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Course Organization

® Material Covered: (Devore, Chapters 7-14)

® Review of Key Concepts (ch 01-06)

® Confidence Intervals (ch 07)

¥ Single Sample Hypotheses testing (ch 08)

¥ Inferences based on 2 samples (ch 09)

® One- Two- and Three-Factor ANOVA (ch 10)
¥ 2k Factorial Designs (ch 11)

® Linear Regression (ch 12)

® Multiple & Nonlinear Regression (ch 13)

® Goodness-of-Fit Testing (ch 14)

Properties of Expectation and Variance

= Let X be a random variable and a,b be constants. It follows
that:

E[aX +b]=aE[X]+b
VarlaX +b] = anar[X]
Var[X]= E[X*]~ (E[X])’
SD*(X) =Var[ X]

Course Organization

Software: No specific software is required.
SYSTAT, R, SOCR resource, etc.

Text: Introduction to Probability and
Statistics for Engineering and the Sciences
5™ edition -- Jay Devore

Course Description,

Class homepage,

online supplements,
Vv I-?’g, etc.

Overall Review

What is a statistic?

- Any quantity whose value can be calculated from
sample data. It does not depend on any unknown
parameter.

- Examples —

What are Random Variables?

- A function from the sample space to the real number
line.

Before any data is collected, we view all observations
and statistics as random variables

Linear Combinations of Random Variables

_~What if dependent?!?
Consider the collection of the independent random variables
X,,....X, where E[X;]=; and Var[X;]=02 and let a,,...,a, be
constants. Define a random variable Y by

Y=aX +..+a,X,

which is a linear combination of the X;’s. It follows that

Ela X, +..+a, X, 1=aE[X|]+..+a ,E[X ]=a i +. . +a,l,

Varla, X, +..+a,X,]=alVar[X,]+...+aVar[ X ,]

— 242 2.2
=aq 0, t..ta,0,




Random Sample

X,....X, are an IID random sample of size n if:
1. The X;’s are independent random variables

2. Every X; has the same (identical) probability
distribution

These conditions are equivalent to the X;’s being
independent and identically distributed (iid) random
variables |

Mean and Variance of T,

For the total-sum random variable
T,=X,+...+X,
Ty~N(np, na? ).

Linear Combinations of Normal Random
Variables from a Random Sample

Let X,,...,X, be a random sample from a
normally distributed population with mean [
and variance 02, i.e. X;~N(l, 02). It follows
that the random variable Y = a,X,+...+a X, is
normally distributed with mean a,|,...,a, 1
and variance a,?0’+...+a 2 0% Hence, the
sample mean and the sample total of the
random sample will be normally distributed.

Sample Mean and Total of a Random
Sample

The sample mean is given by the random variable X defined as
— 1 n
X==>x
n iz

The sample total is given by the random variable T, defined as
n

1=y,
i=1

Mean and Variance of X

For the total-sum random variable
X =(l/n) (X+...+X,)
X ~N(u, 6%n).

Central Limit Theorem

Arguably the most important theorem in Statistics (GUT theory)

The central limit theorem gives us information about the sample
mean and the sample total for a “large” (n>30) random
sample from a population that is not normally distributed.
Specifically, it tells us that these will be approximately
normally distributed. The larger n is, the better the

approximation.




Example — Central Limit Theorem |

When a certain type of electrical resistor is
manufactured, the mean resistance is 4 ohms
with a standard deviation of 1.5 ohms. If 36
batches are independently produced, what is
the probability that the sample average
resistance of the batch is between 3.5 and 4.5
ohms. What is the probability that the sample
total resistance is greater than 140 ohms?

Do InteractiveNormalCurve & CLT Sampling
Distribution Applets from SOCR resource

Skewness & Symmetry of histograms

® A histogram is symmetric is the bars (bins) to the left
of some point (mean) are approximately mirror images of
those to the right of the mean.

® Histogram is skewed if it is not symmetric, the
histogram is heavy to the left or right, or non-identical on
both sides of the mean.

Comparing 3 plots of the same data

Stem-and-leaf of strength N =33
Leaf Unit = 10

1198

5 200334 * o
520

10 2100233
(8) 21 55668899

15 22000111112

2000 2100 2200 2300 2400 2500 2600

6 225

5 23014 strength

223

2 24 ot e oo . .
2 24 2000 2100 2200 2300 2400 2500 2600
2 252 strength

1 259

Three graphs of the breaking-strength data for}
gear-teeth in positions 4 & 10 (Minitab output).

Uni- vs. Multi-modal histograms

® Number of clear humps on the frequency histogram plot
determines the modality of a histogram plot.

35

30

Skewness & Kurtosis |

® What do we mean by symmetry and positive and
negative skewness? Kurtosis? Properties?!?

_g(n—ﬁ _g(n—?)“

(N-1SD? (N -1SD*
® Skewness is linearly invariant Sk(aX+b)=Sk(X)

Skewness ; Kurtosis

® Skewness is a measure of unsymmetry

® Kurtosis is (also linearly invariant) a measure of flatness
® Both are used to quantify departures from StdNormal
® Skewness(StdNorm)=0; Kurtosis(StdNorm)=3

Important points

1. The distinction between a randomized experiment
and an observational study is made at the time of
result interpretation. The very same statistical
analysis is carried for the two situations.

