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UCLA  STAT 110B
Applied Statistics for Engineering       

and the Sciences

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

�Teaching Assistants: Brian Ng, UCLA Statistics

University of California, Los Angeles,  Spring  2003
http://www.stat.ucla.edu/~dinov/courses_students.html
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Course Organization

http://www.stat.ucla.edu/~dinov/courses_students.html

Software:  No specific software is required.  
SYSTAT, R, SOCR resource, etc.

Text:  Introduction to Probability and 
Statistics for Engineering and the Sciences 
5th edition -- Jay Devore

Course Description, 
Class homepage, 

online supplements,
VOH’s, etc.
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� Material Covered: (Devore, Chapters 7-14)

�Review of Key Concepts (ch 01-06)
�Confidence Intervals (ch 07)
�Single Sample Hypotheses testing (ch 08)
� Inferences based on 2 samples (ch 09)
�One- Two- and Three-Factor ANOVA (ch 10)
�2k Factorial Designs (ch 11)
�Linear Regression (ch 12)
�Multiple  & Nonlinear Regression (ch 13)
�Goodness-of-Fit Testing (ch 14)

Course Organization
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Overall Review

What is a statistic?
- Any quantity whose value can be calculated from 

sample data.  It does not depend on any unknown 
parameter.

- Examples –

What are Random Variables?
- A function from the sample space to the real number 

line.
Before any data is collected, we view all observations 

and statistics as random variables
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Properties of Expectation and Variance

� Let X be a random variable and a,b be constants.  It follows 
that:
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Linear Combinations of Random Variables

Consider the collection of the independent random variables 
X1,…,Xn where E[Xi]=µi and Var[Xi]=σi

2, and let a1,…,an be 
constants. Define a random variable Y by

which is a linear combination of the Xi’s.  It follows that
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What if dependent?!?
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Random Sample

X1,…,Xn are an IID random sample of size n if:

1. The Xi’s are independent random variables

2. Every Xi has the same (identical) probability 
distribution

These conditions are equivalent to the Xi’s being 
independent and identically distributed (iid) random 
variables

Stat 110B, UCLA, Ivo DinovSlide 8

Sample Mean and Total of a Random 
Sample

The sample mean is given by the random variable     defined as 

The sample total is given by the random variable To defined as 
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Mean and Variance of To

For the total-sum random variable 

T0 = X1+…+Xn 

T0~N(nµ, nσ2  ). 
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Mean and Variance of X

For the total-sum random variable 

= (1/n) (X1+…+Xn)

~N(µ, σ2/n ). 

X

X
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Let X1,…,Xn be a random sample from a 
normally distributed population with mean µ
and variance σ2, i.e. Xi~N(µ, σ2).  It follows 
that the random variable Y = a1X1+…+anXn is 
normally distributed with mean a1µ,…,an µ
and variance  a1

2σ2+…+an
2 σ2. Hence, the 

sample mean and the sample total of the 
random sample will be normally distributed.  

Linear Combinations of Normal Random 
Variables from a Random Sample 
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The central limit theorem gives us information about the sample 
mean and the sample total for a “large” (n>30) random 
sample from a population that is not normally distributed.  
Specifically, it tells us that these will be approximately 
normally distributed.  The larger n is, the better the 
approximation.  

Central Limit Theorem
Arguably the most important theorem in Statistics (GUT theory)
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When a certain type of electrical resistor is 
manufactured, the mean resistance is 4 ohms 
with a standard deviation of 1.5 ohms.  If 36 
batches are independently produced, what is 
the probability that the sample average 
resistance of the batch is between 3.5 and 4.5 
ohms.  What is the probability that the sample 
total resistance is greater than 140 ohms?

Do InteractiveNormalCurve & CLT_Sampling 
Distribution Applets from SOCR resource    

Example – Central Limit Theorem
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Uni- vs. Multi-modal histograms

� Number of clear humps on the frequency histogram plot 
determines the modality  of a histogram plot.
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Skewness & Symmetry of histograms

� A histogram is symmetric is the bars (bins) to the left 
of some point (mean) are approximately mirror images of 
those to the right of the mean.

� Histogram is skewed if it is not symmetric, the 
histogram is heavy to the left or right, or non-identical on 
both sides of the mean.
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Skewness & Kurtosis

� What do we mean by symmetry and positive and 
negative skewness? Kurtosis? Properties?!?

� Skewness is linearly invariant Sk(aX+b)=Sk(X)

� Skewness is a measure of unsymmetry

� Kurtosis is (also linearly invariant) a measure of flatness

� Both are used to quantify departures from StdNormal

� Skewness(StdNorm)=0; Kurtosis(StdNorm)=3
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Comparing 3 plots of the same data

Stem-and-leaf of strength  N  = 33
Leaf Unit = 10

    1   19 8
    5   20 0334
    5   20
   10   21 00233
   (8)  21 55668899
   15   22 000111112
    6   22 5
    5   23 014
    2   23
    2   24
    2   24
    2   25 2
    1   25 9

2000 2100 2200 2300 2400 2500 2600
strength

2000 2100 2200 2300 2400 2500 2600
strength

Figure 2.4.5 Three graphs of the breaking-strength data for}
gear-teeth in positions 4 & 10 (Minitab output).
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Important points

1. The distinction between a randomized experiment
and an observational study is made at the time of 
result interpretation. The very same statistical 
analysis is carried for the two situations.

2. We’ve already stressed the importance of plotting 
data prior to stat-analysis. Plots have many important 
roles – prevent dangerous misconceptions from 
arising (data overlaps, clusters, outliers, skewness, 
trends in the data, etc.)
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Analyzing Histogram Plots

� Modality – uni- vs. multi-modal (Why do we care?)

� Symmetry – how skewed is the histogram?

� Center of gravity for the Histogram plot – does it 
make sense?

� If center-of-gravity exists quantify the spread of the 
frequencies around this point.

� Strange patterns – gaps, atypical frequencies lying 
away from the center.
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Measures of central tendency (location)

� Mean – sum of all observations divided by their number
� Median – (second quartile, Q2) is the half-way-point for 

the distribution,  50% of all data are greater than it and 
50% are smaller than Q2.

