

			Co	rrela	ntion (Coeffi	icient	
E	Example	e: R(.	(X,Y)	$=\frac{1}{N}$	$\frac{1}{1-1}k$	$\sum_{x=1}^{N} \left(\frac{x}{x}\right)$	$\frac{1}{\sigma_x} - \mu_x \int \frac{y}{\sigma_x}$	$\frac{\partial_{x} - \mu_{y}}{\sigma_{y}}$
	Student	Height	Weight	¥- 7	Yı-₹	(x-x) ²	(y ₁ -γ) ²	(x ₁ - X)(y ₁ - Y)
	1	чĭ	Уĭ			••••		
	1	167	60	6	4.67	36	21,6069	29.02
	2	170	64	9	0.67	81	75.1689	78.03
	3	160	57	-1	1.67	1	2.7889	-1.67
	4	152	46	-9	-9.33	61	67.0469	63.97
	5	157	55	-4	-0.33	16	0.1089	1.32
	6	160	50	-1	-5.33	1	28.4089	5.33
	Total	966	332	0	۲ 0	216	215.3334	195.0
					Slid	a.4	Stat 110B, UCLA	for Direct

Deterministic Model

- Y = f(x); Once we know the value of x, the value of Y is completely satisfied
- Simplest (Straight Line)Model: $Y = \beta_o + \beta_1 x$
- β_1 = Slope of the Line
- $\beta_0 =$ Y-intercept of the Line

Probabilistic Model

- $Y = f(x) + \varepsilon$; The value of Y is a R.V.
- Model for Simple Linear Regression: $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, i=1,...,n
- Y_1, \dots, Y_n Observed Value of the Response
- x_1, \dots, x_n Observed Value of Predictor
- β_0 , β_1 Unknown Parameters to be Estimated from the Data
- $\varepsilon_1, ..., \varepsilon_n$ Unknown Random Error Terms Usually iid N(0, σ^2) Random Variables

Interpretation of Model

For each value of x, the observed Y will fall above or below the line $Y = \beta_0 + \beta_1 x$ according to the error term ε . For each fixed x

 $Y \sim N(\beta_0 + \beta_1 x, \sigma^2)$

Questions

- 1. How do we estimate β_0, β_1 , and σ^2 ?
- 2. Does the proposed model fit the data well?
- 3. Are the assumptions satisfied?

Plotting the Data

A scatter plot of the data is a useful first step for checking whether a linear relationship is plausible.

Example (12.4)

A study to assess the capability of subsurface flow wetland systems to remove **biochemical oxygen demand** (BOD) and other various chemical constituents resulted in the following scatter plot of the data where x = BOD mass loading and y = BOD mass removal. Does the plot suggest a linear relationship?

 x
 3
 8
 10
 11
 13
 16
 27
 30
 35
 37
 38
 44
 103
 142

 y
 4
 7
 8
 8
 10
 11
 16
 26
 21
 9
 31
 30
 75
 90

Example (12.5)

An experiment conducted to investigate the stretchability of mozzarella cheese with temperature resulted in the following scatter plot where x = temperature and y = % elongation at failure. Does the scatter plot suggest a linear relationship?

Estimating β_0 and β_1

Consider an arbitrary line $y = b_0 + b_1 x$ drawn through a scatter plot. We want the line to be as close to the points in the scatter plot as possible. The vertical distance from (x,y) to the corresponding point on the line (x,b_0 + b_1x) is y-(b_0 + b_1x).

Possible Estimation Criteria

- Eyeball Method
- L₁ Estimation Choose β_0, β_1 to minimize $\Sigma | y_i - \beta_0 x - \beta_1 x_i |$
- Least Squares Estimation Choose β_0, β_1 to minimize $\Sigma(y_i \beta_0 \beta_1 x_i)^2$

* We use Least Squares Estimation in practice since it is difficult to mathematically manipulate the other options*

Least Squares Estimation

Take derivatives with respect to b_0 and b_1 , and set equal to zero. This results in the "normal equations" (based on right angles – not the Normal distribution)

Formulas for Least Squares Estimates

Solving for b_0 and b_1 results in the L.S. estimates $\hat{\beta}_0$ and $\hat{\beta}_1$

Example (12.12)

Refer to the previous example (12.4). Obtain the expression for the Least Squares line

$$n = 14 \qquad \sum x_i = 517$$

$$\sum y_i = 346 \qquad \sum x_i^2 = 39,095$$

$$\sum y_i^2 = 17,454 \qquad \sum x_i y_i = 25,825$$

Estimating σ^2

Residual = Observed – Predicted

$$e_i = y_i - \hat{y}_i$$

Recall the definition of sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})$$