2. We’ve already stressed the importance of plotting
data prior to stat-analysis. Plots have many important
roles — prevent dangerous misconceptions from
arising (data overlaps, clusters, outliers, skewness,
trends in the data, etc.)




Analyzing Histogram Plots

® Modality — uni- vs. multi-modal (Why do we care?)
® Symmetry — how skewed is the histogram?

® Center of gravity for the Histogram plot — does it
make sense?

® [f center-of-gravity exists quantify the spread of the
frequencies around this point.

® Strange patterns — gaps, atypical frequencies lying
away from the center.

Measures of variability (deviation)

[} ean Absolute Deviation (MAD) —
1 .
MaD=1 Sy -5
n—1=
® Variance — 1
n —\2
Var=s*=—3(y, - )
n— i=1
©® Standard Deviation — 1 . R
SD =~Var =s =\/Z(yi -7)

Trimmed, Winsorized means and Resistancy

® A data-driven parameter estimate is said to be
resistant if it does not greatly change in the presence of
outliers.

©® K-times trimmed mean 1 "
— = /
Y h ,_z Yy (i)
n—2k =
® Winsorized k-times mean:

_ 1
Vo =; (k+l)y(k+1) +

n—k-1

Zzyo')

i=k+

Measures of central tendency (location)

® Mean — sum of all observations divided by their number

® Median — (second quartile, Q,) is the half-way-point tor
the distribution, 50% of all data are greater than it and
50% are smaller than Q,.

® Mode — the (list of) most frequently occurring

observation(s).
° o .mode mean o
o ) : ) l o o ‘. ° 4
1 1 1
— B < . 25%. > «— 50—

median

——— Range[minimax] — 4

Measures of variability (deviation)

©® Example:
@ Mean Absolute Deviation— MAD =

1.
n—1=

y,-7

MAD=4/3=1.33
® X={1,2,3,4}.
Var=5/3=1.67
m=2.5
1 2 3 4 SD=1.3

Stationary or Non-Stationary Process?

®To assess stationarity:

® Rigorous assessment: A stationary process has a constant
mean, variance, and autocorrelation through time/place.

® Visual assessment: (Plot the data — observed vs. time/place
— the parameter we argue stationarity with respect to).

Time-Series Plot of the KWH Data

] j =




Stationary or Non-Stationary Process?

® Visual assessment: (Plot the data— observed vs. time/place,
etc., — parameter we argue stationarity with respect to).

Scatter Plot of the KWH Data

60
50 + 4 'y
40 PERAR SN .

Moving Averages — next 10 values are averaged

® Signal, Noise, Filtering: Oftentimes high frequency
oscillations in the data make it difficult to read/interpret the data.
Moving Average Effects on the Raw Data
(KWH)

—e— Raw KWH data —=— Moving Average

Conditional Probability

The conditional probability of A occurring given that
B occurs is given by
pr(A and B)

pria|B)=E

Suppose we select one out of the 400 patients in the study and we
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

Moving Averages

® Signal, Noise, Filtering: Oftentimes high frequency
oscillations in the data make it difficult to read/interpret the data.

Properties of probability distributions

® A sequence of number {p,, p,, ps, ..., pn } is a probability
distribution for a sample space S = {s,, s,, s3, ..., 8.}, if
pr(sy) = py, for each 1<=k<=n. The two essential
properties of a probability distribution p,, p,, ..., p,?

7,2l 7 Sl
® How do we get the probability of an event from the
probabilities of outcomes that make up that event?

® [fall outcomes are distinct & equally likely, how do we calculate
pr(d) ?21f 4 = {a,, a,, a,, ..., ay} and pr(a,)=pr(a,)=...=pr(ay)=p;
then

pr(A) =9 x pr(a,) = 9p.

Multiplication rule- what’s the percentage of
Israelis that are poor and Arabic?

il el 69) = o] Bip(8)) = il A)Pr(A)J

0.0728
0 \ 014 1.0

All people in Israel |

\ :
l:’ 14% of these are Arabic

52% ofthis 14% are poor

7.28% of Israelis are both poor and Arabic
(0.52x.014 = 0.0728)

Illustration of the multiplication rule.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,




Permutation & Combination

Permutation: Number of ordered arrangements of r
objects chosen from n distinctive objects

P =nn-1)(n-2)...(n—-r+1)

n

Pnn — Pnn -r . Prr

3 =654 =120

Permutation & Combination

Combinatorial Identity:

(=)= (=) + (=)

Analytic proof: (expand both hand sides)
Combinatorial argument leeaL object focus on one of

them (obj. 1). There are groups of size r that contain
obj. 1 (smce each group ins r-1 other elements out

of n-1). Also, there aref roups of size r, that do
not contain ob But he total of all r-size groups

of n-objects i 1s

Examples

AB . If all the
d all numbers
n plates can

ating

Permutation & Combination

distinctive objects:

€.8 3'=6, 5!=120, 0!=1

(1)= 5 =3

Combination: Number of non-ordered
arrangements of r objects chosen from n

C =P /rl=

Or use notation of n ) =C’
r n

n!
(n=r)'r!

Permutation & Combination

Combinatorial Identity:

Combinatorial argument: Given n
combinations of choosing an

important!)

r n—-r
Analytic proof: (expand both hand sides)

choosing the remaining n—r of them (order-of-objs-not-

objects the number of
r of them is equivalent to

Examples

arrangement can

2 P letters.




Examples Binomial theorem & multinomial theorem |

Multinomial theorem | Sterling Formula for asymptotic behavior of n!

