UCLA STAT 110B

Applied Statistics for Engineering and the Sciences

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Brian Ng, UCLA Statistics

University of California, Los Angeles, Spring 2003
http://www.stat.ucla.edu/~dinov/courses_students.html

Correlation Coefficient

Correlation coefficient $(-1<=R<=1)$: a measure of linear association, or clustering around a line of multivariate data.
Relationship between two variables (X, Y) can be summarized by: $\left(\mu_{\mathrm{X}}, \sigma_{\mathrm{X}}\right),\left(\mu_{\mathrm{Y}}, \sigma_{\mathrm{Y}}\right)$ and the correlation coefficient, $R . R=1$, perfect positive correlation (straight line relationship), $R=0$, no correlation (random cloud scatter), $R=-1$, perfect negative correlation.
Computing $R(\mathrm{X}, \mathrm{Y})$: (standardize, multiply, average)
$R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{*}}{\boldsymbol{\sigma}_{*}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}_{v}}{\boldsymbol{\sigma}}\right) \begin{aligned} & \mathrm{X}=\left\{x_{j}, x_{2}, \ldots, x_{N}\right\} \\ & \mathrm{Y}=\left\{\mathrm{y}_{j}, y_{2}, \ldots, y_{N},\right. \\ & \left(\mu_{X}, \sigma_{X}\right),\left(\mu_{Y}, \sigma_{V}\right. \\ & \text { sample mean } / \mathrm{SD} .\end{aligned}$

Correlation Coefficient

Example:

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\mu_{k}}{\sigma}\right)\left(\frac{y_{k}-\mu_{i}}{\sigma}\right)
$$

$\operatorname{Corr}(X, Y)=R(X, Y)=0.904$

$$
\mu_{x}=\frac{966}{6}=161 \mathrm{~cm}, \quad \mu_{r}=\frac{332}{6}=55 \mathrm{~kg},
$$

$$
\sigma_{x}=\sqrt{\frac{216}{5}}=6.573, \quad \sigma_{y}=\sqrt{\frac{215.3}{5}}=6.563
$$

Linear Regression Analysis

Correlation Coefficient

Example:

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\mu_{k}}{\sigma_{k}}\right)\left(\frac{y_{k}-\mu_{k}}{\sigma}\right)
$$

$$
\text { Student Height weight } x_{1}-\bar{x} \quad y_{1}-\bar{y}\left(x_{1}-\bar{x}\right)^{2}\left(y_{1}-\bar{y}\right)^{2} \quad\left(x_{1}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

\mathbf{i}	y_{4}	y_{1}					
1	167	60	6	4.67	36	21.8089	28.02
2	170	64	9	6.67	61	75.1689	7.03
3	160	57	-1	1.67	1	2.7809	-1.67
4	152	46	-9	-9.33	81	87.0489	83.97
5	157	55	-4	-0.33	16	0.1089	1.32
6	160	50	-1	-5.39	1	20.4089	5.39
Total	966	332	0	$=0$	216	215.3934	196.0

Correlation Coefficient - Properties

$$
\begin{aligned}
& \text { Correlation is invariant w.r.t. linear transformations of } \mathrm{X} \text { or } \mathrm{Y} \\
& R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\mu x}{\sigma_{x}}\right)\left(\frac{y_{k}-\mu_{y}}{\sigma_{y}}\right)= \\
& R(a X+b, c Y+d), \quad \text { since } \\
& \left(\frac{a x_{k}+b-\mu_{a x}+b}{\sigma_{a x}+b}\right)=\left(\frac{a x_{k}+b-\left(a \mu_{x}+b\right)}{|a| \times \sigma_{x}}\right)= \\
& \left(\frac{a\left(x_{k}-\mu\right)+b-b}{a \times \sigma_{x}}\right)=\left(\frac{x k-\mu x}{\sigma_{x}}\right)
\end{aligned}
$$

Correlation Coefficient - Properties

Correlation is Associative
$R(X, Y)=\frac{1}{N} \sum_{k=1}^{N}\left(\frac{x_{k}-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y_{k}-\mu_{v}}{\sigma_{y}}\right)=R(Y, X)$
Correlation measures linear association, NOT an association in general!!! So, Corr(X,Y) could be misleading for X \& Y related in a non-linear fashion.