� Mode – the (list of) most frequently occurring 
observation(s).

25% 25%25%

median
25%

mean

Range [min : max]

mode
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Measures of variability (deviation)

� Mean Absolute Deviation (MAD) –

� Variance –

� Standard Deviation –
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Measures of variability (deviation)

� Example:
� Mean Absolute Deviation–

� Variance –

� Standard Deviation –

� X={1, 2, 3, 4}. 
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Trimmed, Winsorized means and Resistancy

� A data-driven parameter estimate is said to be 
resistant if it does not greatly change in the presence of 
outliers.

� K-times trimmed mean

� Winsorized k-times mean:
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Stationary or Non-Stationary Process?

�To assess stationarity:
� Rigorous assessment:  A stationary process has a constant 

mean, variance, and autocorrelation through time/place.

� Visual assessment: (Plot the data – observed vs. time/place 
– the parameter we argue stationarity with respect to).

Time-Series Plot of the KWH Data
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Stationary or Non-Stationary Process?

� Visual assessment: (Plot the data – observed vs. time/place, 
etc., – parameter we argue stationarity with respect to).

Scatter Plot of the KWH Data
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Moving Averages

� Signal, Noise, Filtering: Oftentimes high frequency 
oscillations in the data make it difficult to read/interpret the data. 
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Moving Averages – next 10 values are averaged

� Signal, Noise, Filtering: Oftentimes high frequency 
oscillations in the data make it difficult to read/interpret the data. 

Moving Average Effects on the Raw Data 
(KWH)
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Properties of probability distributions

� A sequence of number {p1, p2, p3, …, pn } is a probability 
distribution for a sample space S = {s1, s2, s3, …, sn}, if  
pr(sk) = pk, for each 1<=k<=n. The two essential 
properties of a probability distribution p1, p2, … , pn? 

� How do we get the probability of  an event from the 
probabilities of outcomes that make up that event?

� If all outcomes are distinct & equally likely, how do we calculate 
pr(A) ? If A = {a1, a2, a3, …, a9} and pr(a1)=pr(a2)=…=pr(a9 )=p;
then

pr(A) = 9 x pr(a1) = 9p.

1  ;0 =≥ �
k kk

pp
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The conditional probability of A occurring given that 
B occurs is  given by

pr(A | B) =
pr(A and B)

pr(B)
 

Conditional Probability

Suppose we select one out of the 400 patients in the study and we 
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

patientsnodular  #
sextremitieon  cancer    with  patientsnodular  #
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pr(A and B) = pr(A | B)pr(B) =  pr(B | A)pr(A)

Multiplication rule- what’s the percentage of 
Israelis that are poor and Arabic?

0
0.0728

0.14 1.0

 All people in Israel

14%  of these are Arabic

52%  of this  14%  are poor

7.28% of Israelis are both poor and  Arabic
(0.52  .014  =  0.0728)

Figure 4.6.1 Illustration of the multiplication rule.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Permutation: Number of ordered arrangements of r
objects chosen from  n distinctive objects

e.g.       P6
3 = 6·5·4 =120.

Permutation & Combination
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Combination: Number of non-ordered
arrangements of r objects chosen from  n 
distinctive objects:

Or use notation of 
e.g. 3!=6 ,    5!=120 ,    0!=1 

Permutation & Combination
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Combinatorial Identity:

Analytic proof: (expand both hand sides)
Combinatorial argument: Given n object focus on one of 

them (obj. 1). There are        groups of size r that contain 
obj. 1 (since each group contains r-1 other elements out 
of n-1). Also, there are       groups of size r, that do 
not contain obj1.  But the total of all r-size groups 
of n-objects is    !

Permutation & Combination
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Combinatorial Identity:

Analytic proof: (expand both hand sides)
Combinatorial argument: Given n objects the number of 

combinations of choosing any r of them is equivalent to 
choosing the remaining n-r of them (order-of-objs-not-
important!)

Permutation & Combination

( ) ( )n
rn

n
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Examples

1. Suppose car plates are 7-digit, like AB1234. If all the 
letters can be used in the first 2 places, and all numbers 
can be used in the last 4, how many different plates can 
be made? How many plates are there with no repeating 
digits?

Solution: a) 26·26·10·10·10·10

b) P26
2 · P10

3 = 26·25·10·9·8·7
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Examples

2. How many different letter arrangement can 
be made from the 11 letters of  MISSISSIPPI?

(((( ))))(((( ))))(((( ))))(((( )))) (((( ))))(((( ))))(((( ))))(((( ))))1
1

5
4

9
4

11
2

2
2

6
4

10
4

11
1    ...   ========

Solution: There are: 1 M, 4 I, 4 S, 2 P letters.
Method 1: consider different permutations:  

11!/(1!4!4!2!)=34650
Method 2: consider combinations:
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Examples

3. There are N telephones, and any 2 phones 
are connected by 1 line. Then how many 
lines are needed all together?

Solution: C2
N = N (N - 1) / 2

If, N=5, complete graph with 5 nodes has
C2

5=10 edges.
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Binomial theorem & multinomial theorem

Deriving from this, we can get such useful formula (a=b=1)

Also from (1+x)m+n=(1+x) m(1+x)n we obtain:

On the left is the coeff of  1kx(m+n-k). On the right is the same coeff in the product 
of  (…+ coeff * x(m-i) +…) * (…+coeff * x(n-k+i) +…).
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Multinomial theorem
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Generalization: Divide n distinctive objects into r groups, 
with the size of every group n1 ,…,nr,  and  n1+n2+…+nr = n
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Sterling Formula for asymptotic behavior of n!

Sterling formula:
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Probability and Venn diagrams

Proposition

P(A1U A2U… U An)=
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Discrete Variables, Probabilities



8

Stat 110B, UCLA, Ivo DinovSlide 43

Binomial Probabilities –
the moment we all have been waiting for!

� Suppose X ~ Binomial(n, p), then the probability

� Where the binomial coefficients are defined by
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Prize ($) x 1 2 3
Probability pr(x) 0.6 0.3 0.1

$ won

Total  prize money  =  Sum; Average prize money  =  Sum/100
 = 1  0.6  +  2  0.3  +  3  0.1
 = 1.5

Sum
Number of games won

What we would "expect" from 100 games add across row
0.6 100 0.3 100 0.1 100

2 0.3 100 3 0.1 1001 0.6 100

Expected values

� The game of chance: cost to play:$1.50;  Prices {$1, $2, $3}, 
probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.