Ll iy cond Ven dilige e | Discrete Variables, Probabilities ‘

Proposition

PANUAU... U 4,)=

Z::l P(Al) - leilﬁzsn P(A'ln AiZ )+ -

* (_I)HI 1<i1<j2<..<ir<n P(A" ﬂAﬂﬂ n A, )+
+(-1)"! P(Aﬂn A,.,n n A,.,,)




Binomial Probabilities —
the moment we all have been waiting for!

® Suppose X ~ Binomial(n, p), then the probability
n

PX=x)=| |p-p), 0sx<n
X

® Where the binomial coefficients are defined by

i M=1%2%3%...%(n=1)Xn

S =0l
* (l’l x)' * n-factorial

For the Binomial distribution . . . mean

sd(X)=+/np(1- p)

Functional Brain Imaging - Positron Emission
Tomography (PET)

Annihilation detection

detecior

PET. g

Expected values

® The game of chance: cost to play:$1.50; Prices {$1, $2, $3},
probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.

® Should we play the game? What are our chances of
winning/loosing?

Prize () X | 1 2 3

Probability pr(x) | 0.6 0.3 0.1
What we would "expect” from 100 games add across row
Number of games won 0.6 X 100 0.3 X100 0.1 X100 /

$ won 1x0.6x100 2x0.3 %100 3x0.1 x100 Sum

otal prize money = Sum; Average prize money = Sum/100
’ 7 ser r —l><06+2<03+3<01
.5

price to play expected return

Poisson Distribution — Definition

® Used to model counts — number of arrivals (k) on a
given interval ...

® The Poisson distribution is also sometimes referred to
as the distribution of rare events. Examples of
Poisson distributed variables are number of accidents
per person, number of sweepstakes won per person,
or the number of catastrophic defects found in a
production process.

Poisson Distribution — Mean

® Used to model counts — number of arrivals (k) on a
given interval ...

.|Y~Poisson( A), then P(Y=k) =

Ae™
k!

,k=0,1,2, ...

® Mean of Y, [y, = A, since
o k=2 w 7k © K
E(Y)= Zk—/] ° = e“Z—kA D A
o K = Kk = (k-1)!

o k-1

- A - -
A A /] _A AA:A
e z(k 1)‘ z e

kO




Poisson Distribution - Variance

® Y~Poisson(/] ), then P(Y=k) = Ae” ,k=0,1,2,...
1
® Variance of Y, 0, = A%, since e

o /‘ke—ﬂ
gy =Var(Y)= Y (k=AY ——=..= )
=0 k!
® For example, suppose that Y denotes the number of
blocked shots (arrivals) in a randomly sampled game
for the UCLA Bruins men's basketball team. Then

a Poisson distribution with mean=4 may be used to
model Y .

Poisson as an approximation to Binomial

® Rule of thumb is that approximation is good if:

[ n>=100
[ | p<=0.01
[ | A=np <=20

® Then, Binomial(n, p,) = Poisson(A)

Geometric, Hypergeometric,
Negative Binomial

® X ~ Geometric(p), then the probability mass function is
Probability of first failure at x trial.

= = 1-
P(X =x)=(-p) . EX) =L var(x)=—F
p p
® Ex: Stat dept purchases 40 light bulbs; 5 are defective.
Select 5 components at random.

Find: P(3" bulb used is the first that does not work) = ?

Poisson as an approximation to Binomial

® Suppose we have a sequence of Binomial(n, p,)
models, with lim(n p,) = A, as n->infinity.

® For each 0<=y<=n, if Y, ~ Binomial(n, p,), then

n y n—y
(Y, =)~ ( y)P,, (-p,)

M But this converges to:

, o wayr P4
(2)pra-py-ogid o=
Y i »

® Thus, Binomial(n, p,) = Poisson(A)

Example using Poisson approx to Binomial

® Suppose P(defective chip) = 0.0001=10. Find the
probability that a lot of 25,000 chips has > 2 defective!

® Y~ Binomial(25,000, 0.0001), find P(Y>2). Note that
Z~Poisson(A =n p =25,000 x 0.0001=2.5)

2 z
P(Z>2)=1-P(Z<)=1-3 2 ¢ =
z=0 ZY
0 1 2
l_(2.5 o .25 s .25 6_2_5j=0'456
0! 1! 2!

Geometric, Hypergeometric,
Negative Binomial

® Hypergeometric — X~HyperGeom(x; N, n, M)

Total objects: N. Successes: M. Sample-size: n (without
replacement). X = number of Successes in sample

M MY(N-M
FO=n iy

N P =x) =5
Var(X):N_anx%xN_M (J

N -1 N N

Ex: 40 components in a lot; 3 components are defectives.
Select 5 components at random.

P(obtain one defective) = P(X=1) =?




Hypergeometric Distribution & Binomial

oximation to Hyperheometric
M
ually < 01), then F S,

Continuous RV’s

® A RV is continuous if it can take on any real value in a
non-trivial interval (a ; b).