Recall the correlation coefficient...

Another form for the correlation coefficient is:

Deterministic Model

- $Y=f(x)$; Once we know the value of x, the value of Y is completely satisfied
- Simplest (Straight Line)Model:

$$
Y=\beta_{0}+\beta_{1} x
$$

- $\beta_{1}=$ Slope of the Line
- $\beta_{o}=Y$-intercept of the Line

Correlation Coefficient - Properties

$R(X, Y)=\frac{1}{N} \sum_{k=1}^{N}\left(\frac{x_{k}-\mu_{k}}{\sigma_{x}}\right)\left(\frac{y_{k}-\mu_{v}}{\sigma_{v}}\right)=R(Y, X)$

1. R measures the extent of linear association between Maths two continuous variables. Score
2. Association does not imply causation - both variables may be affected by a third variable - age was a confounding variable.

Linear Regression Analysis (ch. 12)

Observe a response Y and one or more predictors X . Formulate a model that relates the mean response $\mathrm{E}(\mathrm{Y})$ to X .
Y - Dependent Variable X - Independent Variable

Probabilistic Model

- $\mathrm{Y}=\mathrm{f}(\mathrm{x})+\varepsilon$; The value of Y is a R.V.
- Model for Simple Linear Regression:

$$
Y_{i}=\beta_{o}+\beta_{1} x_{i}+\varepsilon_{i}, i=1, . ., n
$$

- $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}$ - Observed Value of the Response
- $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}-$ Observed Value of Predictor
- β_{o}, β_{1} - Unknown Parameters to be Estimated from the Data
- $\varepsilon_{1}, \ldots, \varepsilon_{\mathrm{n}}$ - Unknown Random Error Terms -

Usually iid $N\left(0, \sigma^{2}\right)$ Random Variables

Interpretation of Model

For each value of x , the observed Y will fall above or below the line $\mathrm{Y}=\beta_{o}+\beta_{1} \mathrm{x}$ according to the error term ε. For each fixed x

$$
\mathrm{Y} \sim N\left(\beta_{o}+\beta_{1} \mathrm{x}, \sigma^{2}\right)
$$

A scatter plot of the data is a useful first step for checking whether a linear relationship is plausible.

Questions

1. How do we estimate β_{o}, β_{1}, and σ^{2} ?
2. Does the proposed model fit the data well?
3. Are the assumptions satisfied?

Example (12.4)

A study to assess the capability of subsurface flow wetland systems to remove biochemical oxygen demand (BOD) and other various chemical constituents resulted in the following scatter plot of the data where $x=$ BOD mass loading and $y=$ BOD mass removal. Does the plot suggest a linear relationship?

x	3	8	10	11	13	16	27	30	35	37	38	44	103	142
y	4	7	8	8	10	11	16	26	21	9	31	30	75	90

Example (12.5)

An experiment conducted to investigate the stretchability of mozzarella cheese with temperature resulted in the following scatter plot where $\mathrm{x}=$ temperature and $\mathrm{y}=$ $\%$ elongation at failure. Does the scatter plot suggest a linear relationship?

Estimating β_{0} and β_{1}

Consider an arbitrary line $y=b_{0}+b_{1} x$ drawn through a scatter plot. We want the line to be as close to the points in the scatter plot as possible. The vertical distance from (x, y) to the corresponding point on the line $\left(x, b_{0}+b_{1} x\right)$ is $y-\left(b_{0}+b_{1} x\right)$.

