

•<u>Instructor</u>: Ivo Dinov, Asst. Prof. In Statistics and Neurology

• Teaching Assistants: Brian Ng, UCLA Statistics

University of California, Los Angeles, Spring 2003 http://www.stat.ucla.edu/~dinov/courses_students.html

Course Organization

Material Covered: (Devore, Chapters 7-14)

- Review of Key Concepts (ch 01-06)
- Confidence Intervals (ch 07)

110B UCLA Ivo Dino

- Single Sample Hypotheses testing (ch 08)
- Inferences based on 2 samples (ch 09)
- One- Two- and Three-Factor ANOVA (ch 10)
- ^a 2^k Factorial Designs (ch 11)
- Linear Regression (ch 12)
- Multiple & Nonlinear Regression (ch 13)
- Goodness-of-Fit Testing (ch 14)

Overall Review

What is a statistic?

- Any quantity whose value can be calculated from sample data. It does not depend on any unknown parameter.
- Examples -

What are Random Variables?

- A function from the sample space to the real number line.

Before any data is collected, we view all observations and statistics as random variables

 X_1, \ldots, X_n are an IID random sample of size n if:

- 1. The X_i 's are **independent** random variables
- 2. Every X_i has the same (**identical**) probability distribution
- These conditions are equivalent to the X_i 's being independent and identically distributed (iid) random variables

Linear Combinations of Normal Random Variables from a Random Sample

Let $X_1,...,X_n$ be a random sample from a normally distributed population with mean μ and variance σ^2 , i.e. $X_i \sim N(\mu, \sigma^2)$. It follows that the random variable $Y = a_1X_1+...+a_nX_n$ is normally distributed with mean $a_1\mu,...,a_n\mu$ and variance $a_1^2\sigma^2+...+a_n^2\sigma^2$. Hence, the sample mean and the sample total of the random sample will be normally distributed.

• Strange patterns – gaps, atypical frequencies lying away from the center.

Permutation & Combination
Permutation: Number of ordered arrangements of r
objects chosen from n distinctive objects

$$P_n^r = n(n-1)(n-2)...(n-r+1)$$

 $P_n^n = P_n^{n-r} \cdot P_r^r$
e.g. $P_6^3 = 6.5.4 = 120$.

Permutation & Combination
Combination: Number of non-ordered
arrangements of r objects chosen from n
distinctive objects:
$$C_n^r = P_n^r / r! = \frac{n!}{(n-r)!r!}$$

Or use notation of
e.g. 3!=6, 5!=120, 0!=1
 $\binom{n}{r} = C_n^r$
 $\binom{7}{3} = \frac{7!}{4!3!} = 35$

Permutation & Combination
Combinatorial Identity:

$$\binom{n}{r} = \binom{n}{n-r}$$

Analytic proof: (expand both hand sides)
Combinatorial argument: Given n objects the number of
combinations of choosing any r of them is equivalent to
choosing the remaining n-r of them (order-of-objs-not-
important!)

Examples

1. Suppose car plates are 7-digit, like **AB** . If all the letters can be used in the first 2 places, and all numbers can be used in the last 4, how many different plates can be made? How many plates are there with no repeating digits?

Solution: a) 26.26.10.10.10.10

b)
$$P_{26}^2 \cdot P_{10}^3 = 26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 7$$

Examples

2. How many different letter arrangement can be made from the 11 letters of MISSISSIPPI?

Solution: There are: 1 M, 4 I, 4 S, 2 P letters.

Method 1: consider different permutations: 11!/(1!4!4!2!)=34650

 $\binom{11}{1}\binom{10}{4}\binom{6}{4}\binom{2}{2} = \dots = \binom{11}{2}\binom{9}{4}\binom{5}{4}\binom{1}{1}$

Method 2: consider combinations:

3. There are N telephones, and any 2 phones are connected by 1 line. Then how many lines are needed all together?

Solution: $C_N^2 = N (N - 1) / 2$ If, N=5, complete graph with 5 nodes has $C_5^2 = 10$ edges. Binomial theorem & multinomial theorem Binomial theorem $(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ Deriving from this, we can get such useful formula (a=b=1) $\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n = (1+1)^n$ Also from $(1+x)^{m+n} = (1+x)^m (1+x)^n$ we obtain: $\binom{m+n}{k} = \sum_{i=0}^k \binom{m}{i} \binom{n}{k-i}$ On the left is the coeff of $1^{k_1(m+k_1)}$. On the right is the same coeff in the product of $(\ldots + \operatorname{coeff}^* x^{(m+1)} + \ldots)^* (\ldots + \operatorname{coeff}^* x^{(n+1)} + \ldots)^n$