® PDF, probability density function, for a cont. RV, Y, is
a non-negative function py(y), for any real value y,
such that for each interval (a; b), the probability that Y
takes on a value in (a; b), P(a<Y<b) equals the area
under py(y) over the interval (a: b).
Py(y)

.W

a b

sures of central tendency/variability for
__Continuous RVs

® Mean

= [yxp,(y)dy

Svme gl = (=) % p, (n)dy

v, = | [(v=1) % p,(y)dy

Geometric, Hypergeometric,
Negative Binomial

® Negative binomial pmf [X ~ NegBin(r, p), if =1 =»
Geometric (p)] P(X=x)=(1- p)x_l p
Number of trials until the rh success (negative, since number

of successes (r) is fixed & number of trials (X) is random)

n—1 _ | Find E(X) and Var(X)
P(X =n)= [r _ l)pr(l -p)"

X=t# of times one must
Throw a dice until the
Outcome 1 occurs 4
Times:
X~NegBin(x;r=4,p=1/6)
E(X)=24; Var(X)=120 ||

B =" var(xy ="
2 p

Convergence of density histograms to the PDF

® For a continuous RV the density histograms converge
to the PDF as the size of the bins goes to zero.

Facts about PDF’s of continuous RVs

® Non-negative

p,(¥)=0,0y

® Completeness J‘ pY ( y) dy - 1

® Probability

P(a<Y<b)= [yxp,(»)dy

10



Continuous Distributions

® Uniform distribution

® Normal distribution

® Student’s T distribution
® F-distribution

® Chi-squared (X 2)

® Cauchy’s distribution

® Exponential distribution

® Poisson distribution, ...

(General) Normal Distribution

® Normal Distribution PDF: Y~Normal(l, ¢ €=
_=n)?
e 207

pY(y)ZW,D—OO<y<°°

(x=)

£ = _]Py (x)dx :_]‘\7_22”;202 dx |

Density curves for Student’s ¢

We will come back to the
T-distribution at the end
of this chapter!

= x
df[i&, Normal(0,1)]
_____ df =5

Student(df) density curves for various df.

(Continuous) Uniform Distribution

* X~ Uniform Distribution with parameters a and § if

) {lfl—a a<x<p
o -

0 otherwise

om numbers follow

Continuous Distributions — Student’s T

® Student’s T distribution [approx. of Normal(0,1)]
WY, Y, ... Yy ID fromaNormal(l;0)
W Variance 02 is unknown

® In 1908, William Gosset (pseudonym Student) derived the
exact sampling distribution of the following statistics

T=Y_1UY

® T~Student(df=N-1), whe%:e

I Continuous Distributions — X*> [Chi-Square]

® ° [Chi-Square] goodness of fit test:
HLet {X,, X,,..., Xy} are [ID N(O, )

BW=X2+X2+X2+.. .+ X2 ‘z
BW ~ x2(df=N) o
ENote: If {Y,, YZ,N.., Yy} are IID N(l, 0?), then
2 1 72
SD“(Y) = Y, -Y
8)) N_lkz_;(k ) .
T W =""-SD*Y)

B And the Statistics W ~ x2(df=N-1)
BE(W)=N; Var(W)=2N

11



Continuous Distributions — F-distribution

® F-distribution is the ratio of two }? random variables.

® Snedecor's F distribution is most commonly used in
tests of variance (e.g., ANOVA). The ratio of two
chi-squares divided by their respective degrees of
freedom is said to follow an F distribution
N M
SD3(1) :ﬁ;m -7 s2) :ﬁ;m -xp
=N—;1SD2(Y); Wy =Miz_1
gy ox

sl | r, = DL~ P =N L =M -

Wy SD2(X);

Continuous Distributions — Exponential

® Exponential distribution, X~Exponential(A)

® The exponential model, with only one unknown parameter, is the
simplest of all life distribution models.

f(x)=Ae™; x=20

EX)=/\; Var(X)=1/A%

® Another name for the exponential mean is the Mean Time To Fail
or MTTF and we have MTTF = 1/ A.

If X is the time between occurrences of rare events that happen on the average
with a rate | per unit of time, then X is distributed exponentially with parameter A.
Thus, the exponential distribution is frequently used to model the time interval
between successive random events. Examples of variables distributed in this
manner would be the gap length between cars crossing an intersection, life-times
of electronic devices, or arrivals of customers at the check-out counter in a grocery
store.

Normal approximation to Binomial

|| ® Suppose Y~Binomial(n, p)
| ® Then Y=Y+ Y,+ Y;+...+ Y,, where
B Y, ~Bernoulli(p) , E(Y,)=p & Var(Y,)=p(1-p) 2
B E(Y)=np & Var(Y)=np(1-p), so(v)=(np(i-p))”
B Standardize Y:
9 Z=(Y-np) / (np(1-p))*»
0 By CLT & Z ~N(0, 1). So, Y ~ N [np. (np(1-p)*?|
® Normal Approx to Binomial is

reasonable when np >=10 & n(1-p)>10
(p & (1-p) are NOT too small relative to n).

| Continuous Distributions — Cauchy’s |

® Cauchy’s distribution, X~Cauchy(t,s), t=location; s=scale

® PDF(X): = ; xR (reals
S sn(1+(x—t)/s)2) (1 )
® PDF(Std Cauchy’s(0,1)): J)= sal +x? i

® The Cauchy distribution is (theoretically) important as an example of
a pathological case. Cauchy distributions look similar to a normal
distribution. However, they have much heavier tails. When studying
hypothesis tests that assume normality, seeing how the tests perform
on data from a Cauchy distribution is a good indicator of how
sensitive the tests are to heavy-tail departures from normality. The
mean and standard deviation of the Cauchy distribution are
undefined!!! The practical meaning of this is that collecting 1,000
data points gives no more accurate of an estimate of the mean and
standard deviation than does a single point (Cauchy=T . ,>T,~>Normal).