Possible Estimation Criteria

- Eyeball Method
- L_{1} Estimation - Choose β_{o}, β_{1} to minimize $\Sigma\left|y_{i}-\beta_{0} x-\beta_{1} x_{i}\right|$
- Least Squares Estimation - Choose β_{o}, β_{1} to $\operatorname{minimize} \Sigma\left(y_{i}-\beta_{o}-\beta_{1} x_{i}\right)^{2}$
* We use Least Squares Estimation in practice since it is difficult to mathematically manipulate the other options*

Formulas for Least Squares Estimates

Solving for b_{0} and b_{1} results in the L.S. estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$

Estimating σ^{2}

Residual $=$ Observed - Predicted

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

Recall the definition of sample variance

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Least Squares Estimation

Take derivatives with respect to b_{0} and b_{1}, and set equal to zero. This results in the "normal equations" (based on right angles not the Normal distribution)

Example (12.12)

Refer to the previous example (12.4). Obtain the expression for the Least Squares line

$$
\begin{array}{ll}
n=14 & \sum x_{i}=517 \\
\sum y_{i}=346 & \sum x_{i}^{2}=39,095 \\
\sum y_{i}^{2}=17,454 & \sum x_{i} y_{i}=25,825
\end{array}
$$

\square

Estimating $\sigma^{\mathbf{2}} \mathbf{C o n t}{ }^{\prime} \mathbf{d}$

- The minimum value of the squared deviation is
$\mathrm{D}=\Sigma\left(\mathrm{y}_{\mathrm{i}}-\beta_{\mathrm{o}} \mathrm{x}-\beta_{1} \mathrm{x}_{\mathrm{i}}\right)^{2}=\Sigma\left(\mathrm{y}_{\mathrm{i}}-\hat{y}_{\mathrm{i}}\right)^{2}=\operatorname{SSE}$
- Divide the SSE by it's degrees of freedom ($\mathrm{n}-2$) to estimate σ^{2}

$$
\hat{\sigma}^{2}=s^{2}=\frac{S S E}{n-2}
$$

Example (12.12) Cont'd

Predict the value of BOD mass removal when BOD loading is 35 . Calculate the residual. Calculate the SSE and a point estimate of σ^{2}

Examining the Overall Fit of the Model

Recall from previous lecture:

- Linear Regression Model:

$$
Y_{i}=\beta_{o}+\beta_{1} x_{i}+\varepsilon_{i}, i=1, . ., n
$$

- Assumptions:

$$
\varepsilon_{\mathrm{i}} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \Rightarrow \mathrm{Y} \sim \mathrm{~N}\left(\beta_{\mathrm{o}}+\beta_{1} \mathrm{x}, \sigma^{2}\right)
$$

Review Cont'd

- L.S. estimate of β_{1} :

$$
\begin{gathered}
\hat{\beta}_{1}=\frac{\sum x_{i} y_{i}-\frac{\sum x_{i} \sum y_{i}}{n}}{\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}}=\frac{\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} ; \\
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{gathered}
$$

-L.S. estimate of β_{0} :

Review Cont'd

-Predicted Values: $\quad \hat{y}_{i}=\hat{\beta}_{o}+\hat{\beta}_{1} x_{i}$

- Residuals: $e_{i}=y_{i}-\hat{y}_{i}$
- Sum of Squares Error:

$$
\mathrm{SSE}=\Sigma e_{i}^{2}=\Sigma\left(\mathrm{y}_{\mathrm{i}}-\hat{\mathrm{y}}_{\mathrm{i}}\right)^{2}
$$

- Sample Variance: $s^{2}=\frac{S S E}{n-2}$

Another Notation for the Slope of the LS line

1. Note that there is a slight difference in the formula for the slope of the Least-Squares Best-Linear Fit line:

Examining Fit Cont'd

Total Sum of Squares:

Error Sum of Squares:

Regression Sum of Squares:
Examining Fit Cont'd

Decomposition of SST:

Degrees of Freedom:

Coefficient of Determination

A useful measure of overall fit

$$
r^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
$$

Properties:

1. $0 \leq \mathrm{r}^{2} \leq 1$
2. If all the data lies in a straight line, $\mathrm{r}^{2}=1$
3. No Linear Relationship, $\mathrm{r}^{2}=0$
4. r^{2} is the proportion of variation of y "explained" by the linear relationship with x .

Testing for a Linear Relationship

Inference about β_{1} is more important that β_{o} in that β_{1} measures the effect on $E[Y]$ of changing x by one unit.