Estimating σ² Cont'd

• The minimum value of the squared deviation is

 $\mathbf{D} = \Sigma (\mathbf{y}_i - \beta_0 \mathbf{x} - \beta_1 \mathbf{x}_i)^2 = \Sigma (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2 = SSE$

• Divide the SSE by it's degrees of freedom (n-2) to estimate σ^2

$$\hat{\sigma}^2 = s^2 = \frac{SSE}{n-2}$$

1: 1. 24

Examining the Overall Fit of the Model

Recall from previous lecture:

- Linear Regression Model: $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, i=1,..,n
- Assumptions:

$$\varepsilon_i \sim N(0,\sigma^2) \Rightarrow Y \sim N(\beta_o + \beta_1 x, \sigma^2)$$

Testing for a Linear Relationship

Inference about β_1 is more important that β_0 in that β_1 measures the effect on E[Y] of changing x by one unit.

Hypothesis Test:

 $H_0: \beta_1 = 0$

 $H_a: \beta_1 \neq 0$

Test Statistic:

$$F = \frac{MSR}{MSE} = (n-2)\frac{r^2}{1-r^2}$$

Rejection Region:

$$F > F_{\alpha,1,n-1}$$

$$\begin{array}{ll} \textbf{Mean and Variance of} \quad \hat{\beta}_1 \\ E[\hat{\beta}_1] = \beta_1 \\ Var[\hat{\beta}_1] = \frac{\sigma^2}{\sum (x_i - \bar{x})^2} \\ \textbf{Under the assumptions of Linear Regression} \\ t = \frac{\hat{\beta}_1 - \beta_1}{s_{\hat{\beta}_1}} \sim t_{n-2} \end{array}$$

where
$$s_{\hat{\beta}_1} = \frac{S}{\sqrt{\sum (x_i - \bar{x})^2}}$$

C.I. for β_1
 $\hat{\beta}_1 \pm t_{\gamma_2} s_{\hat{\beta}_1}$

AdjustedRSquared \rightarrow 0.952305, StimatedVariance \rightarrow 32.6634, ANOVATable \rightarrow DF SumOfSq MeanSq FRatio PValue Model 1 8510.9 8510.9 260.564 1.67475×10 ⁻³ Error 12 391.961 32.6634	arameter	:Table→ l	Estima: 0.6261		SE 2.1354	L	TStat 0.293	218	PValue 0.774364
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		х	0.6522	9	0.04040	095	16.14	2	1.67475×10^{-1}
StimatedVariance→ 32.6634, ANOVATable→ DF SumOfSq MeanSq FRatio PValue Model 1 8510.9 8510.9 260.564 1.67475×10 ⁻⁹ Error 12 391.961 32.6634	ldjustedF	\Squared→	0.952305,				RSon	ared -	0 955974
Model 1 8510.9 8510.9 260.564 1.67475×10-3 Error 12 391.961 32.6634	stimated	Wariance	→ 32.6634, Al	IOVATak	le→		1/0 qu	arca →	010000747
Error 12 391.961 32.6634		DF	SumOfSq	Mean	Sq	FRatio		PValue	
	Model	1	8510.9	8510	.9	260.564	1	1.67475	×10 ⁻⁹
Total 13 8902.86	Error	12	391.961	32.6	634				
10041 10 000100	Total	13	8902.86						

Linear Correlation (12.5)

In the regression analysis that we have considered so far, we assume that x is a controlled independent variable and Y is an observed Random Variable. What if both X and Y are observed Random Variables (i.e., we observe both X and Y together)? A correlation analysis may be used to study the relationship between these two R.V.'s • Regression Analysis – We wish to form a model to estimate $\mu_{y\cdot x}$ or to predict Y for a given value of x

•Correlation Analysis – We wish to study the relationship between X and Y

A measure of the linear relationship between X and Y is the population covariance

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

The computed sample covariance is given by

$$\frac{1}{n-1}\sum_{i=1}^{n-1}(x_i-\overline{x})(y_i-\overline{y})$$

The measure of covariance is affected by the units of the measurement of X&Y. The correlation coefficient, however, is not affected by the measurement unit of X&Y

The population correlation coefficient for X&Y is given by

$$\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

The computed correlation coefficient is given by $\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 (y_i - \bar{y})^2}}$$

Remarks about p:

- 1. $-1 \le \rho \le 1$
- 2. $\rho = \pm 1$ if the distribution of X&Y is concentrated on a straight line
- 3. p near 0 indicated no linear relationship
- 4. $\rho \ge 0$ indicates that Y has a tendency to increase as X increases
- 5. $\rho \le 0$ indicates that Y has a tendency to decrease as X increases
- 6. r has a similar interpretation for the scatter plot of (x,y)

Testing for a Linear Relationship

Assume that X&Y are distributed as a bivariate normal distribution. The parameters of this distribution are μ_X , μ_Y , σ_X^2 , σ_Y^2 , and ρ .

