

Overall Review

What is a statistic?

- Any quantity whose value can be calculated from sample data. It does not depend on any unknown parameter.
- Examples -
${ }^{-}$Inferences based on 2 samples (ch 09)
- One- Two- and Three-Factor ANOVA (ch 10)
${ }^{-} 2^{\mathrm{k}}$ Factorial Designs (ch 11)
- Linear Regression (ch 12)
${ }^{-}$Multiple \& Nonlinear Regression (ch 13)
- Goodness-of-Fit Testing (ch 14)

What are Random Variables?

- A function from the sample space to the real number line.
Before any data is collected, we view all observations and statistics as random variables

Linear Combinations of Random Variables

What if dependent?!?
Consider the collection of the independent random variables X_{1}, \ldots, X_{n} where $E\left[X_{i}\right]=\mu_{i}$ and $\operatorname{Var}\left[X_{i}\right]=\sigma_{i}^{2}$, and let a_{1}, \ldots, a_{n} be constants. Define a random variable Y by

$$
Y=a_{1} X_{1}+\ldots+a_{n} X_{n}
$$

which is a linear combination of the X_{i} 's. It follows that

$$
E\left[a_{1} X_{1}+\ldots+a_{n} X_{n}\right]=a_{1} E\left[X_{1}\right]+\ldots+a_{n} E\left[X_{n}\right]=a_{1} \mu_{1}+\ldots+a_{n} \mu_{n}
$$

$$
\operatorname{Var}\left[a_{1} X_{1}+\ldots+a_{n} X_{n}\right]=a_{1}^{2} \operatorname{Var}\left[X_{1}\right]+\ldots+a_{n}^{2} \operatorname{Var}\left[X_{n}\right]
$$

$$
=a_{1}^{2} \sigma_{1}^{2}+\ldots+a_{n}^{2} \sigma_{n}^{2}
$$

Random Sample

$\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ are an IID random sample of size n if:

1. The X_{i} 's are independent random variables
2. Every X_{i} has the same (identical) probability distribution

These conditions are equivalent to the X_{i} 's being independent and identically distributed (iid) random variables

Linear Combinations of Normal Random Variables from a Random Sample

Let X_{1}, \ldots, X_{n} be a random sample from a normally distributed population with mean μ and variance σ^{2}, i.e. $X_{i} \sim N\left(\mu, \sigma^{2}\right)$. It follows that the random variable $Y=a_{1} X_{1}+\ldots+a_{n} X_{n}$ is normally distributed with mean $a_{1} \mu, \ldots, a_{n} \mu$ and variance $a_{1}{ }^{2} \sigma^{2}+\ldots+a_{n}{ }^{2} \sigma^{2}$. Hence, the sample mean and the sample total of the random sample will be normally distributed.

Central Limit Theorem
Arguably the most important theorem in Statistics (GUT theory)

The central limit theorem gives us information about the sample mean and the sample total for a "large" ($n>30$) random sample from a population that is not normally distributed. Specifically, it tells us that these will be approximately normally distributed. The larger n is, the better the approximation.

Example - Central Limit Theorem

When a certain type of electrical resistor is manufactured, the mean resistance is 4 ohms with a standard deviation of 1.5 ohms. If 36 batches are independently produced, what is the probability that the sample average resistance of the batch is between 3.5 and 4.5 ohms. What is the probability that the sample total resistance is greater than 140 ohms?
Do InteractiveNormalCurve \& CLT Sampling Distribution Applets from SOCR resource

Skewness \& Symmetry of histograms

- A histogram is symmetric is the bars (bins) to the left of some point (mean) are approximately mirror images of those to the right of the mean.

file:///C:/Ivo.dir/UCLA_Classes/Applets.dir/HistogramApplet.html

- Histogram is skewed if it is not symmetric, the histogram is heavy to the left or right, or non-identical on both sides of the mean.

Uni- vs. Multi-modal histograms

Number of clear humps on the frequency histogram plot determines the modality of a histogram plot.

Skewness \& Kurtosis

- What do we mean by symmetry and positive and negative skewness? Kurtosis? Properties?!?
Skewness $=\frac{\sum_{k=1}^{N}\left(Y_{k}-\bar{Y}\right)^{3}}{(N-1) S D^{3}} ; \quad$ Kurtosis $=\frac{\sum_{k=1}^{N}\left(Y_{k}-\bar{Y}\right)^{4}}{(N-1) S D^{4}}$
- Skewness is linearly invariant $\operatorname{Sk}(\mathrm{aX}+\mathrm{b})=\mathrm{Sk}(\mathrm{X})$
- Skewness is a measure of unsymmetry
- Kurtosis is (also linearly invariant) a measure of flatness
- Both are used to quantify departures from StdNormal
- Skewness(StdNorm) $=0$; Kurtosis(StdNorm) $=3$

Important points

1. The distinction between a randomized experiment and an observational study is made at the time of result interpretation. The very same statistical analysis is carried for the two situations.
2. We've already stressed the importance of plotting data prior to stat-analysis. Plots have many important roles - prevent dangerous misconceptions from arising (data overlaps, clusters, outliers, skewness, trends in the data, etc.)

Measures of variability (deviation)

- Mean Absolute Deviation (MAD) -

$$
M A D=\frac{1}{n-1} \sum_{i=1}^{n}\left|y_{i}-\bar{y}\right|
$$

- Variance -

$$
\operatorname{Var}=s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

$$
\begin{aligned}
& \text { - Standard Deviation - } \\
& \begin{array}{l}
\text { ndard Deviation }- \\
S D=\sqrt{\operatorname{Var}}=s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \text {. }
\end{array}
\end{aligned}
$$

Trimmed, Winsorized means and Resistancy

- A data-driven parameter estimate is said to be resistant if it does not greatly change in the presence of outliers.

Order

- K-times trimmed mean $1 \quad$ statistic $\bar{y}_{t k}=\frac{1}{n-2 k} \sum_{i=k+1}^{n-k} y_{(i)}$
- Winsorized k-times mean:
$\bar{y}_{w k}=\frac{1}{n}\left[(k+1) y_{(k+1)}+\sum_{i=k+2}^{n-k-1} y_{(i)}+(k+1) y_{(n-k)}\right]$

Measures of central tendency (location)

- Mean - sum of all observations divided by their number
- Median - (second quartile, Q_{2}) is the half-way-point for the distribution, 50% of all data are greater than it and 50% are smaller than Q_{2}.
- Mode - the (list of) most frequently occurring observation(s).