Hypothesis Test:
$\mathrm{H}_{\mathrm{o}}: \beta_{1}=0$
$\mathrm{H}_{\mathrm{a}}: \beta_{1} \neq 0$

Test Statistic:

$$
F=\frac{M S R}{M S E}=(n-2) \frac{r^{2}}{1-r^{2}}
$$

Rejection Region:

$$
F>F_{\alpha, 1, n-1}
$$

$$
t=\frac{\hat{\beta}_{1}-\beta_{1}}{s_{\hat{\beta}_{1}}} \sim t_{n-2}
$$

Hypothesis Testing

Hypothesis Test:
$\mathrm{H}_{\mathrm{o}}: \beta_{1}=\beta_{10}$

$$
t=\frac{\hat{\beta}_{1}-\beta_{1 o}}{s_{\hat{\beta}_{1}}} \sim t_{n-2}
$$

$\mathrm{H}_{\mathrm{a}}: \beta_{1}(\neq,>,<) \beta_{1 \mathrm{o}}$
The inequality test when $\beta_{10}=0$ is referred to as the "model utility" test and is equivalent to the ANOVA test shown previously
where

$$
\begin{gathered}
s_{\hat{\beta}_{1}}=\frac{s}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}} \\
\text { C.I. for } \beta_{1} \\
\hat{\beta}_{1} \pm t_{\alpha / 2} s_{\hat{\beta}_{1}}
\end{gathered}
$$

Example 12.4, Cont'd

data $=\{\{3,4\},\{8,7\},\{10,8\},\{11,8\},\{13,10\},\{16$, $11\},\{27,16\},\{30,26\},\{35,21\},\{37,9\},\{38,31\},\{44$, $30\},\{103,75\},\{142,90\}\}$

Linear Correlation (12.5)

In the regression analysis that we have considered so far, we assume that x is a controlled independent variable and Y is an observed Random Variable. What if both X and Y are observed Random Variables (i.e., we observe both X and Y together)? A correlation analysis may be used to study the relationship between these two R.V.'s

- Regression Analysis - We wish to form a model to estimate $\mu_{y \cdot x}$ or to predict Y for a given value of x
-Correlation Analysis - We wish to study the relationship between X and Y

A measure of the linear relationship between X and Y is the population covariance

$$
\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}\left[\left(\mathrm{X}-\mu_{\mathrm{X}}\right)\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)\right]
$$

The computed sample covariance is given by

$$
\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

The measure of covariance is affected by the units of the measurement of X\&Y. The correlation coefficient, however, is not affected by the measurement unit of X\&Y

Remarks about ρ :

1. $-1 \leq \rho \leq 1$
2. $\rho= \pm 1$ if the distribution of $\mathrm{X} \& Y$ is concentrated on a straight line
3. ρ near 0 indicated no linear relationship
4. $\rho>0$ indicates that Y has a tendency to increase as X increases
5. $\rho<0$ indicates that Y has a tendency to decrease as X increases
6. r has a similar interpretation for the scatter plot of (x, y)
\qquad Stat HOB, UCL.

Testing for a Linear Relationship

Assume that $\mathrm{X} \& \mathrm{Y}$ are distributed as a bivariate normal distribution. The parameters of this distribution are $\mu_{\mathrm{X}}, \mu_{\mathrm{Y}}$, $\sigma_{\mathrm{X}}{ }^{2}, \sigma_{\mathrm{Y}}{ }^{2}$, and ρ.