� Should we play the game? What are our chances of 
winning/loosing?

Theoretically Fair Game: price to play EQ the expected return!
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)-1( = )sd( pnpX

For the Binomial distribution . . . mean

E(X) = n p,

X~Binomial(n, p) ����

X=Y1+Y2+Y3+..+Yn,
where Yk ~Bernoulli(p),

E(Y1)=p ����
E(X) = E(Y1+Y2+Y3+..+Yn)=np
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Poisson Distribution – Definition

� Used to model counts – number of arrivals (k) on a 
given interval …

� The Poisson distribution is also sometimes referred to 
as the distribution of rare events. Examples of 
Poisson distributed variables are number of accidents 
per person, number of sweepstakes won per person, 
or the number of catastrophic defects found in a 
production process.
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Functional Brain Imaging - Positron Emission 
Tomography (PET)

http://www.nucmed.buffalo.edu
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Poisson Distribution  – Mean

� Used to model counts – number of arrivals (k) on a 
given interval …

� Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

� Mean of Y, µY = λ, since
!
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Poisson Distribution - Variance

� Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

� Variance of Y, σY = λ½,  since

� For example, suppose that Y denotes the number of 
blocked shots (arrivals) in a randomly sampled game
for the UCLA Bruins men's basketball team. Then 
a Poisson distribution with mean=4 may be used to 
model Y .
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Poisson as an approximation to Binomial

� Suppose we have a sequence of Binomial(n, pn)
models, with   lim(n pn)  � λλλλ, as  n�infinity. 

� For each 0<=y<=n, if Yn~ Binomial(n, pn), then

� P(Yn=y)=
�But this converges to:

� Thus, Binomial(n, pn) � Poisson(λλλλ) 
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Poisson as an approximation to Binomial

� Rule of thumb is that approximation is good if:

� n>=100
� p<=0.01
� λλλλ =n p <=20

� Then, Binomial(n, pn) � Poisson(λλλλ) 
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Example using Poisson approx to Binomial

� Suppose P(defective chip) = 0.0001=10-4. Find the 
probability that a lot of 25,000 chips has > 2 defective!

� Y~ Binomial(25,000, 0.0001), find P(Y>2). Note that 
Z~Poisson(λλλλ =n p =25,000 x 0.0001=2.5)
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Geometric, Hypergeometric, 
Negative Binomial

� X ~ Geometric(p), then the probability mass function is 

Probability of first failure at xth trial.

� Ex: Stat dept purchases 40 light bulbs; 5 are defective.

Select 5 components at random. 

Find: P(3rd bulb used is the first that does not work) = ?

2
1 1)(      ;1)(     ;)1()(

p
pXVar

p
pXEppxXP x −=−=−== −
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Geometric, Hypergeometric, 
Negative Binomial

� Hypergeometric – X~HyperGeom(x; N, n, M)
Total objects: N. Successes: M. Sample-size: n (without 

replacement). X = number of Successes in sample

Ex: 40 components in a lot; 3 components are defectives.

Select 5 components at random.

P(obtain one defective) = P(X=1) = ?

�
�

�
�
�

�

�
�

�
�
�

�

−
−

�
�

�
�
�

�

==

n
N

xn
MN

x
M

xXP )(

N
MN

N
Mn

N
nNXVar

N
MnXE

−×××
−
−=

=

1
)(

)(



10

Stat 110B, UCLA, Ivo DinovSlide 55

Hypergeometric Distribution & Binomial

�Binomial approximation to Hyperheometric
�

Ex: 4,000 out of 10,000 residents are against a new tax. 15 
residents are selected at random.

PHyperGeom(at most 7 favor the new tax) = ?  (0.78706)
Demo: Applets.dir/ProbCalc.htm (PBin(Y<=7)=0.7869]
HyperGeom(x; N=104, n=15, M=4x103) � Bin(x;n=15,p=0.4)

p
N
M

N
n ≈<  then0.1),(usually small is  

),;(
/

),,;( pnxBin
pNM

MnNxHyperGeom
approaches

≈
�
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Geometric, Hypergeometric, 
Negative Binomial

� Negative binomial pmf [X ~ NegBin(r, p), if r=1 �
Geometric (p)]

Number of trials until the rth success (negative, since number 
of successes (r) is fixed & number of trials (X) is random)

ppxXP x 1)1()( −−==

2
)1()(     ;)(

)1(
1
1

)(

p
prXVar

p
rXE

pp
r
n

nXP rnr

−==

−�
�

�
�
�

�

−
−

== − Find E(X) and Var(X)
X=# of times one must
Throw a dice until the
Outcome 1 occurs 4
Times:
X~NegBin(x;r=4,p=1/6)
E(X)=24; Var(X)=120
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Continuous RV’s

� A RV is continuous if it can take on any real value in a 
non-trivial interval (a ; b).

� PDF, probability density function, for a cont. RV, Y, is 
a non-negative function pY(y), for any real value y, 
such that for each interval (a; b), the probability that Y 
takes on a value in (a; b), P(a<Y<b) equals the area 
under pY(y) over the interval (a: b).

�

pY(y)

a            b

P(a<Y<b)
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Convergence of density histograms to the PDF

� For a continuous RV the density histograms converge 
to the PDF as the size of the bins goes to zero.