Measures of variability (deviation)

\bullet Example:
\bullet Mean Absolute Deviation- $M A D=\frac{1}{n-1} \sum_{i=1}^{n}\left|y_{i}-\bar{y}\right|$

- Variance - Var $=s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
- Standard Deviation $-S D=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}$
- $\mathrm{X}=\{1,2,3,4\}$.

MAD $=4 / 3=1.33$
Var=5/3=1.67
$\mathrm{SD}=1.3$

Stationary or Non-Stationary Process?

To assess stationarity:

- Rigorous assessment: A stationary process has a constant mean, variance, and autocorrelation through time/place.
- Visual assessment: (Plot the data - observed vs. time/place - the parameter we argue stationarity with respect to).

Moving Averages - next 10 values are averaged

- Signal, Noise, Filtering: Oftentimes high frequency oscillations in the data make it difficult to read/interpret the data.

Moving Average Effects on the Raw Data (KWH)

$\rightarrow-$ Raw KWH data $\rightarrow-$ Moving Average

Conditional Probability
The conditional probability of \boldsymbol{A} occurring given that B occurs is given by

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \text { and } B)}{\operatorname{pr}(B)}
$$

Suppose we select one out of the 400 patients in the study and we want to find the probability that the cancer is on the extremities given that it is of type nodular: $\mathrm{P}=73 / 125=\mathrm{P}$ (C. on Extremities \mid Nodular)
\#nodular patients with cancer on extremities \#nodular patients lide 29

Properties of probability distributions

- A sequence of number $\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots, \mathrm{pn}_{\mathrm{n}}\right\}$ is a probability distribution for a sample space $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots, \mathrm{~s}_{n}\right\}$, if $\operatorname{pr}\left(s_{k}\right)=p_{k}$, for each $1<=k<=n$. The two essential properties of a probability distribution $p_{1}, p_{2}, \ldots, p_{n}$?

$$
p_{k} \geq 0 ;{ }_{k}{ }_{k} p_{k}=1
$$

- How do we get the probability of an event from the probabilities of outcomes that make up that event?
- If all outcomes are distinct \& equally likely, how do we calculate $\operatorname{pr}(A)$? If $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{9}\right\}$ and $\operatorname{pr}\left(a_{1}\right)=\operatorname{pr}\left(a_{2}\right)=\ldots=\operatorname{pr}\left(a_{9}\right)=p ;$ then

$$
\operatorname{pr}(A)=9 \times \operatorname{pr}\left(a_{1}\right)=9 p .
$$

Multiplication rule- what's the percentage of

 Israelis that are poor and Arabic?
7.28% of Israelis are both poor and Arabic
$(0.52 \times .014=0.0728)$
Illustration of the multiplication rule.

Permutation \& Combination

Permutation: Number of ordered arrangements of $\underline{\mathbf{r}}$ objects chosen from $\underline{\mathbf{n}}$ distinctive objects

$$
\begin{gathered}
P_{n}^{r}=n(n-1)(n-2) \ldots(n-r+1) \\
P_{n}^{n}=P_{n}^{n-r} \cdot P_{r}^{r}
\end{gathered}
$$

e.g. $\quad P_{6}{ }^{3}=6 \cdot 5 \cdot 4=120$.

Permutation \& Combination

Analytic proof: (expand both hand sides)
Combinatorial argument: Given n object focus on one of them (obj. 1). There are $\left.{ }^{n-1} \begin{array}{l}n-1 \\ n=1\end{array}\right)$ groups of size r that contain obj. 1 (since each group cointains $\mathrm{r}-1$ other elements out of $n-1$). Also, there are ${ }^{n-1}$ groups of size r, that do not contain obji. But the total of all r-size groups of n-objects is ${ }_{r}^{n} \begin{array}{r}n \\ r\end{array}$!

Permutation \& Combination

Combinatorial Identity:

$$
\binom{n}{r}=\binom{n}{n-r}
$$

Permutation \& Combination

Combination: Number of non-ordered
arrangements of r objects chosen from n
distinctive objects:

$$
C_{n}^{r}=P_{n}^{r} / r!=\frac{n!}{(n-r)!r!}
$$

Or use notation of $\quad\binom{n}{r}=C_{n}^{r}$
e.g. $\quad 3!=6, \quad 5!=120, \quad 0!=1$

$$
\binom{7}{3}=\frac{7!}{4!3!}=35
$$

Analic proof. (expand both hand sides)
Combinatorial argument: Given n objects the number of combinations of choosing any r of them is equivalent to choosing the remaining n-r of them (order-of-objs-notimportant!)

Examples

1. Suppose car plates are 7-digit, like AB 234. If all the letters can be used in the first 2 places, and all numbers can be used in the last 4 , how many different plates can be made? How many plates are there with no repeating digits?

Solution: a) $26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10$

$$
\text { b) } \mathrm{P}_{26}{ }^{2} \cdot \mathrm{P}_{10}{ }^{3}=26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 7
$$

b) $\mathrm{P}_{26}{ }^{2} \cdot \mathrm{P}_{10}{ }^{3}=26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 7$

Examples

2. How many different letter arrangement can be made from the 11 letters of MISSISSIPPI?

Solution: There are: 1 M, 4 I, 4 S, 2 P letters.
Method 1: consider different permutations:

$$
11!/(1!4!4!2!)=34650
$$

Method 2: consider combinations:

Examples

3. There are N telephones, and any 2 phones are connected by 1 line. Then how many lines are needed all together?

Solution: $\mathrm{C}^{2}{ }_{\mathrm{N}}=\mathrm{N}(\mathrm{N}-1) / 2$ If, $\mathrm{N}=5$, complete graph with 5 nodes has $\mathrm{C}^{2}{ }_{5}=10$ edges.

Binomial theorem \& multinomial theorem

Binomial theorem $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$ Deriving from this, we can get such useful formula $(a=b=1)$

$$
\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}=2^{n}=(1+1)^{n}
$$

Also from $(1+x)^{\mathrm{m}+\mathrm{n}}=(1+\mathrm{x})^{\mathrm{m}}(1+\mathrm{x})^{\mathrm{n}}$ we obtain:

$$
\binom{m+n}{k}=\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i}
$$

On the left is the coeff of $1^{k} x^{(m+n-k)}$. On the right is the same coeff in the product of $\left(\ldots+\operatorname{coeff}^{*} \mathrm{x}^{(\mathrm{m}-\mathrm{i})}+\ldots\right) *\left(\ldots+\right.$ coeff $\left.* \mathrm{x}^{(\mathrm{n}-\mathrm{k}+\mathrm{i})}+\ldots\right)$.