Hypothesis:

$$
\mathrm{H}_{0}: \rho=0
$$

$\mathrm{H}_{\mathrm{a}}: \rho \neq 0$
Test Statistic: $\quad t=\frac{r}{\sqrt{\frac{1-r^{2}}{n-2}}}$
Rejection Region:

$$
|t|>t_{\omega / 2, n-2}
$$

Example (12.59)

Toughness and Fibrousness of asparagus are major determinants of quality. A journal article reported the accompanying data on x $=$ sheer force (kg) and $\mathrm{y}=$ percent fiber dry weight

x	46	48	55	57	60	72	81	85	94
y	2.18	2.1	2.13	2.28	2.34	2.53	2.28	2.62	2.63
x	109	121	132	137	148	149	184	185	187
y	2.5	2.66	2.79	2.8	3.01	2.98	3.34	3.49	3.26
SLide 49									

Example 12.52

x	1.5	1.5	2	2.5	2.5	3	3.5	3.5	4
y	23	24.5	25	30	33.5	40	40.5	47	49

$\mathrm{X}=$ Chlorine Flow
$\mathrm{Y}=$ Etch Rate
2. Equal variance for errors
3. Normally distributed errors
4. Independent errors

The estimated error (residual) may be used to test whether these assumptions are satisfied (i.e., the model is appropriate)

1. Calculate the sample correlation coefficient. How would you describe the nature of the relationship between these two variables?
2. If sheer force were to be expressed in pounds, what happens to the value of r ?
3. If simple linear regression model were to be fit to this data, what proportion of observed variation in percent dry fiber weight could be explained by the model relationship?
4. Test at a 0.01 los for a positive linear correlation between these populations.
\square Model Residual Plots

The linear model for regression:

$$
\mathrm{Y}_{\mathrm{i}}=\beta_{\mathrm{o}}+\beta_{1} \mathrm{x}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}, \mathrm{i}=1, . ., \mathrm{n}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{\mathrm{n}} \sim \mathrm{N}\left(0, \sigma^{2}\right)$
This model yields the following assumptions:

1. Linear relationship between x and Y :

$$
\mu_{Y \cdot x}=\beta_{o}+\beta_{1} x
$$

Recall:

$$
\begin{aligned}
e_{i} & =y_{i}-\hat{y}_{i} \\
& =\hat{\beta}_{o}+\hat{\beta}_{1} x_{i}
\end{aligned}
$$

Expectation and Variance of e_{i}

This leads to the standardized residual

$$
e_{i}^{*}=\frac{y_{i}-\hat{y}_{i}}{s \sqrt{1-\frac{1}{n}-\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{j}-\bar{x}\right)^{2}}}}
$$

If the assumptions are correct, the residuals should behave like normally distributed random variables and the standardized residuals like standard normal random variables.

To check the linearity and equal variance assumptions, plot e_{i} or $e_{i}{ }^{*}$ against x_{i} or \hat{y}_{i}
The use of standardized residuals $e_{i} *$ in these plots additionally provides some information about the normality assumption.

To check the Independence assumption - In general, this is difficult to check. A plot of the residual vs. time of observation may be used.

To check the Normality Assumption - A Normal Probability Plot (NPP) of the residuals may be used. Recall, a linear plot indicates that the normal distribution is consistent with the data (residuals).

What If Some of the Assumptions Are Violated?

- Residual plot shows non-linearity - Fit a non-linear function (polynomial regression) or use a transformation to linearize (if possible)
- Residual plot supports linearity, but shows a violation of the equal variances assumption Use weighted least squares (WLS); give less weight to observation with larger variance. Consult the text Applied Linear Regression Models as referenced in Lecture 17.

Forming an NPP for the residuals:

1. Order the residuals: $e_{(1)}, \ldots, e_{(\mathrm{n})}$
2. Compute the normal percentiles:

$$
P_{i}=\Phi^{-1}\left(\frac{i-.5}{n}\right)
$$

3. Plot the $\left(\mathrm{P}_{\mathrm{i}}, e_{(\mathrm{i})}\right)$ pairs

- The residuals support linearity and equal variances, but one of the standardized residuals is much greater (less) than $+2(-2)$ This point is an outlier. If an assignable cause for this point may be found, throw it out and recalculate the regression parameters. If no assignable cause may be found, a MAD (minimum absolute deviation) approach may be used in place of L.S. (Least Squares). This approach, however, may be tedious.
- A plot of the residuals vs. time show a violation of the independence assumption A transformation may be used (if possible) or the time variable may be included in the model via multiple regression. See Applied Linear Regression Models.
- A plot of the residuals vs. an independent variable not included in the model exhibits a definite pattern - Include this independent variable in a multiple regression analysis