Continuous Distributions — Exponential

® Exponential distribution, Example:
By-hand vs. ProbCalc.htm

® On weeknight shifts between 6 pm and 10 pm, there are an
average of 5.2 calls to the UCLA medical emergency
number. Let X measure the time needed for the first call on
such a shift. Find the probability that the first call arrives
(a) between 6:15 and 6:45 (b) before 6:30. Also find the
median time needed for the first call ( 34.578%; 72.865% ).

B We must first determine the correct average of this exponential
distribution. If we consider the time interval to be 4x60=240
minutes, then on average there is a call every 240 / 5.2 (or 46.15)
minutes. Then X ~ Exp(1/46), [E(X)=46] measures the time in
minutes after 6:00 pm until the first call.

Normal approximation to Binomial — Example

|| ® Roulette wheel investigation:
® Compute P(Y>=58), where Y~Binomial(100, 0.47) —

M The proportion of the Binomial(100, 0.47) population having
more than 58 reds (successes) out of 100 roulette spins (trials).

m Since np=47>=10 & n(1-p)=53>10 Normal
approx is justified.
® Z=(Y-np)/Sqrt(np(1-p)) =
58 — 100*%0.47)/Sqrt(100%0.47%0.53)=2.2
® P(Y>=58) € = P(Z>=2.2)=0.0139
® True P(Y>=58) = 0.177, using SOCR (demo!)
©® Binomial approx useful when no access to SOCR avail.

12



Normal approximation to Poisson

° et 1~Poisson(}\) & X,~Poisson() >X,+ X,~Poisson(A+})
® Let X, X,, X, ..., X, ~ Poisson(A), and independent,
® Y, =X, +X,+ +X, ~Poisson(kA), E(Y,)=Var(¥)=kA.
® The random variables in the sum on the right are

independent and each has the Poisson distribution
with parameter A.

® By CLT the distribution of the standardized variable
(Y, — kN) / (kN)'2 =» N(0, 1), as k increases to infinity.

® So, for kA >=100, Z, = {(¥, — kA) / (bM)'2 } ~ N(0,1).
©> ¥, ~ N(k\, (kM)'2).

Poisson or Normal approximation to Binomial?

® Poisson Approximation (Binomial(n, p,) = Poisso;\(}\) ):
y —
y n=y ? A €
(”)pn (-py~ 0OE =5 —
y nxp, m A y'
En>=100 & p<=0.01 & A =np<=20
©® Normal Approximation

(Binomial(n, p) > N (np, (np(1-p))'2))
Hnp >=10 & n(1-p)>10

Areas under Standard Normal Curve - Example |

® The mean height is 64 in and the standard deviation is 2 in.

B Only recruits shorter than 65.5 in will be trained for tank operation.
What percentage of the incoming recruits will be trained to operate
armored combat vehicles (tanks)?

X > (X-64)/12
65.5 > (65.5-64)/2 = %

60 62 64 65566 68 Percentage is 77.34%

B Recruits within 2 standard deviations of the mean will have no
restrictions on duties. About what percentage of the recruits will
have no restrictions on training/duties?

X > (X-64)12 s‘
65 > (65-64)/2 = V% R
63 > (63-64)12 = -

60 62 63 64 65 66 68 Percentage is 38.30%

Normal approximation to Poisson — example

° et X,~Poisson(A) & X,~Poisson(p) DX+ X,~Poisson(A+p)

® Let X, X, X, ..., X, ~ Poisson(2), and independent,

® Y, =X, +X,+ - +X, ~Poisson(400), E(Y,)=Var(¥,)=400.

® By CLT the distribution of the standardized variable
(Y, —400) / (400)""> =» N(0, 1), as k increases to infinity.

®Z, =(Y,—400)/20 ~ N(0,1)=> ¥, ~N(400, 400).

OP(2 <Y, <400) = (std’z 2 & 400) =
® P( (2-400)20 < Z,, < (400-400)120 ) = P( -20< Z,<0)

=05 [

Areas under Standard Normal Curve — Example

® Many histograms are similar in shape to the standard normal curve. For
example, persons height. The height of all incoming female army
recruits is measured for custom training and assignment purposes (e.g., 4
very tall people are inappropriate for constricted space positions, and
very short people may be disadvantages in certain other situations). The
mean height is computed to be 64 in and the standard deviation is 2 in.
Only recruits shorter than 65.5 in will be trained for tank operation and
recruits within % standard deviations of the mean will have no
restrictions on duties.

B What percentage of the incoming recruits will be trained to operate
armored combat vehicles (tanks)?

B About what percentage of the recruits will have no restrictions on
training/duties?