Sterling Formula for asymptotic behavior of \mathbf{n} !

Sterling formula:

$$
n!=\sqrt{\frac{2 \pi}{n} \times\left(\frac{n}{e}\right)^{n}}
$$

Probability and Venn diagrams
Proposition
$P\left(A_{1} \cup A_{2} \cup \ldots \mathrm{U} A_{n}\right)=$

$$
\begin{aligned}
& \sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{1 \leq i 1<i 2 \leq n} P\left(A_{i 1} \bigcap A_{i 2}\right)+\ldots \\
& \quad+(-1)^{r+1} \sum_{1 \leq i \leq j<j<\ldots<i r \leq n} P\left(A_{i 1} \bigcap A_{i 2} \bigcap \ldots \bigcap A_{i r}\right)+\ldots \\
& \quad+(-1)^{n+1} P\left(A_{i 1} \bigcap A_{i 2} \bigcap \ldots . \bigcap A_{i n}\right)
\end{aligned}
$$

Discrete Variables, Probabilities

Binomial Probabilities -
the moment we all have been waiting for!

- Suppose $\mathrm{X} \sim \operatorname{Binomial(n,~p),~then~the~probability~}$

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}, \quad 0 \leq x \leq n
$$

- Where the binomial coefficients are defined by

$$
\binom{n}{x}=\frac{n!}{(n-x)!x!}, \quad n!=1 \times 2 \times 3 \times \ldots \times(n-1) \times n
$$

Used to model counts - number of arrivals (k) on a given interval ..

- The Poisson distribution is also sometimes referred to as the distribution of rare events. Examples of Poisson distributed variables are number of accidents per person, number of sweepstakes won per person, or the number of catastrophic defects found in a production process.

$$
E(X)=E\left(Y_{1}+Y_{2}+Y_{3}+. .+Y_{n}\right)=n p
$$

Poisson Distribution - Definition

Expected values

- The game of chance: cost to play: $\$ 1.50$; Prices $\{\$ 1, \$ 2, \$ 3\}$, probabilities of winning each price are $\{0.6,0.3,0.1\}$, respectively.
- Should we play the game? What are our chances of winning/loosing?

Prize (\$)	x	1	2	3	
Probability	pr(x)	0.6	0.3	0.1	
What we would "expect" from 100 games				add across row	
Number of games won		0.6×100	0.3×100	0.1×100	\downarrow
\$ won		$1 \times 0.6 \times 100$	$2 \times 0.3 \times 100$	$3 \times 0.1 \times 100$	Sum
Total prize money $=$ Sum;		$\begin{aligned} \text { Average prize money }= & \text { Sum } / 100 \\ & =1 \times 0.6+2 \times 0.3+3 \times 0.1 \\ & =1.5 \end{aligned}$			
Theoretically Fair Game: price to play EQ the expected return!					

Functional Brain Imaging - Positron Emission
Tomography (PET)

Poisson Distribution - Mean

> - Used to model counts - number of arrivals (k) on a given interval ...
> - $\mathrm{Y} \sim \operatorname{Poisson}(\lambda)$, then $\mathrm{P}(\mathrm{Y}=\mathrm{k})=\frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!}, \mathrm{k}=0,1,2, \ldots$
> Mean of $\mathrm{Y}, \mu_{\mathrm{Y}}=\lambda$, since
> $E(Y)=\sum_{k=0}^{\infty} k \frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!}=\mathrm{e}^{-\lambda} \sum_{k=0}^{\infty} \frac{k \lambda^{k}}{k!}=\mathrm{e}^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!}=$
> $=\lambda \mathrm{e}^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}=\lambda \mathrm{e}^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=\lambda \mathrm{e}^{-\lambda} \mathrm{e}^{\lambda}=\lambda$

Poisson as an approximation to Binomial

Rule of thumb is that approximation is good if:

- Then, $\operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\boldsymbol{\lambda})$

Poisson as an approximation to Binomial

- Suppose we have a sequence of $\operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right)$ models, with $\lim \left(\mathrm{n} \mathrm{p}_{\mathrm{n}}\right) \rightarrow \lambda$, as $\mathrm{n} \rightarrow$ infinity.
- For each $0<=\mathrm{y}<=\mathrm{n}$, if $\mathrm{Y}_{\mathrm{n}} \sim \operatorname{Binomial}\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right)$, then
$\square \mathrm{P}\left(\mathrm{Y}_{\mathrm{n}}=\mathrm{y}\right)=\quad\binom{n}{y} p_{n}{ }^{y}\left(1-p_{n}\right)^{n-y}$
- But this converges to:
$\binom{n}{y} p_{n}^{y}\left(1-p_{n}\right)^{n-y} \xrightarrow[\substack{n \longrightarrow \infty \\ n \times p_{n} \longrightarrow \lambda}]{\text { WHY? }} \frac{\lambda^{y} e^{-\lambda}}{y!}$
- Thus, Binomial $\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\boldsymbol{\lambda})$

Example using Poisson approx to Binomial

- Suppose $P($ defective chip $)=0.0001=10^{-4}$. Find the probability that a lot of 25,000 chips has >2 defective!
- $\mathrm{Y} \sim \operatorname{Binomial}(25,000,0.0001)$, find $\mathrm{P}(\mathrm{Y}>2)$. Note that $\mathrm{Z} \sim \operatorname{Poisson}(\lambda=\mathrm{n} \mathrm{p}=25,000 \times 0.0001=2.5)$ $P(Z>2)=1-P(Z \leq 2)=1-\sum_{z=0}^{2} \frac{2.5^{z}}{z!} e^{-2.5}=$ $1-\left(\frac{2.5^{0}}{0!} e^{-2.5}+\frac{2.5^{1}}{1!} e^{-2.5}+\frac{2.5^{2}}{2!} e^{-2.5}\right)=0.456$

Geometric, Hypergeometric,

Negative Binomial

- $\mathrm{X} \sim \operatorname{Geometric}(\mathrm{p})$, then the probability mass function is Probability of first failure at $\mathrm{x}^{\text {th }}$ trial.
$P(X=x)=(1-p)^{x-1} p ; \quad E(X)=\frac{1-p}{p} ; \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}$
- Ex: Stat dept purchases 40 light bulbs; 5 are defective.

Select 5 components at random.
Find: $P\left(3^{\text {rd }}\right.$ bulb used is the first that does not work $)=$?