Example: (12.4) Cont'd

data $=\{\{3,4\},\{8,7\},\{10,8\},\{11,8\},\{13,10\},\{16,11\}$, $\{27,16\},\{30,26\},\{35,21\},\{37,9\},\{38,31\},\{44,30\}$, $\{103,75\},\{142,90\}\}$
$0.62614+0.65229 \mathrm{x}$

[^0]

Revised Data Set - Outlier Omitted

data2 $=\{\{3,4\},\{8,7\},\{10,8\},\{11,8\},\{13,10\},\{16,11\}$,
$\{27,16\},\{30,26\},\{35,21\},\{38,31\},\{44,30\},\{103,75\},\{142,90\}\}$
FitResiduals \rightarrow
$\{0.20667,-0.0550843,-0.359786,-1.01214,-0.316838,-1.27389$,
$-3.44975,4.5932,-3.66856,4.37439,-0.539713,5.97159,-4.47009\}$,
StandardizedResiduals $\rightarrow\{0.0660442,-0.0174454,-0.113586$,
$-0.319061,-0.0995999,-0.398958,-1.07037,1.42319$,
$-1.13533,1.35368,-0.167239,2.11475,-2.1816\}\}$

Standardized Residuals vs. Predicted

$$
Y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\varepsilon
$$

Mean Response:

$$
\mu_{Y \cdot x_{1}^{*}, \ldots, x_{n}^{*}}=\beta_{0}+\beta_{1} x_{1}^{*}+\ldots+\beta_{k} x_{k}^{*}
$$

Two Variable Models Cont’d

Second Order Model:
$Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1}^{2}+\beta_{4} x_{2}^{2}+\varepsilon$
Second Order Model with Interactions:
$Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1}^{2}+\beta_{4} x_{2}^{2}+\beta_{5} x_{1} x_{2}+\varepsilon$

Multiple Regression

The objective of multiple regression is to build a probabilistic model that relates a dependent (response) variable y to more than one independent (predictor) variables x_{i}

Example: A particular steel company uses multiple regression to relate the dependent variable $y=$ strength of hardened steel (psi) to the independent variables $x_{1}=$ temperature of heat treatment $\left({ }^{\circ} \mathrm{C}\right)$ and $\mathrm{x}_{2}=$ length of time treatment was applied (hours)

First Order Model:

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

First Order Model with Interactions:

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+\varepsilon
$$

Data from Multiple Regression Model:
n observations: $\left(\mathrm{y}_{1}, \mathrm{x}_{11}, \ldots, \mathrm{x}_{\mathrm{k} 1}\right),\left(\mathrm{y}_{2}, \mathrm{x}_{12}, \ldots, \mathrm{x}_{\mathrm{k} 2}\right)$, $\ldots,\left(\mathrm{y}_{\mathrm{n}}, \mathrm{x}_{1 \mathrm{n}}, \ldots, \mathrm{x}_{\mathrm{kn}}\right)$

Estimation of β 's: Take partial derivatives of D wrt b_{0}, \ldots, b_{k} to obtain $k+1$ equations with $\mathrm{k}+1$ unknowns. The solution yields L.S. estimates of the β 's

$$
D=\sum_{i=1}^{n}\left[y_{i}-\left(b_{o}+b_{1} x_{i 1}+\cdots+b_{k} x_{k i}\right)\right]^{2}
$$

Overall Measure of Fit

Coefficient of Determination:

$$
R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
$$

Adjusted R ${ }^{2}$:

$$
\operatorname{adj} \cdot R^{2}=\frac{(n-1) R^{2}-k}{n-1-k}
$$

Model Utility Test

To test the fit of the overall model, we can test $H_{0}: \beta_{1}=\ldots=\beta_{k}=0$ versus H_{a} : at least one $\beta_{j} \neq 0$ Use the ANOVA table for regression. The rejection region is

$$
F=\frac{M S R}{M S E}=\frac{n-(k+1)}{k} \frac{R^{2}}{1-R^{2}}>F_{\alpha, k, n-(k+1)}
$$

Inference Concerning $\boldsymbol{\beta}_{\mathbf{j}}$

To test $\mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{j}}=\beta_{\mathrm{jo}}$ use the test statistic

$$
t=\frac{\hat{\beta}_{j}-\beta_{j 0}}{s_{\hat{\beta}_{j}}}
$$

Under H_{0}, this test statistic is distributed as a t with $\mathrm{n}-(\mathrm{k}+1)$ degrees of freedom. A test of $H_{o}: \beta_{j}=0$ is used to see whether x_{j} should be included in the model.