Sterling Formula for asymptotic behavior of n!
Sterling formula:

$$n! = \sqrt{\frac{2\pi}{n}} \times \left(\frac{n}{e}\right)^n$$
Side 49 Summer Law Property of the second seco

	E	xpected	values				
 The game of chance: cost to play:\$1.50; Prices {\$1, \$2, \$3}, probabilities of winning each price are {0.6, 0.3, 0.1}, respectively. Should we play the game? What are our chances of winning/loosing? 							
Prize (\$)	x	1	2	3			
Probability	pr(x)	0.6	0.3	0.1			
What we would "expect	" from 100) games		adı	d across row		
Number of games won	<i>J.</i>	0.6 × 100	0.3 ×100	0.1 × 100			
\$ won		$1 \times 0.6 \times 100$	$2 \times 0.3 \times 100$	$3 \times 0.1 \times 100$	Sum		
Total prize money =	<i>otal prize money</i> = Sum; Average prize money = $Sum/100$ = $1 \times 0.6 + 2 \times 0.3 + 3 \times 0.1$ = 1.5						
<u>Theoretically</u>	Fair Gai	<mark>me: price to</mark>	play EQ th	e expected i	return!		
		Slide	44 Stat	110B. UCLA. Ivo Dine	ov.		

Poisson Distribution - Variance
• Y~Poisson(
$$\lambda$$
), then P(Y=k) = $\frac{\lambda^k e^{-\lambda}}{k!}$, $k=0, 1, 2, ...$
• Variance of Y, $\sigma_Y = \lambda^{1/2}$, since
 $\sigma_Y^2 = Var(Y) = \sum_{k=0}^{\infty} (k - \lambda)^2 \frac{\lambda^k e^{-\lambda}}{k!} = ... = \lambda$
• For example, suppose that Y denotes the number of blocked shots (arrivals) in a randomly sampled game for the UCLA Bruins men's basketball team. Then a Poisson distribution with mean=4 *may be* used to model Y.

Continuous Distributions – Exponential

- Exponential distribution, X~Exponential(λ)
- The exponential model, with only one unknown parameter, is the simplest of all life distribution models. 0

$$f(x) = \lambda e^{-\lambda x}; \quad x \ge$$

- $E(X)=1/\lambda$; $Var(X)=1/\lambda^2$;
- Another name for the exponential mean is the Mean Time To Fail or **MTTF** and we have $MTTF = 1/\lambda$.
- If X is the time between occurrences of rare events that happen on the average with a rate 1 per unit of time, then X is distributed exponentially with parameter λ . Thus, the exponential distribution is frequently used to model the time interval between successive random events. Examples of variables distributed in this manner would be the gap length between cars crossing an intersection, life-times of electronic devices, or arrivals of customers at the check-out counter in a grocery store.

J	Joint probability mass function – example							
The joint and the n	density, $P\{X, Y\}$, umber of minutes	of the nu waiting t	mber of n to catch th	ninutes wai le second f	iting to catch the first ish, Y, is given below	: fish, X , /.		
	$P\{X=i,Y=k\}$	1	k 2	3	Row Sum $P\{X=i\}$			
	1 i 2	0.01 0.01	0.02 0.02	0.08 0.08	0.11 0.11			
	3	0.07	0.08	0.63	0.78			
	Column Sum P {Y=k}	0.09	0.12	0.79	1.00			
• The	(joint) chance of w	v aiting 3	minutes	to catch th	he first fish and 3 m	inutes to		
• The	(marginal) chance	of waiti	ng 3 minu	ites to cat	ch the first fish is:			
• The that	 The (marginal) chance of waiting 2 minutes to catch the first fish is (circle all that are correct): 							
 The none 	chance of waiting c, one or more):	at least	two minu	ites to cato	ch the first fish is (ci	rcle		
• The two	chance of waiting minutes to catch	at most the seco	two minu n d fish is	ites to cate (circle non	ch the first fish and ne, one or more):	at most		

found by summing the probabilities in each column, for y, summation is done in each row.