Example (12.59)

Toughness and Fibrousness of asparagus are major determinants of quality. A journal article reported the accompanying data on x = sheer force (kg) and y = percent fiber dry weight 60 2.34 46 55 2.13 57 2.28 72 2.53 2.18 2.1 2.63 121 2.66 132
 137
 148
 149

 2.8
 3.01
 2.98
 184 3.34 187 3.49 3.26

- 1. Calculate the sample correlation coefficient. How would you describe the nature of the relationship between these two variables?
- 2. If sheer force were to be expressed in pounds, what happens to the value of r?
- 3. If simple linear regression model were to be fit to this data, what proportion of observed variation in percent dry fiber weight could be explained by the model relationship?
- 4. Test at a 0.01 los for a positive linear correlation between these populations.

2. Equal variance for errors

- 3. Normally distributed errors
- 4. Independent errors

The estimated error (residual) may be used to test whether these assumptions are satisfied (i.e., the model is appropriate)

Recall:

$$e_i = y_i - y_i$$
$$= \hat{\beta}_o + \hat{\beta}_1 x$$

Expectation and Variance of e_i

This leads to the standardized residual

$$e_{i}^{*} = \frac{y_{i} - \hat{y}_{i}}{s\sqrt{1 - \frac{1}{n} - \frac{(x_{i} - \bar{x})^{2}}{\sum (x_{j} - \bar{x})^{2}}}}$$

If the assumptions are correct, the residuals should behave like normally distributed random variables and the standardized residuals like standard normal random variables. To check the linearity and equal variance assumptions, plot e_i or e_i^* against x_i or \hat{y}_i

The use of standardized residuals e_i^* in these plots additionally provides some information about the normality assumption.

To check the Independence assumption – In general, this is difficult to check. A plot of the residual vs. time of observation may be used.

To check the Normality Assumption – A Normal Probability Plot (NPP) of the residuals may be used. Recall, a linear plot indicates that the normal distribution is consistent with the data (residuals).

Forming an NPP for the residuals:

- 1. Order the residuals: $e_{(1)}, \ldots, e_{(n)}$
- 2. Compute the normal percentiles:

$$P_i = \Phi^{-1}\left(\frac{i-.5}{n}\right)$$

3. Plot the $(P_i, e_{(i)})$ pairs

What If Some of the Assumptions Are Violated?

• Residual plot shows non-linearity – Fit a non-linear function (polynomial regression) or use a transformation to linearize (if possible)

• Residual plot supports linearity, but shows a violation of the equal variances assumption – Use weighted least squares (WLS); give less weight to observation with larger variance. Consult the text Applied Linear Regression Models as referenced in Lecture 17.

• The residuals support linearity and equal variances, but one of the standardized residuals is much greater (less) than +2 (-2) – This point is an outlier. If an assignable cause for this point may be found, throw it out and recalculate the regression parameters. If no assignable cause may be found, a MAD (minimum absolute deviation) approach may be used in place of L.S. (Least Squares). This approach, however, may be tedious.

• A plot of the residuals vs. time show a violation of the independence assumption – A transformation may be used (if possible) or the time variable may be included in the model via multiple regression. See Applied Linear Regression Models.

• A plot of the residuals vs. an independent variable not included in the model exhibits a definite pattern – Include this independent variable in a multiple regression analysis

Example: (12.4) Cont'd

data = {{3, 4}, {8, 7}, {10, 8}, {11, 8}, {13, 10}, {16, 11}, {27, 16}, {30, 26}, {35, 21}, {37, 9}, {38, 31}, {44, 30}, {103, 75}, {142, 90}}

0.62614+0.65229 x

FitResiduals → (1.41699, 1.15554, 0.850958, 0.198667, 0.894087, -0.0627837, -2.23798, 5.80515, -2.4563, -15.7609, 5.58683, 0.673091, 7.18797, -3.25135}, StandardizedResiduals → (0.265657, 0.214712, 0.157622, 0.0367446, 0.164908, -0.0115369, -0.407448, 1.05545, -0.446053, -2.86182, 1.01447, 0.122383, 1.49226, -0.926964})

Multiple Regression

The objective of multiple regression is to build a probabilistic model that relates a dependent (response) variable y to more than one independent (predictor) variables x_i

Example: A particular steel company uses multiple regression to relate the dependent variable y = strength of hardened steel (psi) to the independent variables x_1 = temperature of heat treatment (°C) and x_2 = length of time treatment was applied (hours)