Geometric, Hypergeometric,

Negative Binomial

- Hypergeometric - X~HyperGeom(x; N, n, M)

Total objects: N. Successes: M. Sample-size: n (without replacement). $\mathrm{X}=$ number of Successes in sample

$$
\begin{aligned}
& E(X)=n \frac{M}{N} \\
& \operatorname{Var}(X)=\frac{N-n}{N-1} \times n \times \frac{M}{N} \times \frac{N-M}{N}
\end{aligned} P(X=x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}
$$

Ex: 40 components in a lot; 3 components are defectives.
Select 5 components at random.
$P($ obtain one defective $)=\mathrm{P}(\mathrm{X}=1)=$?

Hypergeometric Distribution \& Binomial

- Binomial approximation to Hyperheometric
$\frac{n}{N}$ is small (usually <0.1), then $\frac{M}{N} \approx p$

$$
\operatorname{HyperGeom}(x ; N, n, M) \stackrel{\text { approaches }}{\Rightarrow} \quad \operatorname{Bin}(x ; n, p)
$$

Ex: 4,000 out of 10,000 residents are against a new tax. 15 residents are selected at random.
$P_{\text {HyperGeom }}$ (at most 7 favor the new tax) $=$? (0.78706) Demo: Applets.dir/ProbCalc.htm $\left(\mathrm{P}_{\mathrm{Bin}}(\mathrm{Y}<=7)=0.7869\right.$] HyperGeom $\left(\mathrm{x} ; \mathrm{N}=10^{4}, \mathrm{n}=15, \mathrm{M}=4 \times 10^{3}\right) \rightarrow \operatorname{Bin}(\mathrm{x} ; \mathrm{n}=15, \mathrm{p}=0.4)$ Slide 55

Continuous RV's

- A RV is continuous if it can take on any real value in a non-trivial interval (a;b).
- PDF, probability density function, for a cont. RV, Y , is a non-negative function $p_{\mathrm{Y}}(\mathrm{y})$, for any real value y , such that for each interval $(a ; b)$, the probability that Y takes on a value in (a ; b), $\mathrm{P}(\mathrm{a}<\mathrm{Y}<\mathrm{b})$ equals the area under $p_{Y}(y)$ over the interval $(a: b)$.

Measures of central tendency/variability for Continuous RVs

$$
\mu_{Y}=\int_{-\infty}^{\infty} y \times p_{Y}(y) d y
$$

- Variance $\sigma_{Y}^{2}=\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} \times p_{Y}(y) d y$

$$
\text { - SD } \sigma_{Y}=\sqrt{\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} \times p_{Y}(y) d y}
$$

Geometric, Hypergeometric,

 Negative Binomial- Negative binomial $\operatorname{pmf}[\mathrm{X} \sim \operatorname{NegBin}(\mathrm{r}, \mathrm{p})$, if $\mathrm{r}=1 \rightarrow$ Geometric (p)] $\quad P(X=x)=(1-p)^{x-1} p$
Number of trials until the $\mathrm{r}^{\text {th }}$ success (negative, since number of successes (r) is fixed \& number of trials (X) is random)

$$
\begin{aligned}
& P(X=n)=\binom{n-1}{r-1} p^{r}(1-p)^{n-r} \quad \begin{array}{l}
\text { Find } \mathrm{E}(\mathrm{X}) \text { and } \operatorname{Var}(\mathrm{X}) \\
\mathrm{X}=\# \text { of times one must } \\
\text { Throw a dice until the }
\end{array} \\
& \text { Outcome } 1 \text { occurs } 4 \\
& \text { Times: } \\
& \mathrm{X} \sim \operatorname{NegBin}(\mathrm{X} ; \mathrm{r}=4, \mathrm{p}=1 / 6) \\
& \mathrm{E}(\mathrm{X})=24 ; \operatorname{Var}(\mathrm{X})=120
\end{aligned}
$$

Convergence of density histograms to the PDF

- For a continuous RV the density histograms converge to the PDF as the size of the bins goes to zero.

Facts about PDF's of continuous RVs

- Non-negative

$$
p_{Y}(y) \geq 0, \forall y
$$

- Completeness

$$
\int_{-\infty}^{\infty} p_{y}(y) d y=1
$$

- Probability

$$
P(a<Y<b)=\int_{a}^{b} y \times p_{Y}(y) d y
$$

(General) Normal Distribution

- Normal Distribution PDF: Y~Normal $\left(\mu, \sigma^{2}\right)$

Continuous Distributions - Student's T

- Student's T distribution [approx. of $\operatorname{Normal}(0,1)$]
$■ Y_{1}, Y_{2}, \ldots, Y_{N}$ IID from $\operatorname{Normal}(\mu ; \sigma)$
$■$ Variance σ^{2} is unknown
- In 1908, William Gosset (pseudonym Student) derived the exact sampling distribution of the following statistics
$T=\frac{Y-\mu_{Y}}{\hat{\sigma}_{Y}}$
- T~Student $(\mathbf{d f}=\mathbf{N}-1)$, where

$$
\hat{\sigma}_{Y}=\sqrt{\frac{\sum_{k=1}^{N}\left(Y_{k}-\bar{Y}\right)^{2}}{N-1}}
$$

Continuous Distributions - χ^{2} [Chi-Square]

- χ^{2} [Chi-Square] goodness of fit test:

Let $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right\}$ are IID $\mathrm{N}(0,1)$
$\square \mathrm{W}=\mathrm{X}_{1}{ }^{2}+\mathrm{X}_{2}{ }^{2}+\mathrm{X}_{3}{ }^{2}+\ldots+\mathrm{X}_{\mathrm{N}}{ }^{2}$
$\boldsymbol{\square} \boldsymbol{W} \sim \chi^{2}(\mathrm{df}=\mathrm{N})$

- Note: If $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{N}}\right\}$ are IID $\mathbf{N}\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)$, then
$\begin{aligned} & S D^{2}(Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(Y_{k}-\bar{Y}\right)^{2} \\ & \text { © And the Statistics } \underline{\mathbf{W} \sim \chi^{2}(\mathrm{df}=\mathrm{N}-1)} \\ & \sigma^{2}\end{aligned}=\frac{N-1}{\sigma^{2}} S D^{2}(Y)$
$\square E(W)=N ; \operatorname{Var}(W)=2 N$

Continuous Distributions - Cauchy's

- Cauchy's distribution, $\mathrm{X} \sim$ Cauchy (t, s), $\mathrm{t}=$ location; $\mathrm{s}=$ scale - $\operatorname{PDF}(\mathrm{X}): f(x)=\frac{1}{\left.s \pi(1+(x-t) / s)^{2}\right)} ; \quad \mathrm{x} \in \boldsymbol{R}$ (reals)
- $\operatorname{PDF}(\operatorname{Std}$ Cauchy’s(0,1$)$):
$f(x)=\frac{1}{s \pi\left(1+x^{2}\right)}$
- The Cauchy distribution is (theoretically) important as an example of a pathological case. Cauchy distributions look similar to a normal distribution. However, they have much heavier tails. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of how sensitive the tests are to heavy-tail departures from normality. The mean and standard deviation of the Cauchy distribution are undefined!!! The practical meaning of this is that collecting 1,000 data points gives no more accurate of an estimate of the mean and standard deviation than does a single point (Cauchy $=\mathrm{T}_{\mathrm{df}-0} \rightarrow \mathrm{~T}_{\mathrm{df}} \rightarrow$ Normal).