• If X and Y are discrete random variables with joint probability mass function $f_{XY}(x,y)$, then the marginal probability mass function of X and Y are

$$f_{X}(x) = P(X = x) = \sum_{R_{X}} f_{XY}(X, Y)$$

$$f_{Y}(y) = P(Y = y) = \sum_{R_{Y}} f_{XY}(X, Y)$$

where R_x denotes the set of all points in the range of (X, Y) for which X = x and Ry denotes the set of all points in the range of (X, Y) for which Y = y

Central Limit Theorem – theoretical formulation

Let $\{X_1, X_2, ..., X_k, ...\}$ be a sequence of independent observations from one specific random process. Let and $E(X) = \mu$ and $SD(X) = \sigma$ and both be finite $(0 < \sigma < \infty; |\mu| < \infty)$. If $\overline{X}_n = \frac{1}{n} \sum_{k=1}^{n} X_k$ sample-avg,

Then *X* has a <u>distribution</u> which approaches $N(\mu, \sigma^{2}/n)$, as $n \to \infty$.

Ca	vend	ish's	1798	data	a on n	nean	densit	v of t	he
Ca	Ea	rth, g	g/cm ^{3,}	relati	ive to	that o	of H ₂ ()	ne
5.50	5.61	4.88	5.07	5.26	5.55	5.36	5.29	5.58	5.65
5.57	5.53	5.62	5.29	5.44	5.34	5.79	5.10	5.27	5.39
5.42	5.47	5.63	5.34	5.46	5.30	5.75	5.68	5.85	
Source: C	avendis	h [1798].							
and sample SD = $S_{\chi} = 0.2209457 \text{ g/cm}^3$									
Then the standard error for these data is: $SE(\overline{X}) = \frac{S_x}{\sqrt{20}} = \frac{0.2209457}{\sqrt{20}} = 0.04102858$									

	A 95% confidence interval										
	 A t par con the (For (CI 	ype o ameter fiden CI ar or the s) for t esta	f inter er for ce in e call ituatio he tru	rval tl 95% terval ed co ons we ie val e ±	hat co of san I for t <i>nfiden</i> deal v ue of t stu	ontain nples hat pa nce lin vith) a 'a pan anda	s the taken arame <i>mits</i> . conf rame rd er	true v n is ca eter, tl idenc ter is	value of alled a ne end e inte giver (SE)	of a a 95% ds of rval 1 by	6
		Value	of the	Multipli	ier, <i>t</i> , fo	or a 95%	6 CI				
df	: 7	8	9	10	11	12	13	14	15	16	17
t	: 2.365	2.306	2.262	2.228	2.201	2.179	2.160	2.145	2.131	2.120	2.110
df t	: 18 : 2.101	19 2.093	20 2.086	25 2.060	30 2.042	35 2.030	40 2.021	45 2.014	50 2.009	60 2.000	(1.960) 1.960

		True mean		
		24.83 Covera	17C	
	Sample	to dat	te	
	lst →	o o ono o o o l	100%	
	2nd	and 5 a 6 o 1	100%	How many of the
	4th		100%	previous
	5th 🛶	0 0 0 0 00 0 1	100%	previous
	6th	0 00000 000 1	100%	samples
	7th →	0000 <u>000</u> 00000000000000000000000000000	100%	contained the
Most of	Sth -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100%	true re con 2
111050 01	900 <u>-</u>	8 0 0 00 00 0 0	0.0%	true mean?
the table	100th -+	000 00 000 00 9	14.0%	
	500th →	0 0 0 000 9	6.0%	
1111111111	501st	0 0 0 0 0 0 0 9	6.0%	
	502nd	o o <u>o o en</u> o o o 9	6.0%	
	991st -	· · · · · · · · · · · · · · · · · · ·	15.2%	
	992nd	o o o o o o o o 9	5.2%	
	993rd 🛶	0 00 0 0 0 0 0 9	15.2%	
	994th	0 0 0000 0 0 0 9	15.2% 17.2%	
	996th -	0 00 000 00 7	15.2%	
	997th -	an 	5.2%	
	998th 🛶	000 00 000 0 0 9	15.2%	
	999th +	o o osso o 9	15.2%	
	1000th	00 00 0 00 9	15.2%	
		24.82 24.83 24.84		
		True mean		
		Samples of size 10 from a Normal(u=24.83, s=.005)		
		distribution and their 95% confidence intervals for µ		