Gamma and Exponential Distributions

00

Distribution
R
ra)= Ix” ST

nction : 5
rF@=@-Hr(@a-1

(n - 1)! for positive integer n
r(0.5) =

- X~ Gamma with parameters a and f§ if

! e f 150
a/- a k]
= Fr@
0 , otherwise

where a>0, >0




Gamma and Exponential Distributions

Lognormal Dlstrlbuton

® X ~ lognormal with parameters u and o, if

In(X) ~ N(x; 4,0)

1
N2mox ¢
® f(x)= 0

_(n x-p)*
2
20 x=0

, otherwise

Beta Distribution ‘

X ~ Beta Distribution with parameters o and # if

r@+p) ai,_ s
f(x)={W" =9 0<x<1(@0, 0

0 otherwise

Gamma and Exponential Distributions

Relationship to the Poisson Process
# of events in any time interval ¢ has a Poisson distribution
parameter ] - the distribution of the elapsed time betwee
two successive events is exponential with parameter g =%

Exponential . .
o VR #events in t: Poisson w. mean At

‘Weibull Distribution \

® X ~ Weibull Distribution with parameters oz and B if

B-1_-ax’
f(x)={a'8x e ,x>0

0 , otherwise

Marginal & Joint PDF’s
Central Limit Theorem (CLT)

14



Joint probability mass function

® The joint probability mass function of the discrete
random variables X and Y, denoted as fyy(x,y)
satisfies:

(D fyy (x,) 20

@22 faxy)=1

) far (x,3) = P(X =x,Y = y)

Marginal probability distributions

® Individual probability distribution of a random
variable is referred to as its Marginal Probability
Distribution.

® Marginal probability distribution of X can be
determined from the joint probability distribution of
X and other random variables.

® Example: Marginal probability distribution of X is

found by summing the probabilities in each column,
for y, summation is done in each row.

Mean and Variance |

® [f the marginal probability distribution of X has the probability
function f(x), then

)=ty = S e =3 ){z )= 5 L 5
= foxy(xay)
R
V(X)= o’x =Z(x_lu)()2f)((x) =Z(x_)u)()zzf)(y(xay)

= ZZ(x—/-lx)zfxy(X,Y) = Z(x—ﬂx)zfxy(X,Y)
X R, R
® R = Set of all points in the range of (X,Y).
® Example.

Joint probability mass function — example |

The joint density, P{X, ¥}, of the number of minutes waiting to catch the first fish, X,
and the number of minutes waiting to catch the second fish, ¥, is given below.

P{X=iY=k} k Row Sum
1 2 3 P{X=i}
1 0.01 0.02 0.08 0.11
i 2 0.01 0.02 0.08 0.11
3 0.07 0.08 0.63 0.78
Column Sum P |0.09 0.12 0.79 1.00
Y=k}

The (joint) chance of waiting 3 minutes to catch the first fish and 3 minutes to
catch the second fish is:

The (marginal) chance of waiting 3 minutes to catch the first fish is:

The (marginal) chance of waiting 2 minutes to catch the first fish is (circle all
that are correct):

The chance of waiting at least two minutes to catch the first fish is (circle
none, one or more):

The chance of waiting at most two minutes to catch the first fish and at most
two minutes to catch the second fish is (circle none, one or more):

Marginal probability distributions (Cont.)

® If X and Y are discrete random variables with joint
probability mass function fyy(X,y), then the marginal
probability mass function of X and Y are

fr()=PX=x)=) i, (X.Y)
(=P =)= fy(X,Y)

where R, denotes the set of all points in the range of
(X, Y) for which X = x and Ry denotes the set of all
points in the range of (X, Y) for which ¥ =y

Central Limit Theorem — heuristic formulation

Central Limit Theorem:
When sampling from almost any distribution,

X is approximately Normally distributed in large samples.

15



Central Limit Theorem —
theoretical formulation

Let lX I,XZ,...,Xk, .} be asequence of independent

observations from one specific random process. Let

and E(X)=u and SD(X) = q nand both be

finite (0<g <oo; |p|<0). If X =— % X, sample-avg,
nongz R

Then X has a distribution which approaches

N(W, 0%/n), as n - o.

Cavendish’s 1798 data on mean density of the
Earth, g/cm> relative to that of H,0

550 561 488 507 526 555 536 529 558 5.65

557 553 5.62 529 544 534 579 510 527 539

542 547 563 534 546 530 575 568 585
Source:Cavendish [1798].

Sample mean x=5.447931 g/cm>

and sample SD = 5 =02209457 glem’

Then the standard error for these data is:

— S 0.2209457
SE(X)=—L=""""""" =(.04102858
==

Inference & Estimation

The standard error of the mean

The standard error of the sample mean is an
estimate of the SD of the sample mean

®i.c. a measure of the precision of the sample
mean as an estimate of the population mean

®givenby SE (3 ) = Sample standard deviation

\/ Sample size

S | @ Note similarity with

SE(x) =
) n|e sp(X)- 2.

Student’s 7-distribution

® For random samples from a Normal distribution,

r=X-4

SE(X)

. . . _ A X/ H‘
is exactly distributed as Student(df'=n - 1)« PRI F

B but methods we shall base upon this distribution for 7' work
well even for small samples sampled from distributions
which are quite non-Normal.

B Jf'is number of observations —1, degrees of freedom.

Parameters, Estimators, Estimates ...

® E.2., We are interested in the population mean
diameter (parameter) of washers the sample-
average formula represents an estimator we can
use, where as the value of the sample average
for a particular dataset is the estimate (for the
mean parameter).