General Multiple Regression Model $Y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + \varepsilon$ Mean Response: $\mu_{Y \cdot x_1^*, ..., x_n^*} = \beta_0 + \beta_1 x_1^* + ... + \beta_k x_k^*$

Two Variable Models

First Order Model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

First Order Model with Interactions:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

Two Variable Models Cont'd

Second Order Model:

 $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \varepsilon$

Second Order Model with Interactions:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \varepsilon$$

Data from Multiple Regression Model:

n observations: $(y_1, x_{11}, \dots, x_{k1}), (y_2, x_{12}, \dots, x_{k2}), \dots, (y_n, x_{1n}, \dots, x_{kn})$

Estimation of β 's: Take partial derivatives of D wrt $b_0,...,b_k$ to obtain k+1 equations with k+1 unknowns. The solution yields L.S. estimates of the β 's

$$D = \sum_{i=1}^{n} \left[y_i - (b_o + b_1 x_{i1} + \dots + b_k x_{ki}) \right]^2$$

Slide 78

at 110R UCLA Ivo

Overall Measure of Fit Coefficient of Determination: $R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$ Adjusted R²: $adj. R^{2} = \frac{(n-1)R^{2} - k}{n-1-k}$

Model Utility TestTo test the fit of the overall model, we can test $H_0:\beta_1=\ldots=\beta_k=0$ versus H_a : at least one $\beta_j\neq 0$ Use the ANOVA table for regression. Therejection region is $F = \frac{MSR}{MSE} = \frac{n - (k+1)}{k} \frac{R^2}{1 - R^2} > F_{\alpha,k,n-(k+1)}$

Testing a set of β_i 's

Formulate Two Models:

Full Model:

$$Y = \beta_0 + \ldots + \beta_l x_l + \ldots + \beta_k x_k + \varepsilon$$

Reduced Model:

$$Y = \beta_0 + \ldots + \beta_l x_l + \varepsilon$$

Testing a set of \beta_j's Cont'd To choose between these models, we test $H_0: \beta_{l+1} = ... = \beta_k = 0$ versus $H_a:$ at least one $\beta_{l+1}, ..., \beta_k \neq 0$ Calculate the SSE for the Full and Reduced Models. (SSE_k and SSE₁ respectively). The test statistic and rejection region are given by $\frac{SSE_l - SSE_k}{F = \frac{k-l}{MSE_k}} > F_{\alpha,k-l,n-(k+1)}$ Confidence Intervals for the parameters β_j and the mean response $\mu_{Y,x_1^*,\dots,x_p^*}$, and Prediction Intervals for future Y at x=x* are calculated in the usual manner. Consult page 583 of the text for the specific form of these intervals.

Picking a Regression Model – Variable Selection

- 1. Use Scientific Knowledge of the Problem
- 2. (Full Enumeration) Use a summary measure of fit on a possible regression models (R², adj.R², and SSE). Select the model with the "best" measures comparatively.

3. (Backward Selection) Fit a model with all possible predictors included. Use t-tests for H_o : $\beta_j = 0$ to suggest candidate x_j predictors to omit. Eliminate the "least significant" predictor and fit a new model. Continue until all variables are needed. Note: One cannot eliminate more than one variable at a time on this basis

3. (Forward Selection) Build a model starting with the predictor most highly correlated with the response. Then find the best two-predictor model including this predictor, and so forth

Multicollinearity

Multicollinearity among the predictor variables is said to exist when these variables are highly correlated amongst themselves.

Effects of Multicollinearity:

 In general, data that exhibits multicollinearity does not inhibit our ability to obtain a good fit or affect inferences about the mean response and future observation

- 2. In the presence of multicollinearity, The information obtained about the regression parameters, however, is imprecise. Hence the usual interpretation about these parameters in unwarranted (i.e. the effect of varying one parameter while holding the others constant).
- Consult "Applied Linear Regression Models" for a detailed discussion of multicollinearity and possible remedies.

Detecting Multicollinearity

- 1. The value of R^2 is large, yet the t statistics for a particular β_j is small even though the predictor are known to significantly affect the response
- 2. The sign of a particular β_j is opposite to what intuition would suggest.

Multiple Regression Example

A hospital administrator wished to study the relation between patient satisfaction (Y) and the patient's age (X_1) , severity of illness (X_2) , and anxiety level (X_3) . The administrator randomly selected 23 patients a collected the following data where larger values of Y, X_2 , and X_3 are, respectively, associated with more satisfaction, increased severity of illness, and more anxiety. The data is of the form (X_1, X_2, X_3, Y) .