�
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Measures of central tendency/variability for 
Continuous RVs

� Mean

� Variance

� SD

�
∞

∞−

×= dyypy YY )(µ

�
∞

∞−

×−= dyypy YYY )()( 22 µσ

�
∞

∞−

×−= dyypy YYY )()( 2µσ
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Facts about PDF’s of continuous RVs

� Non-negative

� Completeness

� Probability

yypY ∀≥ ,0)(

1)( =�
∞

∞−

dyypY

� ×=<<
b

a
Y dyypybYaP )()(
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Continuous Distributions

� Uniform distribution

� Normal distribution

� Student’s T distribution

� F-distribution

� Chi-squared (     )

� Cauchy’s distribution

� Exponential distribution

� Poisson distribution, …

2χ
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(Continuous) Uniform Distribution 

f(x) =
,αβ −

1
βα <<x

0        , otherwise

2
)( βα +=XE

12
)()(

2αβ −=XVar
,

Ex) Uniform,  α = 2, β = 7

(a) 

(b) 

=≥ )4(XP
=<< )5.53( XP

βα

αβ −
1

x

f(x)

• X ~ Uniform Distribution with parameters α and β if

• random numbers follow 
Uniform between 0 and 1
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(General) Normal Distribution

� Normal Distribution PDF:  Y~Normal(µ, σµ, σµ, σµ, σ2222) ��

��
∞−

−−

∞−

−−

==

∞<<∞−∀=

y
x

y

YY

y

Y

dxedxxpyF

yeyp

2

2
)(

2

2
)(

2
)()(

,
2

)(

2

2

2

2

πσ

πσ
σ
µ

σ
µ
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Continuous Distributions – Student’s T

� Student’s T distribution [approx. of Normal(0,1)]
�Y1, Y2, …, YN IID from a Normal(µ;σ)
�Variance σ2 is unknown

� In 1908, William Gosset (pseudonym Student)  derived the 
exact sampling distribution of the following statistics

� T~Student(df=N-1), where 
Y

YYT
σ

µ
ˆ
−=

( )
1

ˆ 1

2

−

−
=
�

=

N

YY
N

k
k

Yσ
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Density curves for Student’s t

∞∞∞∞

0 2 4- 2- 4

df  =  ×
[i.e., Normal(0,1)]

df  =  5
df  =  2

Figure 7.6.1 Student(df) density curves for various df.

We will come back to the
T-distribution at the end
of this chapter!
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Continuous Distributions – χχχχ2 [Chi-Square]

�χ2 [Chi-Square] goodness of fit test:
�Let {X1, X2,…, XN} are IID N(0, 1)
�W = X1

2 + X2
2 + X3

2 + …+ XN
2

�W ~ χ2(df=N)
�Note: If {Y1, Y2, …, YN} are IID N(µ, σµ, σµ, σµ, σ2222), then

�And the Statistics W ~ χ2(df=N-1)
�E(W)=N;  Var(W)=2N

( )�
=

−
−

=
N

k
k YY

N
YSD

1

22
1

1)(

)(1 2
2 YSDNW

σ
−=

χ2
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Continuous Distributions – F-distribution

� F-distribution is the ratio of two χχχχ2 random variables.

� Snedecor's F distribution is most commonly used in 
tests of variance (e.g., ANOVA). The ratio of two 
chi-squares divided by their respective degrees of 
freedom is said to follow an F distribution 

( ) ( )��
==

−
−

=−
−

=
M

l
l

N

k
k XX

M
XSDYY

N
YSD

1

22

1

22
1

1)(  ;
1

1)(

);(1   );(1 2
2

2
2 XSDMWYSDNW

X
X

Y
Y

σσ
−=−=

)1,1(F~
)1/(
)1/(

21 −=−=
−
−= MdfNdf

MW
NWF

X
Y

o
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Continuous Distributions – Cauchy’s

� Cauchy’s distribution, X~Cauchy(t,s), t=location; s=scale
� PDF(X):

� PDF(Std Cauchy’s(0,1)):

� The Cauchy distribution is (theoretically) important as an example of 
a pathological case. Cauchy distributions look similar to a normal
distribution. However, they have much heavier tails. When studying 
hypothesis tests that assume normality, seeing how the tests perform 
on data from a Cauchy distribution is a good indicator of how 
sensitive the tests are to heavy-tail departures from normality. The 
mean and standard deviation of the Cauchy distribution are 
undefined!!! The practical meaning of this is that collecting 1,000 
data points gives no more accurate of an estimate of the mean and 
standard deviation than does a single point (Cauchy=Tdf=0�Tdf�Normal).

( ) (reals)     x;
)/)(1

1)(
2

R∈
−+

=
stxs

xf
π

( )21
1)(

xs
xf

+
=

π
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Continuous Distributions – Exponential

� Exponential distribution, X~Exponential(λ)
� The exponential model, with only one unknown parameter, is the 

simplest of all life distribution models.

� E(X)=1/ λ;    Var(X)=1/ λ2; 
� Another name for the exponential mean is the Mean Time To Fail

or MTTF and we have MTTF = 1/ λ. 
� If X is the time between occurrences of rare events that happen on the average 

with a rate l per unit of time, then X is distributed exponentially with parameter λ. 
Thus, the exponential distribution is frequently used to model the time interval 
between successive random events. Examples of variables distributed in this 
manner would be the gap length between cars crossing an intersection, life-times 
of electronic devices, or arrivals of customers at the check-out counter in a grocery 
store. 

0     ;)( ≥= − xexf xλλ
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Continuous Distributions – Exponential

� Exponential distribution, Example:

� On weeknight shifts between 6 pm and 10 pm, there are an 
average of 5.2 calls to the UCLA medical emergency 
number. Let X measure the time needed for the first call on 
such a shift. Find the probability that the first call arrives 
(a) between 6:15 and 6:45 (b) before 6:30. Also find the 
median time needed for the first call  ( 34.578%; 72.865% ). 
�We must first determine the correct average of this exponential 

distribution. If we consider the time interval to be 4x60=240 
minutes, then on average there is a call every 240 / 5.2 (or 46.15) 
minutes. Then X ~ Exp(1/46), [E(X)=46] measures the time in 
minutes after 6:00 pm until the first call. 

By-hand vs. ProbCalc.htm
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Normal approximation to Binomial

� Suppose Y~Binomial(n, p)
� Then Y=Y1+ Y2+ Y3+…+ Yn, where

� Yk~Bernoulli(p) , E(Yk)=p  & Var(Yk)=p(1-p) ����

� E(Y)=np &  Var(Y)=np(1-p), SD(Y)= (np(1-p))1/2

� Standardize Y:
� Z=(Y-np) / (np(1-p))1/2

� By CLT ���� Z ~ N(0, 1). So, Y ~ N [np, (np(1-p))1/2]

� Normal Approx to Binomial is 
reasonable when  np >=10   &   n(1-p)>10
(p & (1-p) are NOT too small relative to n).
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Normal approximation to Binomial – Example

� Roulette wheel investigation:
� Compute P(Y>=58),  where Y~Binomial(100, 0.47) –

�The proportion of the Binomial(100, 0.47) population having 
more than 58 reds (successes) out of 100 roulette spins (trials).