Continuous Distributions - Exponential

- Exponential distribution, X Exponential(λ)
- The exponential model, with only one unknown parameter, is the simplest of all life distribution models.

$$
f(x)=\lambda e^{-\lambda x} ; \quad x \geq 0
$$

- $\mathrm{E}(\mathrm{X})=1 / \lambda ; \quad \operatorname{Var}(\mathrm{X})=1 / \lambda^{2}$;
- Another name for the exponential mean is the Mean Time To Fail or MTTF and we have MTTF $=1 / \lambda$.
- If \boldsymbol{X} is the time between occurrences of rare events that happen on the average with a rate 1 per unit of time, then \boldsymbol{X} is distributed exponentially with parameter λ. Thus, the exponential distribution is frequently used to model the time interval between successive random events. Examples of variables distributed in this manner would be the gap length between cars crossing an intersection, life-times of electronic devices, or arrivals of customers at the check-out counter in a grocery store.

Slide 72

Normal approximation to Binomial

- Suppose $\mathbf{Y} \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$
- Then $Y=Y_{1}+Y_{2}+Y_{3}+\ldots+Y_{n}$, where
- $\mathbf{Y}_{\mathbf{k}} \sim \operatorname{Bernoulli}(\mathrm{p}), \mathbf{E}\left(\mathrm{Y}_{\mathrm{k}}\right)=\mathrm{p} \& \operatorname{Var}\left(\mathrm{Y}_{\mathrm{k}}\right)=\mathrm{p}(1-\mathrm{p}) \rightarrow$
- $\mathbf{E}(\mathbf{Y})=\mathbf{n p} \& \operatorname{Var}(\mathbf{Y})=\mathbf{n p}(\mathbf{1}-\mathbf{p}), \mathrm{sd}(\mathbf{Y})=(\operatorname{np}(1-\mathrm{p}))^{12}$
- Standardize \mathbf{Y} :
- $\mathbf{Z}=(\mathbf{Y}-\mathbf{n p}) /(\mathbf{n p}(\mathbf{1}-\mathbf{p}))^{1 / 2}$
\square By CLT $\rightarrow \mathrm{Z} \sim \mathrm{N}(\mathbf{0}, \mathbf{1})$. So, $\underline{\mathrm{Y} \sim N\left\lfloor\mathrm{np},(\operatorname{np}(1-p))^{12]} \mid\right.}$
- Normal Approx to Binomial is reasonable when $n p>=10$ \& $n(1-p)>10$ (p \& (1-p) are NOT too small relative to n).

Continuous Distributions - Exponential

Exponential distribution, Example:
On weeknight shifts between 6 pm and 10 pm , there are an average of 5.2 calls to the UCLA medical emergency number. Let X measure the time needed for the first call on such a shift. Find the probability that the first call arrives (a) between 6:15 and 6:45 (b) before 6:30. Also find the median time needed for the first call ($34.578 \% ; 72.865 \%$).
\square We must first determine the correct average of this exponential distribution. If we consider the time interval to be $4 \times 60=240$ minutes, then on average there is a call every 240 / 5.2 (or 46.15) minutes. Then $X \sim \operatorname{Exp}(1 / 46),[E(X)=46]$ measures the time in minutes after 6:00 pm until the first call.

Normal approximation to Binomial - Example

- Roulette wheel investigation:
- Compute $\mathrm{P}(\mathrm{Y}>=58)$, where $\mathrm{Y} \sim \operatorname{Binomial}(100,0.47)-$
\square The proportion of the $\operatorname{Binomial}(100,0.47)$ population having more than 58 reds (successes) out of 100 roulette spins (trials).
\square Since $n p=47>=10$ \& $n(1-p)=53>10$ Normal approx is justified.

$58-100 * 0.47) / \operatorname{Sqrt}(100 * 0.47 * 0.53)=2.2$
- $\mathrm{P}(\mathrm{Y}>=58) \leftarrow \quad \mathrm{P}(\mathrm{Z}>=2.2)=0.0139$
- True $\mathrm{P}(\mathrm{Y}>=58)=0.177$, using SOCR (demo!)
- Binomial approx useful when no access to SOCR avail.

Normal approximation to Poisson

- Let $\mathbf{X}_{1} \sim$ Poisson $(\lambda) \& X_{2} \sim$ Poisson $(\mu) \rightarrow X_{1}+X_{2} \sim$ Poisson $(\lambda+\mu)$
- Let $X_{1}, X_{2}, X_{3}, \ldots, X_{k} \sim \operatorname{Poisson}(\lambda)$, and independent,
- $Y_{k}=X_{1}+X_{2}+\cdots+X_{k} \sim \operatorname{Poisson}(\mathrm{k} \lambda), \mathrm{E}\left(Y_{k}\right)=\operatorname{Var}\left(Y_{k}\right)=k \lambda$.
- The random variables in the sum on the right are independent and each has the Poisson distribution with parameter λ.
- By CLT the distribution of the standardized variable $\left(Y_{k}-k \lambda\right) /(k \lambda)^{1 / 2} \rightarrow \mathrm{~N}(0,1)$, as k increases to infinity.
- So, for $k \lambda>=100, Z_{k}=\left\{\left(Y_{k}-k \lambda\right) /(k \lambda)^{1 / 2}\right\} \sim \mathbf{N}(0,1)$.
$\bullet \rightarrow Y_{k} \sim \mathbf{N}\left(k \lambda,(k \lambda)^{1 / 2}\right)$.
Slide 76

Poisson or Normal approximation to Binomial?