Testing a set of β_{j} 's

Formulate Two Models:
Full Model:
$Y=\beta_{0}+\ldots+\beta_{l} x_{l}+\ldots+\beta_{k} x_{k}+\varepsilon$
Reduced Model:

$$
Y=\beta_{0}+\ldots+\beta_{l} x_{l}+\varepsilon
$$

Testing a set of β_{j} 's Cont'd

To choose between these models, we test

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{l+1}}=\ldots=\beta_{\mathrm{k}}=0 \text { versus } \\
& \mathrm{H}_{\mathrm{a}}: \text { at least one } \beta_{1+1}, \ldots, \beta_{\mathrm{k}} \neq 0
\end{aligned}
$$

Calculate the SSE for the Full and Reduced Models. ($\mathrm{SSE}_{\mathrm{k}}$ and SSE_{1} respectively). The test statistic and rejection region are given by

$$
F=\frac{\frac{S S E_{l}-S S E_{k}}{k-l}}{M S E_{k} \text { side st }}>F_{\alpha, k-l, n-(k+1)}
$$

Confidence Intervals for the parameters β_{j} and the mean response $\mu_{Y \cdot x_{1}^{*}, \ldots, x_{n}^{*}}$, and Prediction Intervals for future Y at $\mathrm{x}=\mathrm{x}^{*}$ are calculated in the usual manner. Consult page 583 of the text for the specific form of these intervals.
3. (Backward Selection) Fit a model with all possible predictors included. Use t-tests for $H_{0}: \beta_{\mathrm{j}}=0$ to suggest candidate x_{j} predictors to omit. Eliminate the "least significant" predictor and fit a new model. Continue until all variables are needed. Note: One cannot eliminate more than one variable at a time on this basis

Multicollinearity

Multicollinearity among the predictor variables is said to exist when these variables are highly correlated amongst themselves.

Effects of Multicollinearity:

1. In general, data that exhibits multicollinearity does not inhibit our ability to obtain a good fit or affect inferences about the mean response and future observation
2. In the presence of multicollinearity, The information obtained about the regression parameters, however, is imprecise. Hence the usual interpretation about these parameters in unwarranted (i.e. the effect of varying one parameter while holding the others constant).
Consult "Applied Linear Regression Models" for a detailed discussion of multicollinearity and possible remedies.

Detecting Multicollinearity

1. The value of R^{2} is large, yet the t statistics for a particular β_{j} is small even though the predictor are known to significantly affect the response
2. The sign of a particular β_{j} is opposite to what intuition would suggest.

Multiple Regression Example

A hospital administrator wished to study the relation between patient satisfaction (Y) and the patient's age $\left(\mathrm{X}_{1}\right)$, severity of illness $\left(\mathrm{X}_{2}\right)$, and anxiety level $\left(\mathrm{X}_{3}\right)$. The administrator randomly selected 23 patients a collected the following data where larger values of $\mathrm{Y}, \mathrm{X}_{2}$, and X_{3} are, respectively, associated with more satisfaction, increased severity of illness, and more anxiety. The data is of the form $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{Y}\right)$.