� Since np=47>=10   &   n(1-p)=53>10 Normal 
approx is justified.

�Z=(Y-np)/Sqrt(np(1-p))   =                                  
58 – 100*0.47)/Sqrt(100*0.47*0.53)=2.2

� P(Y>=58)   ���� ���� P(Z>=2.2) = 0.0139
� True P(Y>=58) = 0.177, using SOCR (demo!)
� Binomial approx useful when no access to SOCR avail.

Roulette has 38 slots
18red 18black 2 neutral
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Normal approximation to Poisson

� Let X1~Poisson(λλλλ) & X2~Poisson(µµµµ)  ����X1+ X2~Poisson(λ+µλ+µλ+µλ+µ)

� Let X1, X2, X3, …, Xk ~ Poisson(λλλλ), and independent,
� Yk = X1 + X2 + ··· + Xk ~ Poisson(kλλλλ), E(Yk)=Var(Yk)=kλλλλ.

� The random variables in the sum on the right are 
independent and each has the Poisson distribution 
with parameter  λλλλ.

� By CLT the distribution of the standardized variable 
(Yk − kλλλλ) / (kλλλλ)1/2 ���� N(0, 1), as k increases to infinity.

� So, for  kλλλλ >= 100,  Zk = {(Yk − kλλλλ) / (kλλλλ)1/2 }  ~  N(0,1).
����� Yk ~  N(kλλλλ, (kλλλλ)1/2).
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Normal approximation to Poisson – example

� Let X1~Poisson(λλλλ) & X2~Poisson(µµµµ)  ����X1+ X2~Poisson(λ+µλ+µλ+µλ+µ)

� Let X1, X2, X3, …, X200 ~ Poisson(2222), and independent,
� Yk = X1 + X2 + ··· + Xk ~ Poisson(400), E(Yk)=Var(Yk)=400.

� By CLT the distribution of the standardized variable 
(Yk − 400) / (400)1/2 ���� N(0, 1), as k increases to infinity.

�Zk = (Yk − 400) / 20 ~ N(0,1)���� Yk ~ N(400, 400).
�P(2 < Yk < 400) = (std’z 2 & 400) = 
�P( (2−400)/20 < Zk < (400−400)/20 ) = P( -20< Zk<0) 

= 0.5
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Poisson or Normal approximation to Binomial?

� Poisson Approximation (Binomial(n, pn) � Poisson(λλλλ) ):

�n>=100  &  p<=0.01  &   λλλλ =n p <=20
� Normal Approximation

(Binomial(n, p) � N ( np, (np(1-p))1/2) )
�np >=10   &   n(1-p)>10

!
)1(

  

    y
ey

ppy
n

npn

n
yn

n

y

n

λλ
λ

−
 →−�

�
��

�
�

→×

∞→
− WHY?
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Areas under Standard Normal Curve – Example 

� Many histograms are similar in shape to the standard normal curve. For 
example, persons height. The height of all incoming female army 
recruits is measured for custom training and assignment purposes (e.g., 
very tall people are inappropriate for constricted space positions, and 
very short people may be disadvantages in certain other situations). The 
mean height is computed to be 64 in and the standard deviation is 2 in. 
Only recruits shorter than 65.5 in will be trained for tank operation and 
recruits within ½ standard deviations of the mean will have no 
restrictions on duties.
� What percentage of the incoming recruits will be trained to operate 

armored combat vehicles (tanks)?

� About what percentage of the recruits will have no restrictions on 
training/duties?
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Areas under Standard Normal Curve - Example 
� The mean height is 64 in and the standard deviation is 2 in. 

� Only recruits shorter than 65.5 in will be trained for tank operation.
What percentage of the incoming recruits will be trained to operate 
armored combat vehicles (tanks)?

� Recruits within ½ standard deviations of the mean will have no 
restrictions on duties. About what percentage of the recruits will 
have no restrictions on training/duties?

60     62     64    65.5 66   68

X ���� (X-64)/2
65.5 ���� (65.5-64)/2 = ¾
Percentage is   77.34%

X ���� (X-64)/2
65 ���� (65-64)/2 = ½
63 ���� (63-64)/2 = -½

Percentage is   38.30%60     62  63   64  65  66   68

Stat 110B, UCLA, Ivo DinovSlide 81

Gamma and Exponential Distributions

�Gamma Distribution
�Gamma function : 

Properties

- X ~ Gamma with parameters α and β if

for positive integer n

0>α 0>β
0 , otherwise

=)(xf

βα
α αΓβ

x

ex
−

−1

)(
1

0>x,

where ,

dxex x−
∞

−
�=Γ

0

1)( αα 0>α

)1()1()( −−= αΓααΓ
)!1()( −= nnΓ

1)1( =Γ π=Γ )5.0(
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Gamma and Exponential Distributions

�Exponential Distribution (cont’d)
CDF : ββ

β

xxx

edxexXPxF
−−

−==≤= � 11)()(
0

β
x

exFxXP
−

=−=> )(1)(

-

Ex 1)  X =  response time at a certain on-line computer terminal

X ~ exponential with E(X) = 5(sec.). 

(a)

(b)

,   x > 0

,  x > 0

=≤ )10( XP
=≤≤ )105( XP

- Tail probability

P{X>x}
β
1

f(x)

x
F(x)
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#events in t: Poisson w. mean λt

Gamma and Exponential Distributions

Relationship to the Poisson Process
# of events in any time interval t has a Poisson distribution w/
parameter ���� the distribution of the elapsed time between 
two successive events is exponential with parameter 

tλ
λ

β 1=

Why?   Poisson : P(no events in t) = 

Let  X = time until the first event. 