Poisson Approximation (Binomial($\left.\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\lambda)$):
$\binom{n}{y} p_{n}^{y}\left(1-p_{n}\right)^{n-y} \xrightarrow[\substack{n \longrightarrow \infty \\ n \times p_{n} \longrightarrow i}]{\text { WHY? }} \frac{\lambda^{y} e^{-\lambda}}{y!}$
$\square n>=100 \& p<=0.01 \& \lambda=n p<=20$

- Normal Approximation
$\left(\operatorname{Binomial}(\mathrm{n}, \mathrm{p}) \rightarrow N\left(\mathbf{n p},(\mathbf{n p}(\mathbf{1 - p}))^{\mathbf{1 / 2}}\right)\right)$
$\square \mathrm{np}>=10 \quad \& \quad \mathrm{n}(1-\mathrm{p})>10$

Normal approximation to Poisson - example

- Let $\mathbf{X}_{1} \sim$ Poisson $(\lambda) \& X_{2} \sim$ Poisson $(\mu) \rightarrow X_{1}+X_{2} \sim$ Poisson $(\lambda+\mu)$
- Let $X_{1}, X_{2}, X_{3}, \ldots, X_{200} \sim$ Poisson(2), and independent,
- $Y_{k}=X_{1}+X_{2}+\cdots+X_{k} \sim \operatorname{Poisson}(400), \mathrm{E}\left(Y_{k}\right)=\operatorname{Var}\left(Y_{k}\right)=400$.
- By CLT the distribution of the standardized variable $\left(Y_{k}-400\right) /(400)^{1 / 2} \rightarrow \mathrm{~N}(0,1)$, as k increases to infinity.
- $Z_{k}=\left(Y_{k}-400\right) / 20 \sim \mathrm{~N}(0,1) \rightarrow Y_{k} \sim \mathrm{~N}(400,400)$.
- $\left.\mathrm{P}\left(2<Y_{k}<400\right)=\underline{\left(s t d^{\prime} z\right.} 2 \& 400\right)=$
- $\mathrm{P}\left((2-400) / 20<Z_{k}<(400-400) / 20\right)=\mathrm{P}\left(-20<Z_{k}<0\right)$ $=0.5$

Areas under Standard Normal Curve - Example

- Many histograms are similar in shape to the standard normal curve. For example, persons height. The height of all incoming female army recruits is measured for custom training and assignment purposes (e.g., very tall people are inappropriate for constricted space positions, and very short people may be disadvantages in certain other situations). The mean height is computed to be 64 in and the standard deviation is 2 in . Only recruits shorter than 65.5 in will be trained for tank operation and recruits within $1 / 2$ standard deviations of the mean will have no restrictions on duties.
- What percentage of the incoming recruits will be trained to operate armored combat vehicles (tanks)?
- About what percentage of the recruits will have no restrictions on training/duties?

Lognormal Distribution

- $X \sim$ lognormal with parameters μ and σ, if $\ln (X) \sim N(x ; \mu, \sigma)$
$f(x)= \begin{cases}\frac{1}{\sqrt{2 \pi} \sigma x} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}} & x \geq 0 \\ 0 \quad, & \text { otherwise }\end{cases}$

$$
E(X)=\exp \left(\mu+\sigma^{2} / 2\right)
$$

$\operatorname{Var}(X)=\exp \left(2 \mu+\sigma^{2}\right)\left\{\exp \left(\sigma^{2}\right)-1\right\}$
Ex) Let $\mathrm{X} \sim \operatorname{lognormal}$ with parameter $\mu=3.2$ and σ, $=1$ $P(X>8)=$

Beta Distribution

- Provides positive density only in an interval of finite length
$X \sim$ Beta Distribution with parameters α and β if

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, & 0<x<1(\alpha>0, \beta>0) \\
0
\end{array}\right. \\
& E(X)=\frac{\alpha}{\alpha+\beta}, \quad \operatorname{Var}(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
\end{aligned}
$$

Ex)
$X=$ proportion of TV sets requiring service during the first year \sim beta, $\alpha=3, \beta=2$.
$P($ at least 80% of the model sold this year will require service in 1 year)

Joint probability mass function

The joint probability mass function of the discrete random variables X and Y, denoted as $f_{X Y}(x, y)$ satisfies:
(1) $f_{X Y}(x, y) \geq 0$
(2) $\sum_{x} \sum_{y} f_{X Y}(x, y)=1$
(3) $f_{X Y}(x, y)=P(X=x, Y=y)$

Joint probability mass function - example
The joint density, $\mathrm{P}\{\boldsymbol{X}, \boldsymbol{Y}\}$, of the number of minutes waiting to catch the first fish, \boldsymbol{X}, and the number of minutes waiting to catch the second fish, \boldsymbol{Y}, is given below.

| $\mathrm{P}\{\boldsymbol{X}=\mathrm{i}, \boldsymbol{Y}=\mathrm{k}\}$ | $\begin{array}{c}\mathrm{k} \\ 2\end{array}$ | | | 3 |
| :--- | :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}Row Sum

\mathrm{P}\{\boldsymbol{X}=\mathrm{i}\}\end{array}\right]\)

- The (joint) chance of waiting 3 minutes to catch the first fish and 3 minutes to catch the second fish is:
- The (marginal) chance of waiting 3 minutes to catch the first fish is:
- The (marginal) chance of waiting 2 minutes to catch the first fish is (circle all that are correct):
- The chance of waiting at least two minutes to catch the first fish is (circle none, one or more):
- The chance of waiting at most two minutes to catch the first fish and at most two minutes to catch the second fish is (circle none, one or more):

Marginal probability distributions (Cont.)

If X and Y are discrete random variables with joint probability mass function $\mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})$, then the marginal probability mass function of X and Y are

$$
\begin{aligned}
& f_{X}(x)=P(X=x)=\sum_{R_{x}} f_{X Y}(X, Y) \\
& f_{Y}(y)=P(Y=y)=\sum_{R y} f_{X Y}(X, Y)
\end{aligned}
$$

where R_{x} denotes the set of all points in the range of (X, Y) for which $X=x$ and Ry denotes the set of all points in the range of (X, Y) for which $Y=y$

Mean and Variance

- If the marginal probability distribution of X has the probability function $f(x)$, then

$$
E(X)=\mu_{X}=\sum_{x} x f_{X}(x)=\sum_{x} x\left(\sum_{R_{x}} f_{X Y}(x, y)\right)=\sum_{x} \sum_{R_{x}} x f_{X Y}(x, y)
$$

$$
=\sum_{R} x f_{X Y}(x, y)
$$

$$
V(X)=\sigma_{X}^{2}=\sum_{x}\left(x-\mu_{X}\right)^{2} f_{X}(x)=\sum_{x}\left(x-\mu_{X}\right)^{2} \sum_{R_{x}} f_{X Y}(x, y)
$$

$$
=\sum_{x} \sum_{R_{x}}\left(x-\mu_{X}\right)^{2} f_{X Y}(x, y)=\sum_{R}\left(x-\mu_{X}\right)^{2} f_{X Y}(x, y)
$$

- $\mathrm{R}=$ Set of all points in the range of (X, Y).
- Example.