Backward Elimination

		Estimate	SE	TStat	PValue
1	189.105	237.11	0.79754	0.436814	
x_{1}	-5.9021	2.81042	-2.10008	0.0519326	
x_{2}	1.8482	12.616	0.146497	0.885359	
\{parameterTable $\rightarrow \mathrm{x}_{3}$	-7.60405	128.813	-0.0590318	0.953658,	
x_{1}^{2}	0.0577719	0.0344071	1.67907	0.112558	
x_{2}^{2}	-0.0253057	0.120932	-0.209257	0.836889	
x_{3}^{2}	0.141337	26.9073	0.00525276	0.995874	

RSquared $\rightarrow 0.721785$, AdjustedRSquared $\rightarrow 0.617455$, EstimatedVariance $\rightarrow 106.856$,

	DF	Sumofsq	Meen5¢	FRatio	PValue
$\xrightarrow{\text { able }}$ Model	6	4435.53	739.255	6.91826	0.000916386
Error	16	1709.69	106.856		
Total	22	6145.22			

Slide 94

	Lstinate	9	TMtat	Palue
Prameter"\#ule +1	173,614	33.824	5.12253	0.000045882,
x	-2,20072	0.664581	-3,3664	0,00320519
	DP	Nemby	Matio	Pralue
Ilodel	1	. 2120.66	11.0655	320519
${ }^{\text {a }}$ Erron	21.40	193,646		
Total	2261			

EstimatedVariance \rightarrow 117.466, ANOVATable \rightarrow
$\left.\begin{array}{llllll} & \text { DF } & \text { SumOOSq } & \text { MeanSq } & \text { FRatio } & \text { PValue } \\ \text { Model } & 1 & 3678.44 & 3678.44 & 31.315 & 0.0000148907 \\ \text { Error } & 21 & 2466.78 & 117.466 & & \\ \text { Total } & 22 & 6145.22 & & & \end{array}\right\}$

All "Possible" Models; $\mathrm{X}_{1}, \mathbf{X}_{2}$ Only

\{ParameterTable \rightarrow				
	Estimate	SE	TStat	PValue
1	162.361	129.875	1.25013	0.22643
x_{1}	-1.15699	3.12827	-0.369851	0.715584 ,
x_{2}	-1.00566	2.5807	-0.389685	0.701103
$\mathrm{x}_{1} \mathrm{X}_{2}$	-0.00202929	0.061078	-0.0332245	0.973842

RSquared $\rightarrow 0.664149$, AdjustedRSquared $\rightarrow 0.61112$,
EstimatedVariance $\rightarrow 108.625$, ANOVATable \rightarrow

	DF	Sumofsq	Meansq	FRatio	PValue
Model	3	4081.34	1360.45	12.5242	0.0000949578
Error	19	2063.88	108.625		\}
Total	22	6145.22			

Stged	Tiuceps	Trigh	Mdam	Body Fa
1	19.5	431	291	11.9
2	24.7	498	282	228
3	307	51.9	37	187
18	30.2	586	24.6	254
19	227	482	27.1	14.8
20	252	51	27.5	21.1

The L.S. regression coefficients for X_{1} and X_{2} of various models are given in the table

Variables in Model	b1	b2
X1	0.8572	\ldots
X2	\ldots	0.8565
X1, X2	0.224	0.6594
X1, X2, X3	4.334	-2.857

Multicollinearity Example

The following data is a portion of that from a study of the relation of the amount of body fat (Y) to the predictor variables $\left(\mathrm{X}_{1}\right)$ Tricep skinfold thickness, $\left(\mathrm{X}_{2}\right)$ Thigh circumference, and $\left(\mathrm{X}_{3}\right)$ Midarm circumference based on a sample of 20 healthy females 25-34 years old.

Hence, the regression coefficient of one variable depends upon which other variables are in the model and which ones are not. Therefore, a regression coefficient does not reflect any inherent effect of particular predictor variable on the response variable (Only a partial effect, given what other variables are included)

[^0]: FitResiduals $\rightarrow\{1.41699,1.15554,0.850958$,
 $0.198667,0.894087,-0.0627837,-2.23798,5.80515$,
 $-2.4563,-15.7609,5.58683,0.673091,7.18797,-3.25135\}$, StandardizedResiduals $\rightarrow\{0.265657,0.214712,0.157622$, $0.0367446,0.164908,-0.0115369,-0.407448,1.05545$, $-0.446053,-2.86182,1.01447,0.122383,1.49226,-0.926964\}\}$