. N
parameter = [, ; estimator=Y = — Z Y,

Data: ¥ ={0.1896, 0.1913, 0.190¢
estimate=y=%(0.1896+O.1913+O.1900)

¥ =0.1903. How about ¥ = %(0.1896 +0.1913 + 0.1900

16



A 95% confidence interval

® A type of interval that contains the true value of a
parameter for 95% of samples taken is called a 95%
confidence interval for that parameter, the ends of
the CI are called confidence limits.

® (For the situations we deal with) a confidence interval
(CI) for the true value of a parameter is given by

estimate * t standard errors (SE)

Value of the Multiplier, ¢, for a 95% CI

df: 7 8 9 10 11 12 13 14 15 16 17
t: 2365 2306 2262 2228 2201 2179 2160 2.145 2131 2120 2.110
df: 18 19 20 25 30 35 40 45 50 60 ©
t: 2101 2.093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 \1.960

T e

2483 Coverage
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Tth oo 0T BECK o 100% H
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0~ o o TTT% 5 b o Z
100th — coo '® +"  ooo oo
500th oo o T "m bm
soist e L a0
502nd —~ ° oE e ® ' oo
oot . o T w
ooond B L
993rd — o oo T oo o
994th o o mEs o o
oosih © Eate— oo
oo — . SoE T @ o
9Tth — o TS de @
oosih B
999th — o o T Samo o
1000th o S5 ¥ E oo

2482 283 2484

!

True mean

Samples of size 10 from a Normal(u=24.83, 5=.005)
distribution and their 95% confidence intervals for .

Effect of increasing the confidence level

99% CI, ¥=2.576 se(x)

95% CI, ¥+ 1.960 se(x)

90% CI, x=+1.645 se(x)

80% CI, = 1.282 se(x)

The greater the confidence level, the wider the interval

Tom Chance ¥ CT Wild and G A Seber, © John Wiley & Sons, 2000,

(General) Confidence Interval (CI)

® A level L confidence interval for a parameter (0), is
an interval (6, , 6,"), where 6, & 0,", are
estimators of 8, such that P(6,* <0 < 8,)=L.

® E.g., C+E model: Y = J+€ Where € [N(0, 02), then by CLT
we have Y_bar ~ N(p, Oz/n) Area=?

> n%(Y_bar - Wy/0 ~ N(O, &).

OL=P(zyy), < n”(Y_bar - B)/0 < Zasyn )
where z, is the q™ quartile.

®E.g, 0.95=P(z)y < WAY_bar-)/G < zggrs )|

CI for population mean

Confidence Interval for the true (population) mean y:

sample mean =+ t standard errors

or x +¢se(x), where SE(¥X)=—-anddf =n—1
n

1

Value of the Multiplier, ¢, for a 95% CI

df: 7 8 9 10 11 12 13 14 15 16 17
t: 2365 2306 2262 2228 2201 2179 2160 2.145 2131 2120 2.110

df: 18 19 20 25 30 35 40 45 50 60 ©
t: 2101 2093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 1.960

Effect of increasing the sample size

_ . —e—
n=10 data points ° ° o om o o

n=40 data points 0 00 ®OWO OM@WITW DD O O

=
n =90 data points 0 00  COTED G CNAPOGENDGNEGEIDAGEINO O OGD o
T T T T T
24.82 24.83 24.84
Passage time

Three random samples from a Normal(u=24.83, s =.005
distribution and their 95% confidence intervals for p.

rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,

To double the precision we need four times as

many observations.
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Confidence intervals — non-symmetric case

® A marine biologist wishes to use male angelfish for an experiment
and hopes their weights don't vary much. In fact, a previous
random sample of n = 16 angelfish yielded the data below

® {y;..;y,=1{51;25;2.8;3.4;6.3;3.6;3.9;3.0;2.7, 5.7; 3.5;
3.6;5.3;5.1; 3.5;3.3}

® Sample statistics from these data include Avg. = 3.96 Ibs, s?= 1.35
Ibs, n=16.

® Problem: Obtain a 100(1- a)% CI(c?).

® Point Estimator for 02? How about sample variance, s2?

® Sampling theory for s2? Not in general, but under Normal
assumptions ...

® [f a random sample {Y; ...;Y,} is taken from a normal population

with mean [ and variance 02,then standardizing, we get a
sum of squared N(0O,1)

Confidence intervals — non-symmetric case |

® {y;...;y,=1{51;25;28;3.4;6.3;3.6;3.9;3.0; 2.7;
5.7;3.5;3.6; 5.3; 5.1; 3.5; 3.3}

® Problem: Obtain a 100(1- a)% CI(c?).
I A Y
n -2

2
X X
(n—l,ﬁ) (n—l,l—ﬂ)
2 2

® x2(15; 0.025)=27:49 and X%(15; 0.975)=6:26 >

® This yields the CI, the sample variance is s>=1.35. Note
the CI is NOT symmetric (0.74 ; 3.24)

Prediction vs. Confidence intervals — Differences? |

©® Confidence Intervals (for the population mean [1):

? _ 0‘ tnl T Teen2 Y 0‘ tn R CRC %
N Jn
g=0(Y)= =1 kzl(y y)z Which SD
219
® Prediction Intervals: Ll
(YAm _0 xtn-L(HL)/Z 5 YAm * O- Xt nl, (|+L)/2 where Y eow Y

Confidence intervals — non-symmetric case

® {y;...;y,=1{51;25;2.8;3.4;6.3;3.6;3.9;3.0; 2.7;
5.7;3.5;3.6; 5.3; 5.1; 3.5; 3.3}

® Problem: Obtain a 100(1- a)% CI(c?).