Central Limit Theorem - heuristic formulation

Central Limit Theorem:
When sampling from almost any distribution,
\bar{X} is approximately Normally distributed in large samples.

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/ SamplingDistributionApplet.html

Central Limit Theorem theoretical formulation

Let $\left\{X_{1}, X_{2}, \ldots, X_{k}, \ldots\right\}$ be a sequence of independent observations from one specific random process. Let and $E(X)=\boldsymbol{\mu}$ and $S D(X)=\boldsymbol{\sigma}$ and both be finite $(0<\boldsymbol{\sigma}<\infty ;|\boldsymbol{\mu}|<\infty)$. If $\bar{X}_{n}=\frac{1}{n} \sum_{k=1}^{n} X$, sample-avg,
Then \bar{X} has a distribution which approaches $\mathrm{N}\left(\mu, \sigma^{2} / n\right)$, as $n \rightarrow \infty$.

Cavendish's 1798 data on mean density of the Earth, $\mathbf{g} / \mathrm{cm}^{3}$, relative to that of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$									
5.50	5.61	4.88	5.07	5.26	5.55	5.36	5.29	5.58	5.65
5.57	5.53	5.62	5.29	5.44	5.34	5.79	5.10	5.2	5.39
5.42	5.47	5.63	5.34	5.46	5.30	5.75	5.68	5.85	
Source: Cavendish [1798].									
$\begin{aligned} & \text { Sample mean } \quad \bar{x}=5.447931 \mathrm{~g} / \mathrm{cm}^{3} \\ & \text { and sample SD }=S_{X}=0.2209457 \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$									

Then the standard error for these data is:

$$
S E(\bar{X})=\frac{S_{X}}{\sqrt{n}}=\frac{0.2209457}{\sqrt{29}}=0.04102858
$$

The standard error of the mean

The standard error of the sample mean is an estimate of the $S D$ of the sample mean

- i.e. a measure of the precision of the sample mean as an estimate of the population mean
- given by $\mathrm{SE}(\bar{x})=\frac{\text { Sample standard deviation }}{\sqrt{\text { Sample size }}}$

Parameters, Estimators, Estimates ...

- E.g., We are interested in the population mean diameter (parameter) of washers the sampleaverage formula represents an estimator we can use, where as the value of the sample average for a particular dataset is the estimate (for the mean parameter).
parameter $=\mu_{Y} ; \quad \underline{\text { estimator }}=\bar{Y}=\frac{1}{N} \sum_{k=1}^{N} Y_{k}$
Data : $Y=\{0.1896,0.1913,0.1900\}$
estimate $=\bar{y}=1 / 3(0.1896+0.1913+0.1900)$
$\overline{\mathrm{y}}=0.1903$. How about $\bar{y}=2 / 3^{(0.1896+0.1913+0.1900)}$

A 95\% confidence interval												
A type of interval that contains the true value of a parameter for 95% of samples taken is called a 95% confidence interval for that parameter, the ends of the CI are called confidence limits. - (For the situations we deal with) a confidence interval (CI) for the true value of a parameter is given by estimate $\pm t$ standard errors (SE)												
Value of the Multiplier, t, for a 95\% CI												
$\begin{array}{cccccccccccc} \text { If: }: & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ t: & 2.365 & 2.306 & 2.262 & 2.228 & 2.201 & 2.179 & 2.160 & 2.145 & 2.131 & 2.120 & 2.110 \\ d f: & 18 & 19 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 60 & \infty \\ t: & 2.101 & 2.093 & 2.086 & 2.060 & 2.042 & 2.030 & 2.021 & 2.014 & 2.009 & 2.000 & 1.960 \\ \hline \end{array}$												

(General) Confidence Interval (CI)

- A level \mathbf{L} confidence interval for a parameter (θ), is an interval $\left(\theta_{1} \wedge, \theta_{2} \wedge\right)$, where $\theta_{1} \wedge \& \theta_{2} \wedge$, are estimators of θ, such that $\mathbf{P}\left(\theta_{1}{ }^{\wedge}<\theta<\theta_{2}{ }^{\wedge}\right)=\mathbf{L}$.
- E.g., $\mathbf{C + E}$ model: $\mathrm{Y}=\mu+\varepsilon$. Where $\varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)$, then by CLT we have $\mathbf{Y}_{-} \mathbf{b a r} \sim N\left(\mu, \sigma^{2} / \mathbf{n}\right)$
$\rightarrow \mathbf{n}^{1 / 2}\left(\mathbf{Y} _\right.$bar $\left.-\mu\right) / \sigma \sim N\left(0, \sigma^{2}\right)$.

- $L=P\left(\mathrm{z}_{(1-\mathrm{L}) / 2}<\mathrm{n}^{1 / 2}\left(\mathrm{Y}_{-}\right.\right.$bar $\left.\left.-\mu\right) / \sigma<\mathrm{z}_{(1+\mathrm{L}) / 2}\right)$, where z_{q} is the $\mathrm{q}^{\text {th }}$ quartile.
- E.g., $0.95=\mathbf{P}\left(\mathrm{z}_{0.025}<\mathbf{n}^{1 / 2}\left(\mathrm{Y}_{-}\right.\right.$bar $\left.\left.-\mu\right) / \sigma<\mathrm{z}_{0.975}\right)$,

Confidence intervals - non-symmetric case

- $\left\{\mathrm{y}_{1} ; \ldots ; \mathrm{y}_{\mathrm{n}}\right\}=\{5.1 ; 2.5 ; 2.8 ; 3.4 ; 6.3 ; 3.6 ; 3.9 ; 3.0 ; 2.7$; $5.7 ; 3.5 ; 3.6 ; 5.3 ; 5.1 ; 3.5 ; 3.3\}$
- Problem: Obtain a $100(1-\alpha) \% \mathrm{CI}\left(\sigma^{2}\right)$.

$$
\frac{\sum_{k=1}^{n}\left(Y_{k}-\bar{Y}\right)^{2}}{\chi_{\left(n-1, \frac{\alpha}{2}\right)}^{2} \leq \sigma^{2}} \leq \frac{\sum_{k=1}^{n}\left(Y_{k}-\bar{Y}\right)^{2}}{\chi_{\left(n-1,1-\frac{\alpha}{2}\right)}^{2}}
$$

$\chi^{2}(15 ; 0.025)=27: 49$ and $\chi^{2}(15 ; 0.975)=6: 26 \rightarrow$

- This yields the CI, the sample variance is $\mathbf{s}^{\mathbf{2}}=\mathbf{1 . 3 5}$. Note the CI is NOT symmetric $(0.74 ; 3.24)$

Prediction vs. Confidence intervals - Differences?