 $\{ \{50.0, 51.0, 2.3, 48\}, \{36.0, 46.0, 2.3, 57\}, \{40.0, 48.0, 2.2, 66\}, \\ \{ \{41.0, 44.0, 1.8, 70\}, \{28.0, 43.0, 1.8, 89\}, \{49.0, 54.0, 2.9, 36\}, \\ \{ \{42.0, 50.0, 2.2, 46\}, \{45.0, 48.0, 2.4, 54\}, \{52.0, 62.0, 2.9, 26\}, \\ \{ 29.0, 50.0, 2.1, 77\}, \{29.0, 48.0, 2.4, 89\}, \{43.0, 53.0, 2.4, 67\}, \\ \{ 38.0, 55.0, 2.2, 47\}, \{34.0, 51.0, 2.3, 51\}, \{53.0, 54.0, 2.2, 57\}, \\ \{ 36.0, 49.0, 2.0, 66\}, \{ 33.0, 56.0, 2.5, 79\}, \{ 29.0, 46.0, 1.9, 88\}, \\ \{ 33.0, 49.0, 2.1, 60\}, \{55.0, 51.0, 2.4, 49\}, \{ 29.0, 52.0, 2.3, 77\}, \\ \{ 44.0, 58.0, 2.9, 52\}, \{ 43.0, 50.0, 2.3, 60\} \}$

		Back	ward	Elimina	ation	
		Feti	mate	SE	TStat	PValue
	1	189.		237.11	0.79754	0.436814
	x1	-5.9		2,81042	-2.10008	0.0519326
	X	1.84		12,616	0.146497	0.885359
{ParameterTab		-7.6	50405	128.813	-0.0590318	0.953658 /
	x1	0.05	77719	0.0344071	1.67907	0.112558
	x_2^2	-0.0	253057	0.120932	-0.209257	0.836889
	x ² ₃	0.14	1337	26.9073	0.00525276	0.995874
RSquared $\rightarrow 0$.	721785,	Adjusted	RSquared→	0.617455, Esti	matedVariance -	→ 106.856,
		DF	SumOfSq	MeanSq	FRatio	PValue
MOUTOT - 1 1 -	Model	6	4435.53	739.255	6.91826	0.000916386
ANOVATable→	Error	16	1709.69	106.856		
	Total	22	6145.22			

		Esti	nate	SE	TStat	PValue
	1	189.		212.91	0.890404	0.385677
	x ₁		0183	2.72606	-2.16497	0.0449073
ParameterTable⊣	-	1.79	928	8.25637	0.217926	0.830081 ,
	X3	-6.9	3054	11.9702	-0.57898	0.570195
	x1	0.05	77692	0.033376	1.73086	0.101585
	xž	-0.0	248369	0.0791632	-0.313743	0.757533
RSquared→0.721	785, I	djusted	RSquared→	0.639957,Est	imatedVariance	→100.57,
		DF	SumOfSq	MeanSq	FRatio	PValue
ANOVATable \rightarrow Mod	el	5	4435.53	887.105	8.82076	0.000282143
			1700.00	100.57		
Err	or	17	1709.69	100.37		

	Esti	mate S	Έ	TStat	PValue
1	253.	763 5	57.4641	4.41603	0.000333435
(n	-5.1	78281 2	2.63106	-2.1979	0.0412808
$ParameterTable \rightarrow x_{i}$	-0.7	7882 (.782546	-0.995238	0.332812 /
X ₃	-6.9	9413 1	1.6649	-0.599586	0.556255
x ²	0.03	63325 (0.0322218	1.74828	0.0974511
RSquared \rightarrow 0.720174	, Adjusted	RSquared→0	.657991, Esti	matedVariance	:→95.5328,
	DF	SumOfSq	MeanSq	FRatio	PValue
Nodel ANOVATable→	4	4425.63	1106.41	11.5814	0.0000787018
	18	1719.59	95.5328		
Error	10	1112102			

	Esti	mate	SE	TStat	PValue
1	259.	236	55.7702	4.64828	0.000175241
{ParameterTable → X1	-5.9	94775	2.57216	-2.31236	0.0321275 ,
t x _t	-1.1	12356	0.521828	-2.15311	0.0443675
x_1^t	0.05	78661	0.031574	1.83271	0.0825647
RSquared $\rightarrow 0.714585$, .	Adjusteď	RSquared→	0.66952, Esti	matedVariance	:→92.3124,
	DF	SunOfSq	MeanSq	FRatio	PValue
Model	3	4391.28	1463.76	15.8566	0.0000208921 ₁
ANOVATable → Error	19	1753.94	92.3124		}
Total	22	6145.22			
			Slide 97	Stat 110R 11C	T.A. Ing Dingu