Then P(no events in t) = 

i.e.,                       = CDF of exponential with             or   

t
t

etetP λ
λ λλ −

−

==
!0

)();0(
0

tetXP λ−=> )(

tetXP λ−−=≤≤ 1)0(
β

λ 1=
λ

β 1=

Exponential 
w. 1/λ

tX
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Lognormal Distribution

� X ~ lognormal with parameters µ and σ, if 

� f (x) =

� E(X) = exp( µ + σ 2/ 2)   

Var(X) = exp ( 2µ + σ 2) {exp (σ 2) –1}
Ex)  Let X ~ lognormal with parameter µ = 3.2 and σ, = 1

P( X > 8) =

),;(~)ln( σµxNX

2

2

2
)(ln

2
1 σ

µ

σπ

−− x

e
x

0≥x

0 ,   otherwise
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Weibull Distribution

� X ~ Weibull Distribution with parameters α and β if

f (x) = 

� If β = 1 ; (exponential with parameter     )

� Useful in Reliability, life testing problems 

βαβαβ xex −−1 ,  x > 0

0 ,   otherwise

xexf αα −=)(
α
1

)11()(
1

β
Γα β +=

−
XE

})]11([)21({)( 2
2

β
Γ

β
Γα β +−+=

−
XVar

.
βαxexF −−=1)(
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Beta Distribution

� Provides positive density only in an interval of finite length

X ~ Beta Distribution with parameters α and β if

11 )1(
)()(

)( −− −+ βα

βΓαΓ
βαΓ xx ,  0 < x < 1 (α>0, β>0 )

0 ,   otherwise

βα
α
+

=)(XE
)1()(

)(
2 +++

=
βαβα

αβXVar,   

Ex)

X = proportion of TV sets requiring service during the first year

~ beta, α = 3 , β = 2 .

P(at least 80% of the model sold this year will require service in 1 year) 

f (x) = 
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Marginal & Joint PDF’s
Central Limit Theorem (CLT)
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Joint probability mass function

� The joint probability mass function of the discrete 
random variables X and Y, denoted as fXY(x,y) 
satisfies:

),(),()3(

1),()2(

0),()1(

yYxXPyxf

yxf

yxf

XY

x
XY

y

XY

===

=

≥

��
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Joint probability mass function – example
The joint density, P{X,Y}, of the number of minutes waiting to catch the first fish, X , 
and the number of minutes waiting to catch the second fish, Y, is given below. 

P {X = i,Y = k }                    k 
1                 2             3 

          Row Sum 
          P{ X = i } 

           1 
 i         2 
           3 

0.01          0.02        0.08 
0.01          0.02        0.08  
0.07          0.08        0.63  

             0.11 
             0.11 
             0.78 

Column Sum P 
{Y =k } 

0.09          0.12        0.79              1.00 

• The (joint) chance of waiting 3 minutes to catch the first fish and 3 minutes to 
catch the second fish is: 

• The (marginal) chance of waiting 3 minutes to catch the first fish is: 
• The (marginal) chance of waiting 2 minutes to catch the first fish is (circle all 

that are correct): 
• The chance of waiting at least two minutes to catch the first fish is (circle 

none, one or more): 
• The chance of waiting at most two minutes to catch the first fish and at most 

two minutes to catch the second fish is (circle none, one or more): 
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Marginal probability distributions

� Individual probability distribution of a random 
variable is referred to as its Marginal Probability 
Distribution.

� Marginal probability distribution of X can be 
determined from the joint probability distribution of 
X and other random variables.

� Example: Marginal probability distribution of X is 
found by summing the probabilities in each column, 

for y, summation is done in each row.
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Marginal probability distributions (Cont.)

� If X and Y are discrete random variables with joint 
probability mass function fXY(x,y), then the marginal 
probability mass function of X and Y are

where Rx denotes the set of all points in the range of 
(X, Y) for which X = x and Ry denotes the set of all 
points in the range of (X, Y) for which Y = y

�===
xR

XYX YXfxXPxf ),()()(

�===
Ry

XYY YXfyYPyf ),()()(
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Mean and Variance

� If the marginal probability distribution of X has the probability 
function f(x), then

� R = Set of all points in the range of (X,Y).

� Example.

��� �� =��
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�
�

�

�
===
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),()(),()(
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Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Central Limit Theorem – heuristic formulation

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/
SamplingDistributionApplet.html
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Let                              be a sequence of independent
observations from one specific random process. Let    
and                      and                        and both be 
finite (                           ). If                    , sample-avg,

Then      has a distribution which approaches 
N(µ, σ2/n), as            .

Central Limit Theorem –
theoretical formulation

{{{{ }}}},...,...,X,XX
k21

µµµµ====)(XE σσσσ====)(XSD
∞∞∞∞<<<<∞∞∞∞<<<<<<<< ||  ;0 µµµµσσσσ ����

====
====

n

k k
X

nn
X

1

1

X
∞∞∞∞→→→→n
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The standard error of the mean

The standard error of the sample mean is an 
estimate of the SD of the sample mean

� i.e. a measure of the precision of the sample 
mean as an estimate of the population mean

�given by   SE(   )
size Sample
deviation standard Sample =

n
s

xS x =)E(

x 

� Note similarity with

� SD(     ) =       . X 
n

σσσσ
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : C avendis h [1798].

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Sample mean 

and sample SD =

Then the standard error for these data is:

3/  447931.5 cmgx ====

3/  2209457.0 cmg
X

S ====

04102858.0
29

2209457.0)( ============
n

S
XSE X
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� For random samples from a Normal distribution, 

is exactly distributed as Student(df = n - 1)
� but methods we shall base upon this distribution for T work 

well even for small samples sampled from distributions 
which are quite non-Normal.

� df is number of observations –1, degrees of freedom.

)(
)(

XSE
XT µµµµ−−−−====

Student’s t-distribution

Recall that for samples 
from N( µ , σ )

)1,0(~
/

)(
)(
)( N

n
X

XSD
XZ

σσσσ
µµµµµµµµ −−−−====−−−−====

Approx/Exact
Distributions
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Inference & Estimation
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Parameters, Estimators, Estimates …

�E.g., We are interested in the population mean 
diameter (parameter) of washers the sample-
average formula represents an estimator we can 
use, where as the value of the sample average
for a particular dataset is the estimate (for the 
mean parameter).