- Confidence Intervals (for the population mean μ):

$$
\begin{aligned}
& \left(\mathrm{Y}-\frac{\hat{\sigma} \times \mathrm{t}_{\mathrm{n}-1,(+1+1) 2}}{\sqrt{\mathrm{n}}} ; \mathrm{Y}+\frac{\hat{\sigma} \times \mathrm{t}_{\mathrm{n}-1,(t+1) 2}}{\sqrt{\mathrm{n}}}\right) \\
& \hat{\sigma}=\hat{\sigma}(\bar{Y})=\sqrt{\frac{1}{n-1}} \sum_{k=1}^{n}\left(y_{k}-\bar{y}\right)^{2}
\end{aligned} \underline{\text { Which SD }} \text { i bigger?!? }
$$

- Prediction Intervals:

$\left(\hat{Y}_{\text {new }}-\hat{\boldsymbol{\sigma}} \times \mathrm{t}_{\mathrm{n}-1,(t+1) 2} ; \hat{Y}_{\text {new }}+\hat{\boldsymbol{\sigma}} \times \mathrm{t}_{\mathrm{n}-1,(1+1) / 2}\right) ;$ where $\hat{Y}_{\text {new }}=\bar{Y}$ $\hat{\sigma}=\hat{\sigma}\left(Y_{\text {new }}-\hat{Y}_{\text {new }}\right)=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(y_{k}-\bar{y}\right)^{2}} \times \sqrt{1+\frac{1}{n}}$

Confidence intervals - non-symmetric case

- $\left\{\mathrm{y}_{1} ; \ldots ; \mathrm{y}_{\mathrm{n}}\right\}=\{5.1 ; 2.5 ; 2.8 ; 3.4 ; 6.3 ; 3.6 ; 3.9 ; 3.0 ; 2.7$; 5.7; 3.5; 3.6; 5.3; 5.1; 3.5; 3.3\}
- Problem: Obtain a $100(1-\alpha) \% \mathrm{CI}\left(\sigma^{2}\right)$.
- If a random sample $\left\{\mathrm{Y}_{1} ; \ldots ; \mathrm{Y}_{\mathrm{n}}\right\}$ is taken from a normal population with mean μ and variance σ^{2}, then standardizing, we get a sum of squared N $(0,1)$ For a=0.05, say. Need: $\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{\sum_{k=1}\left(Y_{k}-\bar{Y}\right)^{2}}{\sigma^{2}} \sim \chi_{d f=n-1}^{2}$ $100(1-\alpha) \% \mathrm{CI}\left(\sigma^{2}\right)$.

Prediction vs. Confidence intervals

- Confidence Intervals (for the population mean μ):

$$
\left(\overline{\mathrm{Y}}-\frac{\hat{\boldsymbol{\sigma}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}}{\sqrt{\mathrm{n}}} ; \overline{\mathrm{Y}}+\frac{\hat{\boldsymbol{\sigma}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}}{\sqrt{\mathrm{n}}}\right)
$$

- Prediction Intervals: L-level prediction interval (PI) for a new value of the process Y is defined by:
$\left(\hat{Y}_{\text {new }}-\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2} \quad ; \quad \hat{Y}_{\text {new }}+\hat{\boldsymbol{O}} \times \mathrm{t}_{\mathrm{n}-1,(1+\mathrm{L}) / 2}\right)$ where the predicted value $\hat{Y}_{\text {new }}=\bar{Y}$, is obtained as an estimator of the unknown process mean μ.

Example - Carbon content in Steel

Percentage of \boldsymbol{C} (Carbon) in 2 random samples taken from 2 steel shipments are measured and summarized below. The question is to determine if there are statistically significant differences between the shipments.

$\#$	N	Y_{-}	S^{2}
1	10	3.62	0.086
2	8	3.18	$\mathbf{0 . 0 8 2}$

Measuring the distance between the

 true-value and the estimate in terms of the SE's- Intuitive criterion: Estimate is credible if it's not far-away from its hypothesized true-value!
- But how far is far-away?
- Compute the distance in standard-terms: $\mathrm{T}=\frac{\text { Estimator }- \text { TrueParameterValue }}{\mathrm{SE}}$
- Reason is that the distribution of \boldsymbol{T} is known in some cases (Student's t, or $\mathrm{N}(0,1)$).
- The estimator (obs-value) is typical/atypical if it is close to the center/tail of the distribution.

Analysis of the birth-gender data

- Samples are large enough to use Normal-approx. Since the two proportions come from totally diff. mothers they are independent \rightarrow use formula 8.5.5.a

$$
\mathrm{t}_{0}=\frac{\text { Estimate - HypothesizedValue }}{S E}=5.49986=
$$

$$
\begin{aligned}
& \frac{t_{0}}{S E\left(\hat{p}_{1}-\hat{p}_{2}\right)}=\frac{S E}{\sqrt{\frac{\hat{p}_{1}-\hat{p}_{2}-0}{n_{1}}+\frac{\hat{p}_{1}-\hat{p}_{2}}{n_{2}}}=5.49986}=\left\{\begin{array}{l}
\left.\hat{p}_{2}\right) \hat{p}_{2}\left(1-\hat{p}_{2}\right) \\
\end{array}=\right.
\end{aligned}
$$

$$
P \text {-value }=\operatorname{Pr}\left(T \geq \mathrm{t}_{0}\right)=1.9 \times 10^{-8}
$$

Analysis of the birth-gender data

- We have strong evidence to reject the H_{0}, and hence conclude mothers with first child a girl a more likely to have a girl as a second child.
- Practical vs. Statistical significance:
- How much more likely? A 95\% CI:

$$
\begin{aligned}
& \mathrm{CI}\left(p_{1}-p_{2}\right)=[0.033 ; 0.070] \text {. And computed by: } \\
& \text { estimate } \pm z \times \mathrm{SE}=\hat{p}_{1}-\hat{p}_{2} \pm 1.96 \times \operatorname{SE}\left(\hat{p}_{1}-\hat{p}_{2}\right)= \\
& \hat{p}_{1}-\hat{p}_{2} \pm 1.96 \times \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}=} \\
& 0.0515 \pm 1.96 \times 0.0093677=[3 \% ; 7 \%]
\end{aligned}
$$