		Esti	nate	SE	TStat	PValue
∫ParameterTab	1	166.	591	24.9084	6.68815	1.64798×10 ⁻⁶
(rarameterian	$x_1 \rightarrow x_1$	-1.26046		0.289186	-4.35864	0.000304217 ′
	Xį	-1.0	8932	0.551389	-1.97559	0.0621629
RSquared \rightarrow 0.	664129, A	djusteć	RSquared -	0.630542,Es	timatedVarian	ce→103.2,
		DF	SumOfSe	MeanSq	FRatio	PValue
ANOUAT ab la	Model	2	4081.22	2040.61	19.7734	0.0000182692
ANOVATable→	Model Error	2 20	4081.22 2064.	2040.61 103.2	19.7734	0.0000182692

	Esti	nate S.	B	TStat	PValue
${ParameterTable \rightarrow 1}$	121.	832 1	1.0422	11.0333	3.37134×10 ⁻¹⁰ ,
, х ₁	-1.5	2704 0	.272881	-5.59598	0.0000148907
RSquared → 0.598585,	Adjusted	RSquared→().57947,Esti	imatedVarianc	e→117.466,
	DF	SumOfSq	MeanSq	FRatio	PValue
Model ANOVATable→	1	3678.44	3678.44	31.315	0.0000148907 ₁
ANOVAIABLE → Error	21	2466.78	117.466		}
Total	22	6145.22			

Slide 99

ATTOR UCLA I

		Fo	orwa	rd Sele	ection		
		Esti	mate	SE	TStat	PValue	
ParameterTabl	le→1	121.	832	11.0422	11.0333	3.3713	4×10⁻¹°,
`	Xl	-1.5	2704	0.272881	-5.59598	0.0000	148907
$\texttt{RSquared} \rightarrow \texttt{O}.$	598585,1	Adjusted	RSquared	→ 0.57947,	EstimatedVar:	iance→117.4	66,
		DF	SumOf:	Sq Mea	nSq FRat	cio PVal	ue
ANOVATable→	Model	1	3678.4	44 367	8,44 31.3	315 0.00	00148907
ANUVATADIC→	Error	21	2466.	78 117	. 466		
	Total	22	6145.3	22			
				Slide 100	Stat 110B	UCLA. Ivo Dinov	

		Esti	nate	SE	TStat	PWalue
ParameterTab	le→l	173.	614	33.8724	5.12553	0.0000445882,
ι	Xį	-2.2	1072	0.664581	-3.32649	0.00320519
RSquared \rightarrow 0.	345091, <i>1</i>	•	•	,	timatedVariand	,
		DF	SumOfSe	i MeanSq	FRatio	PValue
AUQUAT-bla	Model	1	2120.66	2120.66	11.0655	0.00320519 ₁
ANOVATable→	Error	21	4024.56	191.646	j	j
		22	6145.22			

		Esti	nate	SE	TStat	PValue
<pre>{ParameterTab</pre>	le→1	137.	432	22.1878	6.19402	3.81763×10 ⁻⁶ ,
,	X3	-33.	1427	9.58524	-3.45768	0.00235594
RSquared \rightarrow 0.	362778,A	djusted	RSquared -	→0.332434,E	stimatedVarian	ice→186.47,
		DF	SumOfSe	ų MeanSq	FRatio	PValue
ANOVATable→	Model	1	2229.3	5 2229.3	5 11.9555	0.00235594
ANUVATADIC→	Error	21	3915.8	186.47		
	Total	22	6145.22	2		
				lide 102	Stat 110B, UCLA.	Ivo Dinov

		Esti	nate	SE		TStat	PValue
ParameterTab	10.1	166.	591	24,908	4	6.68815	1.64798×10 ⁻⁶
rarameterian	$x_1 \rightarrow x_1$	-1.2	26046	0.2891	86	-4.35864	0.000304217 ′
	Xį	-1.0)8932	0.5513	89	-1.97559	0.0621629
RSquared \rightarrow 0.	664129, A	djusted	RSquared	→ 0.630	542, Est	imatedVariand	e→103.2,
		DF	SumOf:	iq l	leanSq	FRatio	PValue
MOUNTable	Model	2	4081.2	22 2	040.61	19.7734	0.0000182692
ANOVATable→	Error	20	2064.	1	.03.2		
	Total	22	6145.2	22			

		Estim	ate	SE	TSI	at	PValue
[ParameterTable -	1	147.0	75	16.7334	8.7	8929	2.6445×10-8
(Laramererianie -	Xı	-1.24	336	0.29612	-4	19884	0.000441918′
	X3	-15.8	906	8.2556	-1	92483	0.0685932
RSquared→0.661	324, Ad	justedR	Squared	→ 0.62745	7, Estin	atedVarian	ce→104.062,
		DF	SumOfS	iq Me	anSq	FRatio	PValue
ANOVATable \rightarrow Hod	el	2	4063.9	8 20	31.99	19.5268	0.0000198536
ANUVATADIe → Err	or	20	2081.2	4 10	4.062		Ì
Tot	al	22	6145.2	2			
				Slide 10			