® [f a random sample {Y; ...;Y,} is taken from a normal

population with mean [ and variance 6%,then
standardizing, we get a sum of squared

N(0,1) noe o\
7 (n—l)S2 =Zk=l(Yk Y) ~ 5
For a=0.05, say. Need: 02 0_2 df=n—-1
100(1- 0)% CI(G?).

=1-a=p X?
(

Prediction vs. Confidence intervals |

® Confidence Intervals (for the population mean [1):

O xt O xt
Y-~ mee .y

n-1,(1+L)2 + n-1,(1+L)2
2
1 1

® Prediction Intervals: L-level prediction interval (PI) for
a new value of the process Y is defined by:

(A _O-Xt n-1,(1+L)2 5 Y +0 St

where the predicted value Y, =Y,is

n-1,(14L)2 )
new

obtained as an estimator of the
unknown process mean /.

Significance Testing —
Using Data to Test Hypotheses
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Example — Carbon content in Steel

Percentage of C (Carbon) in 2 random samples taken from
2 steel shipments are measured and summarized below.
The question is to determine if there are statistically
significant differences between the shipments.

# N | Y S?

1 10 | 3.62 |0.086
2 8 | 3.18 [0.082

Comparing CI’s and significance tests

® These are different methods for coping with the
uncertainty about the true value of a parameter
caused by the sampling variation in estimates.

® Confidence interval: A fixed level of confidence is
chosen. We determine a range of possible values for the
parameter that are consistent with the data (at the chosen
confidence level).

® Significance test: Only one possible value for the
parameter, called the hypothesized value, is tested against the
data. We determine the strength of the evidence (confidence)
provided by the data against the proposition that the
hypothesized value is the true value.

Hypotheses

Guiding principles

We cannot rule in a hypothesized value for a
parameter, we can only determine whether there is
evidence, provided by the data, o rule out a
hypothesized value.

The null hypothesis tested is typically a skeptical

reaction to a research hypothesis

Measuring the distance between the
true-value and the estimate in terms of the SE’s

@ Intuitive criterion: Estimate is credible if it’s
not far-away from its hypothesized true-value!

® But how far is far-away?
® Compute the distance in standard-terms:
T= Estimator — TrueParameterValue

SE
® Reason is that the distribution of 7 is known in
some cases (Student’s t, or N(0,1)).

® The estimator (obs-value) is typical/atypical if
it is close to the center/tail of the distribution.

Review

® Are the carbon contents in the two steel
. . o
shipments any different? 4 N Y | s
to = Est 1-Est 2-0 _
0 SE 1 10 3.62 | 0.086

_ 3.62-3.18 _ 2 | 8 |318 0082
SE(ﬂl - ﬂZ) 0.025%
044

- Jo.os%o N 0.08% =3.12

The t-test

Using @ totest Ho: @ = @y versus some alternative H .
STEP 1 Calculate the test statistic

0- 90 _estimate - hypothesized value
standard error

SO

[This tells us howmanystandard errors the estimate is above the hypothesized

value (t, positive) or below the hypothesized value (t, negative).]

STEP 2 Calculate the P -value using the following table.

STEP 3 Interpret the P-value in the context of the data.
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The t-test

Alternative | Evidence against Ho: @ > Q¢
hypothesis provided by P-value
H.:9> 6, é too much bigger than g, |P = pr(7>¢t,)

(i.e., @ - By too large)
H:0<6 9 too much smaller than @, |P =pr(T< o)
(ie., é- 6 too negative)
H:0#6) étoofmﬁomeo

(ie., |é - B too large)

P =2pr(12 |to])

where T’ ~ Student(df)

Is a second child gender influenced by the
gender of the first child, in families with >1 kid?

Total
5,978
5,412
11,390

® Research hypothesis needs to be formulated first before
collecting/looking/interpreting the data that will be used
to address it. Mothers whose 1% child is a girl are

more likely to have a girl, as a second child,
compared to mothers with boys as 15¢ children.

® Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.

sis of the birth-gender data

® We have strong evidence to reject the H, and hence
conclude mothers with first child a girl a more likely to
have a girl as a second child.

® Practical vs. Statistical significance:
® How much more likely? A 95% CI:
CIL (p;- p,) =[0.033; 0.070]. And computed by:
estimate + z XSE =i71 -p 11.96XSE(113 —132) =

—_

p —p *1.96x%
pl p2

0.0515%1.96%0.0093677 =[3% ;7%]

Interpretation of the p-value

Interpreting the Size of a P-Value

Approximate size

of P-Value Translation

> 012 (12%)
0.10  (10%)
005  (5%)
001 (1%)
0.001  (0.1%)

No evidence against H
Weak evidence against H,
Some evidence against H,,

Strong evidence against H,

Very Strong evidence against H

Analysis of the birth-gender data

® Samples are large enough to use Normal-approx.

Since the two proportions come from totally diff.
mothers they are independent - use formula 8.5.5.a
_ Estimate - HypothesizedValue

0 SE

=5.49986 =

p-p

Relation Among Various Continuous
Distributions

Uniform(U)

=]
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