{ }
( )

( )1900.01913.01896.03
2   .1903.0y

1900.01913.01896.03
1yestimate

0.1900  0.1913,  0.1896,  :Data

1 estimator       ;parameter

about How
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A 95% confidence interval

� A type of interval that contains the true value of a 
parameter for 95% of samples taken is called a 95%
confidence interval for that parameter, the ends of 
the CI are called confidence limits.

� (For the situations we deal with) a confidence interval 
(CI) for the true value of a parameter is given by

estimate       t standard errors (SE)±

TABLE 8.1.1  Value of the Multiplier, t ,  for a 95% CI

df  : 7 8 9 10 11 12 13 14 15 16 17
t  : 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110

df  : 18 19 20 25 30 35 40 45 50 60  
t  : 2.101 2.093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 1.960

∞
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(General)  Confidence Interval  (CI)

� A level L confidence interval for a parameter (θ), is  
an interval (θ1^ ,  θ2^), where θ1^  &  θ2^, are 
estimators of θ, such that  P(θθθθ1111^  < θ <θ <θ <θ < θθθθ2222^) = L. 

� E.g., C+E model: Y = µ+ε. Where ε ∼ Ν(0, σε ∼ Ν(0, σε ∼ Ν(0, σε ∼ Ν(0, σ 2222)))), then by CLT 
we have Y_bar ~ Ν(µ, σΝ(µ, σΝ(µ, σΝ(µ, σ2222/n) 

� n½(Y_bar - µµµµ)/σ σ σ σ ~  Ν(0, σΝ(0, σΝ(0, σΝ(0, σ2222)))).
� L = P ( z(1-L)/2 <   n½(Y_bar - µµµµ)/σ σ σ σ <  z(1+L)/2  ),

where zq is the qth quartile.

� E.g.,  0.95 = P ( z0.025 <   n½(Y_bar - µµµµ)/σσσσ <  z0.975  ),

Area=?

Stat 110B, UCLA, Ivo DinovSlide 102

Most of

the table

24.83

o

24.83

500th

100th

10th
9th
8th
7th
6th
5th
4th
3rd
2nd
1st

1000th
999th
998th
997th
996th
995th
994th
993rd
992nd
991st

502nd
501st

96.0%

94.0%

90.0%
88.9%
100%
100%
100%
100%
100%
100%
100%
100%

95.2%
95.2%
95.2%
95.2%
95.2%
95.2%
95.2%
95.2%
95.2%
95.2%

96.0%
96.0%

..........

..........

.......... ..........

..........

..........

Sample
Coverage

to date

True mean

True mean

24.8424.82

Figure 8.1.2 Samples of size 10 from a Normal(µ=24.83, s=.005)
                            distribution and their 95% confidence intervals for µ..

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.

How many of the 
previous 
samples 
contained the 
true mean?
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Confidence Interval for the true (population)  mean µ:
sample mean       t standard errors

or

±

1 and )SE(    where),se( −==± ndf
n

sxxtx x

CI for population mean

TABLE 8.1.1  Value of the Multiplier, t ,  for a 95% CI

df  : 7 8 9 10 11 12 13 14 15 16 17
t  : 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110

df  : 18 19 20 25 30 35 40 45 50 60  
t  : 2.101 2.093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 1.960

∞
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Effect of increasing the confidence level

80%   CI,   x ± 1.282 se(x)

90%   CI,   x ± 1.645 se(x)

95%   CI,   x ± 1.960 se(x)

99%   CI,   x ± 2.576 se(x)

Figure 8.1.3 The greater the confidence level, the wider the interval

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

80%   CI,   x ± 1.282 se(x)

90%   CI,   x ± 1.645 se(x)

99%   CI,   x ± 2.576 se(x)

95%   CI,   x ± 1.960 se(x)

Confidence
Level

Increase

Increases 
the size

of the CI

Why?
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Effect of increasing the sample size

Passage time

n = 90  data points

n = 40  data points

n = 10  data points

24.83 24.8424.82

Figure 8.1.4 Three random samples from a Normal(µ=24.83, s =.005)
                            distribution and their 95% confidence intervals for µ.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,

To double the precision we need  four times as 
many observations. 

Increase
Sample

Size

Decreases 
the size

of the CI
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Confidence intervals – non-symmetric case

� A marine biologist wishes to use male angelfish for an experiment 
and hopes their weights don't vary much. In fact, a previous 
random sample of n = 16 angelfish yielded the data below

� {y1; … ; yn} = { 5.1; 2.5; 2.8; 3.4; 6.3; 3.6; 3.9; 3.0; 2.7; 5.7; 3.5; 
3.6; 5.3; 5.1; 3.5; 3.3}

� Sample statistics from these data include Avg. = 3.96 lbs, s2 = 1.35 
lbs, n = 16.

� Problem: Obtain a 100(1- α)% CI(σ2).
� Point Estimator for σ2? How about sample variance, s2?
� Sampling theory for s2? Not in general, but under Normal 

assumptions ...
� If a random sample {Y1; …;Yn} is taken from a normal population 

with mean µ and variance σ2,then standardizing, we get a 
sum of squared N(0,1)
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Confidence intervals – non-symmetric case

� {y1; … ; yn} = { 5.1; 2.5; 2.8; 3.4; 6.3; 3.6; 3.9; 3.0; 2.7; 
5.7; 3.5; 3.6; 5.3; 5.1; 3.5; 3.3}

� Problem: Obtain a 100(1- α)% CI(σ2).
� If a random sample {Y1; …;Yn} is taken from a normal 

population with mean µ and variance σ2,then 
standardizing, we get a sum of squared 
N(0,1) ( )
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For a=0.05, say. Need:
100(1- αααα)% CI(σσσσ2).
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Confidence intervals – non-symmetric case

� {y1; … ; yn} = { 5.1; 2.5; 2.8; 3.4; 6.3; 3.6; 3.9; 3.0; 2.7; 
5.7; 3.5; 3.6; 5.3; 5.1; 3.5; 3.3}

� Problem: Obtain a 100(1- α)% CI(σ2).