		Esti	mate	SE	TStat	P¥alue
6	1	209.	232	55.1213	3.79585	0.00113345
ParameterTal	ole→ x _l	-6.0	2522	2.79593	-2.155	0.0435276 ′
	x_1^{\dagger}	0.05	54324	0.0343023	1.616	0.12176
RSquared → 0	.644946, <i>i</i>	Adjusted	RSquared→	0.60944, Estin	∣atedVariance	→ 109.094,
		DF	SunOfSq	MeanSq	FRatio	PValue
ANOVATable⊣	Model	2	3963.33	1981.67	18.1647	0.0000318383
ANUVAIGDIC -	Error	20	2181.89	109.094		
	Total	22	6145.22			

	Estim	iate S	E	TStat	PValue
1	162.8	76 2	25.7757	6.31898	$4.59181 \times 10^{-\delta}$
$ParameterTable \rightarrow x_1$	-1.21	.032 0).301452	-4.01497	0.000740441 ,
Xž	-0.66	5906 C	.820997	-0.811094	0.427356
X3	-8.61	.303 1	2.2413	-0.703607	0.490211
RSquared \rightarrow 0.672659, Å	djustedF DF	Squared→0 SumOfSc	.620973,Est: MeanSo	imatedVariance FRatio	→105.873, PValue
	3	4133.63	1377.88	13.0145	0.00007482391
ANOVATable → Error	19	2011.58	105.873		
Total	22	6145.22			
			ide 106		

		Esti	mate	SE	TStat	PValue
	1	259.		55.7702	4.64828	0.000175241
ParameterTab	le→X1	-5.9	94775	2.57216	-2.31236	0.0321275 ,
	Xį	-1.1	12356	0.521828	-2.15311	0.0443675
	x_{1}^{2}	0.05	78661	0.031574	1.83271	0.0825647
RSquared \rightarrow 0.	714585, 4	ldjusted	RSquared →	0.66952,Esti	matedVariance	→ 92.3124,
		DF	SumOfSq	MeanSq	FRatio	PValue
MOUNT-hla	Model	3	4391.28	1463.76	15.8566	0.0000208921
ANOVATable→	Error	19	1753.94	92.3124		j
	Total	22	6145.22			

Parame	terTable→					
	Estimate		SE	TStat	PValue	
1	148.57		147.628	1.00638	0.32687	8
X1	-1.26127		0.296651	-4.25169	0.00043	1349,
Xį	-0.564215		4.27428	-0.132002	0.89637	,
x ³ ₂	-0.000064332	1	0.000519054	-0.123941	0.90266	4
RSquar	ed→0.664401, <i>1</i>	djuste	$dRSquared \rightarrow 0$.	611411, Estima	tedVariance	→ 108.544,
		DF	SumOfSq	MeanSq	FRatio	PValue
1110111	Model	3	4082.89	1360.96	12.5384	0.000094299 ₁
ANOVAT	anie→ Error	19	2062.33	108.544		}
	Total	22	6145.22			
			et: J	e 108 s	at 110B. UCLA. J	

		Reduc	ed Sets	s of β _j 's	
Paramet	erTable→				
	Estimate	SE		TStat	PValue
1	189.105	237.1	.1	0.79754	0.436814
x1	-5.9021	2.810	42	-2.10008	0.0519326
Χź	1.8482	12.61	.6	0.146497	0.885359
X_3	-7.60405	128.8	13	-0.0590318	0.953658 /
xi	0.0577719	0.034	4071	1.67907	0.112558
xž	-0.0253057	0.120	932	-0.209257	0.836889
\mathbf{x}_{3}^{2}	0.141337	26.90	73	0.00525276	0.995874
-	1→0.721785		-		
Estimat	edVariance -	106.856, A			
	DF	SumOfSq	MeanSq		PValue
Model	6	4435.53	739.255	6.91826	0.000916386
Error	16	1709.69	106.856	5	J
Total	22	6145.22			

Paramet	cerTable→				
	Estimate	SE	TSta	t	PValue
1	162.876	25.775	57 6.31	898	4.59181×10-6
Xl	-1.21032	0.3014	452 -4.0	1497	0.000740441 ,
Χį	-0.665906	0.8209	997 -0.8	11094	0.427356
X3	-8.61303	12.241	L3 -0.7	03607	0.490211
RSquare	ed→0.672659	, AdjustedF	$Rsquared \rightarrow 0.1$	620973,	
Estimat	edVariance –	+ 105.873, 4	NOVATable→		
	DF	SumOfSq	MeanSq	FRatio	PValue
Model	3	4133.63	1377.88	13.0145	0.0000748239
Error	19	2011.58	105.873		}
Total	22	6145.22			