CI for population mean											
Confidence Interval for the true (population) mean μ :											
		1	sampl	le me	an +	- t sta	ndara	l erro	rs	•	
			1		_	•	~				
or $\overline{x} \pm t$ se(\overline{x}), where SE(\overline{x}) = $\frac{S_x}{x}$ and $df = n-1$											
	or \overline{x}	±t se	$(\overline{x}), \mathbf{v}$	wher	e S.	$E(\overline{x})$	$= \frac{x}{r}$	= anc	df =	= n –	1
	or \overline{x}	$\pm t$ se	$(\overline{x}), \mathbf{v}$	wher	e S.	$E(\overline{x})$	$=\frac{x}{\sqrt{I}}$	= anc 1	df =	= <i>n</i> –	1
	or \overline{x}	$\pm t$ se	$(\overline{x}), \overline{x}$	wher Multipli	e S.	$E(\overline{x})$	$=\frac{x}{\sqrt{I}}$	anc	df =	= <i>n</i> –	1
<i>df</i> :	or \overline{x}	±tse Value 8	$(\overline{x}), \overline{y}$ of the 1	wher Multipli	ier, t, fo	E(x) or a 95% 12	$=\frac{x}{\sqrt{1}}$	= anc <i>1</i>	1 <i>df</i> =	= <i>n</i> –	1
df : t :	or \overline{x} =	± t se Value 8 2.306	$(\overline{x}), \overline{y}$ e of the 1 9 2.262	Multipli	ier, t, fo	$E(\bar{x})$ or a 95% 12 2.179	$=\frac{x}{\sqrt{1}}$	= anc <i>n</i>	1 <i>df</i> =	= <i>n</i>	1 17 2.110
df : t : df :	or \overline{x} =	± t se Value 8 2.306 19 2.093	$(\overline{x}), \overline{x}$	Multipli 10 2.228 25 2.060	ier, t, fo	$E(\bar{x})$ or a 95% 12 2.179 35 2.030	$= \frac{x}{\sqrt{1}}$ 6 CI 13 2.160 40 2.021	= anc n^{14} 2.145 45 2.014	$df = \frac{15}{2.131}$	$= n - \frac{16}{2.120}$	1 17 2.110 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Sampling theory for s²? Not in general, but under Normal assumptions ...
- If a random sample $\{Y_1; ...; Y_n\}$ is taken from a normal population with mean μ and variance σ^2 , then standardizing, we get a sum of squared N(0,1)

Comparing CI's and significance tests

- These are <u>different methods</u> for coping with the <u>uncertainty</u> about the true value of a parameter caused by the sampling variation in estimates.
- <u>Confidence interval</u>: A fixed level of confidence is chosen. We determine *a range of possible values* for the parameter that are consistent with the data (at the chosen confidence level).
- <u>Significance test</u>: Only one possible value for the parameter, called the hypothesized value, is tested against the data. We determine the strength of the evidence (confidence) provided by the data against the proposition that the hypothesized value is the true value.

The t-test						
Alternative hypothesis	Evidence against $H_0: \boldsymbol{\Theta} > \boldsymbol{\Theta}_0$ provided by	<i>P</i> -value				
$H_1: \mathbf{\Theta} > \mathbf{\Theta}_0$	$\hat{\boldsymbol{\theta}}$ too much bigger than $\boldsymbol{\theta}_0$ (i.e., $\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0$ too large)	$P = \operatorname{pr}(I \ge t_0)$				
$H_1: \boldsymbol{\theta} < \boldsymbol{\theta}_0$	$\hat{\boldsymbol{\theta}}$ too much smaller than $\boldsymbol{\theta}_0$ (i.e., $\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0$ too negative)	$P = \operatorname{pr}(T \leq t_0)$				
$H_1: \mathbf{\theta} \neq \mathbf{\theta}_0$	$\hat{\boldsymbol{\theta}} \text{ too far from } \boldsymbol{\theta}_0$ (i.e., $ \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 \text{ too large})$	$P = 2 \operatorname{pr}(I \ge t_0)$				
	Slide 118	where $T \sim \text{Student}(df)$				

Interpretation of the p-value						
Interpreting the Size of a <i>P</i> -Value						
Approximate size of <i>P</i> -Value	Translation					
> 0.12 (12%)	No evidence against H ₀					
0.10 (10%)	Weak evidence against H_0					
0.05 (5%)	Some evidence against H_0					
0.01 (1%)	Strong evidence against H_0					
0.001 (0.1%)	Very Strong evidence against H					
0.001 (0.1%)	Very Strong evidence against H					

