / 2}, 66.317^{1 / 2}\right) \\
& =(3.59,8.14)
\end{aligned}
$$

The distribution has to be normal and independent.
3. (a) $R_{1}=\{x: x \leq 7$ or $x \geq 18\}$ since the test is a two-sided test
(b) Type I error : judging one of the two companies favored over the other when in fact the split of the market is half-half.
Type II error : judging the split is half-half when it is not.
(c) X has a binomial distribution with $\mathrm{n}=25$ and $\mathrm{p}=0.5$
$\mathrm{P}($ Type I error $)=\mathrm{P}(\mathrm{x} \leq 7$ or $\mathrm{x} \geq 18$ when $\mathrm{p}=0.5)$ $=0.044$
(d) $\beta(0.4)=\mathrm{P}(8 \leq \mathrm{x} \leq 17$ when $\mathrm{p}=0.4)=0.845 . \beta(0.6)=0.845$ similarly $\beta(0.3)=\beta(0.7)=0.488$
(e) Since $x=6$ is in the rejection region, we would reject H_{o} and conclude that the split is not even.
4. (a) $\mathrm{H}_{\mathrm{o}}: \mu=10$
$\mathrm{H}_{\mathrm{a}}: \mu \neq 10$
(b) P (recalibration is carried out when it is actually unnecessary)
$=\mathrm{P}($ Type I error $)$
$=\mathrm{P}\left(\mathrm{x}^{-} \geq 10.1032\right.$ or $\mathrm{x}^{-} \leq 9.8968$ when $\left.\mu=10\right)$
$=\mathrm{P}(\mathrm{z} \geq(10.1032-10) /(0.2 / 5)$ or $\mathrm{z} \leq(9.8968-10) /(0.2 / 5))$
$=\mathrm{P}(\mathrm{z} \geq 2.58$ or $\mathrm{z} \leq-2.58)=0.0049+0.0049=0.0098$
(c) P (recalibration is judged unnecessary when in fact $\mu=10.1$)
$=\mathrm{P}$ (Type II error)
$=\mathrm{P}\left(9.8968<\mathrm{x}^{-}<10.1032\right.$ when $\left.\mu=10.1\right)$
$=\mathrm{P}(-5.08<\mathrm{z}<0.08)=0.5319$
Similarly for $\mu=9.8$
$\mathrm{P}(2.42<\mathrm{z}<7.58)=0.0078$
(d) $\alpha=0.05$, rejection region should be $\mathrm{z} \leq-1.96$ or $\mathrm{z} \geq 1.96$
i.e. $\mathrm{x}^{-} \leq 9.9216$ or $\mathrm{x}^{-} \geq 10.0784$
5. (a) Normal probability plots

The points in both plots generally form a straight line. Therefore the assumption of normal distribution is not violated
(b) Boxplots :

The boxplots do not suggest a difference
(c) $H_{0}: \mu_{1}-\mu_{2}=0$
$\mathrm{H}_{\mathrm{a}}: \mu_{1}-\mu_{2} \neq 0$
$\mu_{1}=$ population mean of H
$\mu_{2}=$ population mean of P
The two samples are independent, we use $\mathrm{df}=\min (24-1,8-1)=7, \alpha=0.05$

$$
\begin{aligned}
\mathrm{t} & =(1.508-1.588) /\left(0.444^{2} / 24+0.53^{2} / 8\right)^{1 / 2} \\
& =-0.3843<\mathrm{t}_{0.025,7}
\end{aligned}
$$

Therefore we do not reject the null hypothesis and conclude that there is not enough evidence to claim that the true average extensibility differs for the two types of fabrics.
6. $\mathrm{f}(\mathrm{x}, \vartheta)=(\vartheta+1) \mathrm{x}^{\vartheta}$ for $0 \leq \mathrm{x} \leq 1$
(a) method of moments :
$E(x)=\int_{0}{ }^{1} x(\vartheta+1) x^{\vartheta} d x=(\vartheta+1) /(\vartheta+2)$ $=1-1 /(\vartheta+2)$
estimate of $\vartheta=1 /\left(1-x^{-}\right)-2$
$\mathrm{x}^{-}=0.8$
estimate of $\vartheta=3$
(b) Maximum-likelihood :

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \vartheta\right)=(\vartheta+1)^{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)^{\vartheta} \\
& \log \operatorname{likelihood} \\
& 1(\mathrm{x})=\mathrm{n} \ln (\vartheta+1)+\vartheta \Sigma \ln \left(\mathrm{x}_{\mathrm{i}}\right) \\
& \mathrm{d} 1 / \mathrm{d} \vartheta=0 \\
& \mathrm{n} /(\vartheta+1)=-\Sigma \ln \left(\mathrm{x}_{\mathrm{i}}\right) \\
& \text { estimate of } \vartheta=-\mathrm{n} / \Sigma \ln \left(\mathrm{x}_{\mathrm{i}}\right)-1 \\
& \Sigma \ln \left(\mathrm{x}_{\mathrm{i}}\right)=-2.4295, \mathrm{n}=10 \\
& \text { estimate of } \vartheta=3.116
\end{aligned}
$$