Paramet	cerTable→				
	Estimate	SE	TStat	PVa	lue
1	121.832	11.0422	11.03	33 3.3	7134×10 ⁻¹⁰ ,
Xl	-1.52704	0.27288	-5.59	598 0.0	000148907
RSquare	ed → 0.59858	5, AdjustedF	Squared $\rightarrow 0.5$	57947,	
Estimat	edVariance	$\rightarrow 117.466, A$	NOVATable→		
	DF	SumOfSq	MeanSq	FRatio	PValue
Model	1	3678.44	3678.44	31.315	0.0000148907
Error	21	2466.78	117.466		

All "Possible" Models; X ₁ ,X ₂ Only								
Paramete	rTable→							
	Estima	ite	SE	TStat	PValue			
1	162.36	51	129.875	1.25013	0.22643			
xı	-1.156	599	3.12827	-0.369851	0.715584,			
Χź	-1.005	566	2.5807	-0.389685	0.701103			
x_1x_2	-0.002	202929	0.061078	-0.0332245	0.973842			
RSquared	→ 0.6641	.49, Adjuste	$dRSquared \rightarrow 0$).61112,				
Estimate	dVarianc	e→108.625	, ANOVATable-	→				
	DF	SumOfSq	MeanSq	FRatio	PValue			
Model	3	4081.34	1360.45	12.5242	0.0000949578			
Error	19	2063.88	108.625					
Total	22	6145.22						
			Slide 112	Stat 110B. UC	L & Lee Directo			

		Estima	ite	SE	TSta	it	PValue
[Parameter]	Table 1	166.59	1	24.9084	6.68	815	1.64798×10-6
(rarameter	ıaDIE→ X1	-1.260	146	0.289186	-4.3	35864	0.000304217
	Xź	-1.089	32	0.551389	-1.9	97559	0.0621629
•	+0.664129,∦ Variance→1	•	•		1		
	DF Su	mOfSq	MeanSq	I FR	atio	PValue	
Model	2 40	81.22	2040.6	1 19	.7734	0.000018	32692 ₁
		101	103.2				}
Error	20 20)64.	103.4				

		Estim	ate SE		TStat	PValue	
Parameter	rTable→	1 121.8	32 11.	0422	11.0333	3.37134×10 ⁻¹⁰ ,	
Ľ.		x ₁ -1.52	704 0.2	72881	-5.59598	0.0000148907	
RSquared	→ 0.5985	85, AdjustedR	Squared $\rightarrow 0.5$	57947,			
Estimated	dVarianc	e→117.466,Å	NOVATable→	,			
	DF	SumOfSq	MeanSq	FRatio	PValue		
Model	1	3678.44	3678.44	31.315	0.00001	489071	
Error	21	2466.78	117.466			}	
Total	22	6145.22					
			Slide		Stat 110B, UCLA.		

		Esti	mate SE	T	Stat	PValue
{Paramete	rTable→	1 173.	614 33.0	8724 5	.12553	0.0000445882
ι.		x ₂ -2.2	1072 0.6	64581 -	3.32649	0.00320519
RSquared	→ 0.3450	191, Adjusted	RSquared → 0.3	313905,		
Estimate	dVarianc	e→191.646,	ANOVATable→			
	DF	SumOfSq	MeanSq	FRatio	PValue	
	1	2120.66	2120.66	11.0655	0.00320	5191
Model						}
Model Error	21	4024.56	191.646			· ·

Multicollinearity Example

The following data is a portion of that from a study of the relation of the amount of body fat (Y) to the predictor variables (X_1) Tricep skinfold thickness, (X_2) Thigh circumference, and (X_3) Midarm circumference based on a sample of 20 healthy females 25-34 years old.

Subject	Triceps	Thigh	Midam	BodyFat
1	19.5	43.1	29.1	11.9
2	24.7	49.8	282	228
3	30.7	51.9	37	187
18	30.2	58.6	24.6	254
19	227	48.2	27.1	14.8
20	252	51	27.5	21.1

The L.S. regression coefficients for X_1 and X_2 of various models are given in the table

Variables in Model	b1	b2	
X1	0.8572		
X2		0.8565	
X1, X2	0.224	0.6594	
X1, X2, X3	4.334	-2.857	
SI	lide 118 Stat	110B. UCLA. Ivo Dinov	

Hence, the regression coefficient of one variable depends upon which other variables are in the model and which ones are not. Therefore, a regression coefficient does not reflect any inherent effect of particular predictor variable on the response variable (Only a partial effect, given what other variables are included)

Jida 110