� χ2(15; 0.025)=27:49 and χ2(15; 0.975)=6:26 �
� This yields the CI, the sample variance is s2=1.35. Note 

the CI is NOT symmetric  (0.74 ; 3.24)
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Prediction  vs. Confidence intervals

� Confidence Intervals (for the population mean µµµµ):

� Prediction Intervals: L-level prediction interval (PI) for 
a new value of the process Y is defined by:

( )

.mean  processunknown 
 theofestimator an  as obtained

 is ,ˆ   valuepredicted  thewhere
L)/2(1 1,-nL)/2(1 1,-n tˆ   ;    tˆ ˆˆ

µ

σσ
YnewY

newnew YY
=

++ ×+×−

�
�
�

�
�
�
�

� ×
+

× ++

n
t

 Y   ;   
n

t
– Y L)/2(1 1,-nL)/2(1 1,-n ˆˆ σσ
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Prediction  vs. Confidence intervals – Differences?

� Confidence Intervals (for the population mean µµµµ):

� Prediction Intervals:
( )

( )
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Which SD
is bigger?!?
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Significance Testing –
Using Data to Test Hypotheses
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Example – Carbon content in Steel

Percentage of C (Carbon) in 2 random samples taken from  
2 steel shipments are measured and summarized below. 
The question is to determine if there are statistically 
significant differences between the shipments. 

0.0823.1882

0.0863.62101

S2Y_N#
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Measuring the distance between the 
true-value and the estimate in terms of the SE’s

�Intuitive criterion: Estimate is credible if it’s 
not far-away from its hypothesized true-value!

�But how far is far-away?
�Compute the distance in standard-terms:

�Reason is that the distribution of T is known in 
some cases (Student’s t, or N(0,1)). 

�The estimator (obs-value) is typical/atypical if 
it is close to the center/tail of the distribution.

SE
terValueTrueParameEstimatorT −−−−====
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Comparing CI’s and significance tests

� These are different methods for coping with the 
uncertainty about the true value of a parameter 
caused by the sampling variation in estimates.

� Confidence interval: A fixed level of confidence is 
chosen. We determine a range of possible values for the 
parameter that are consistent with the data (at the chosen 
confidence level).

� Significance test: Only one possible value for the 
parameter, called the hypothesized value, is tested against the 
data. We determine the strength of the evidence (confidence) 
provided by the data against the proposition that the 
hypothesized value is the true value.
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Review

�Are the carbon contents in the two steel 
shipments any different?

0.0823.1882
0.0863.62101

S2Y_N#

0.025%

025.0,7 == αdft
12.3

8
082.0

10
086.0

44.0
)2ˆ1ˆ(

18.362.3

0- Est_2-Est_1
0t

=
+

=

=
−

−=

==

µµSE

SE
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Guiding principles

We cannot rule in a hypothesized value for a 
parameter, we can only determine whether there is 
evidence, provided by the data,  to rule out a 
hypothesized value.

The null hypothesis tested is typically a skeptical 
reaction to a research hypothesis

Hypotheses
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STEP 1  Calculate the test statistic ,

estimate - hypothesized value
standard error

[This  te lls  us  ho w many s tandard e rro rs  the  es tima te is  abo ve the  hypo thes ized 

va lue  (t0  po s itive )  o r  be lo w  the  hypo thes ized  va lue (t0  nega tive).]

STEP 2  Calculate the P -value using the following table.

STEP 3  Interpret the P -value in the context of the data.

Using       to test H 0: θθθθ  = θθθθ 0 versus some alternative H 1.ˆ  θ  

t0 =
ˆ θ  −θ0

se( ˆ θ  )
=

The t-test
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Alternative Evidence against H0: θθθθ  > θθθθ 0

hypothesis provided by P -value

H 1: θ > θ0     too much bigger than θ0 P  = pr(T   t 0)
(i.e.,    - θ0 too large)

H 1: θ < θ0      too much smaller than θ0 P  = pr(T     t 0)
(i.e.,    - θ0 too negative)

H 1: θ    θ0        too far from θ0 P  = 2 pr(T   |t 0|)
(i.e., |    - θ0| too large)

where T  ~ Student(df )

≠

ˆ  θ 

ˆ  θ 

ˆ  θ 

≤

≥

≥ˆ θ 

ˆ  θ 

ˆ θ 

The t-test
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Interpretation of the p-value

TABLE 9.3.2 Interpreting the S ize of a P -Value

Translation
> 0.12 (12%) No evidence against H0

0.10 (10%) Weak evidence against H0

0.05 (5%) Some evidence against H0

0.01 (1%) Strong evidence against H0

0.001 (0.1%) Very Strong evidence against H0

Approximate size
of P -Value
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Is a second child gender influenced by the 
gender of the first child, in families with >1 kid?

� Research hypothesis needs to be formulated first before 
collecting/looking/interpreting the data that will be used 
to address it. Mothers whose 1st child is a girl are 
more likely to have a girl, as a second child, 
compared to mothers with boys as 1st children.

� Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.

Male Female Total 
Male 3,202 2,776 5,978
Female 2,620 2,792 5,412
Total 5,822 5,568 11,3901st

C
hi

ld

Second Child Gender
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Analysis of the birth-gender data

� Samples are large enough to use Normal-approx. 
Since the two proportions come from totally diff. 
mothers they are independent � use formula 8.5.5.a
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Analysis of the birth-gender data

� We have strong evidence to reject the H0, and hence 
conclude mothers with first child a girl a more likely to 
have a girl as a second child.

� Practical vs. Statistical significance:
� How much more likely? A 95% CI:

CI (p1- p2) =[0.033; 0.070]. And computed by:
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Relation Among Various Continuous 
Distributions

Normal (X)
2,σµ

Normal (Z)
1,0

σ
µ−= XZ

Lognormal (Y)
2,σµ

YX ln= XeY =
Chi-square (   )

n

2χ

� =
= n

i iZ
1

2χ

Gamma
βα ,

2,2/ == βα n

Exponential(X)
β

1=α

n=2

Weibull
βγ,

1=γ

Uniform(U)
1,0

UX lnβ−=

Uniform(X)
βα ,

αβ
α

−
−= XU ααβ +−= UX )(

Beta
βα , 1== βα


