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Linear Regression Analysis
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Correlation Coefficient 

Correlation coefficient (-1<=R<=1): a measure of linear 
association, or clustering around a line of multivariate 
data. 

Relationship between two variables (X, Y) can be 
summarized by: (µX, σX), (µY, σY) and the correlation 
coefficient, R. R=1, perfect positive correlation (straight 
line relationship),   R =0, no correlation (random cloud 
scatter), R = –1, perfect negative correlation.  

Computing R(X,Y): (standardize, multiply, average)
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Correlation Coefficient 

Example:
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Correlation Coefficient 

Example:
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Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y
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Correlation Coefficient - Properties

Correlation is Associative

Correlation measures linear association, NOT an association in 
general!!! So, Corr(X,Y) could be misleading for X & Y related in 
a non-linear fashion.
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Correlation Coefficient - Properties

1. R measures the extent of
linear association between
two continuous variables. 

2. Association does not imply
causation - both variables
may be affected by a third
variable – age was a 
confounding variable.
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Recall the correlation coefficient…

Another form for the correlation coefficient is:
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Linear Regression Analysis     (ch. 12)

x x

y y

Observe a response Y and one or more predictors 
X.  Formulate a model that relates the mean 
response E(Y) to X.
Y – Dependent Variable X – Independent Variable
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Deterministic Model

• Y = f(x) ; Once we know the value of x, the 
value of Y is completely satisfied

• Simplest (Straight Line)Model:                             
Y= βo + β1x

• β1 = Slope of the Line

• βo = Y-intercept of the Line
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Probabilistic Model

• Y = f(x) + ε ; The value of Y is a R.V.

• Model for Simple Linear Regression:
Yi = βo + β1xi + εi  , i=1,..,n

• Y1,…,Yn – Observed Value of the Response

• x1,…,xn – Observed Value of Predictor

• βo,β1 – Unknown Parameters to be Estimated 
from the Data

• ε1,…, εn – Unknown Random Error Terms –
Usually iid N(0,σ2) Random Variables
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Interpretation of Model

For each value of x, the observed Y will fall 
above or below the line Y = βo + β1x
according to the error term ε.  For each fixed x

Y~N(βo + β1x , σ2)
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Questions

1. How do we estimate βo,β1, and σ2?

2. Does the proposed model fit the data well?

3. Are the assumptions satisfied?
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Plotting the Data

A scatter plot of the data is a useful first step 
for checking whether a linear relationship is 
plausible. 
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Example (12.4)

A study to assess the capability of subsurface 
flow wetland systems to remove biochemical 
oxygen demand (BOD) and other various 
chemical constituents resulted in the following 
scatter plot of the data where x = BOD mass 
loading and y = BOD mass removal.  Does the 
plot suggest a linear relationship?

x 3 8 10 11 13 16 27 30 35 37 38 44 103 142
y 4 7 8 8 10 11 16 26 21 9 31 30 75 90

Stat 110B, UCLA, Ivo DinovSlide 17

Example (12.5)

An experiment conducted to investigate 
the stretchability of mozzarella cheese 
with temperature resulted in the following 
scatter plot where x = temperature and y = 
% elongation at failure.  Does the scatter 
plot suggest a linear relationship?
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Estimating βo and β1

Consider an arbitrary line y = b0 + b1x 
drawn through a scatter plot.  We want the 
line to be as close to the points in the 
scatter plot as possible.  The vertical 
distance from (x,y) to the corresponding 
point on the line (x,b0 + b1x) is y-(b0 + b1x).
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Possible Estimation Criteria

• Eyeball Method

• L1 Estimation - Choose βo,β1 to minimize  
Σyi - βox - β1xi 

• Least Squares Estimation - Choose βo,β1 to 
minimize  Σ(yi - βo - β1xi )2

* We use Least Squares Estimation in practice 
since it is difficult to mathematically 
manipulate the other options*
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Least Squares Estimation

Take derivatives with respect to b0 and b1, 
and set equal to zero.  This results in the 
“normal equations” (based on right angles –
not the Normal distribution)
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Formulas for Least Squares Estimates

Solving for b0 and b1 results in the L.S. 
estimates 10

ˆ and ˆ ββ
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Example (12.12)

Refer to the previous example (12.4).  
Obtain the expression for the Least 
Squares line
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Estimating σ2

Residual = Observed – Predicted 

iii yye ˆ−=

Recall the definition of sample variance
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Estimating σ2 Cont’d

• The minimum value of the squared 
deviation is 

D = Σ(yi - βox - β1xi )2 = Σ(yi - )2 = SSE

• Divide the SSE by it’s degrees of 
freedom (n-2) to estimate σ2

iŷ

2
ˆ 22

−
==

n
SSEsσ
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Example (12.12) Cont’d

Predict the value of BOD mass removal 
when BOD loading is 35.  Calculate the 
residual.  Calculate the SSE and a point 
estimate of σ2
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Examining the Overall Fit of the Model

Recall from previous lecture:

• Linear Regression Model:
Yi = βo + β1xi + εi  , i=1,..,n

• Assumptions:

εi~ N(0,σ 2) ⇒ Y~N(βo + β1x , σ2)
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Review Cont’d

• L.S. estimate of β1:

•L.S. estimate of β0:
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Another Notation for the Slope of the LS line

1. Note that there is a slight difference in the formula for 
the slope of the Least-Squares Best-Linear Fit line:
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Review Cont’d

iŷ

•Predicted Values: 

• Residuals:

• Sum of Squares Error:

• Sample Variance: 

ioi xy 1
ˆˆˆ ββ +=

iii yye ˆ−=

SSE = Σei
2 =  Σ(yi - )2

2
2

−
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n
SSEs
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Examining Fit Cont’d

Total Sum of Squares:

Error Sum of Squares:

Regression Sum of Squares:
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Examining Fit Cont’d

Decomposition of SST:

Degrees of Freedom: 
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Demos

RegressionApplet.html

C:/Ivo.dir/UCLA_Classes/others.dir/JSci/exam
ples/CurveFitter/SOCRCurveFitter.html
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Coefficient of Determination

A useful measure of overall fit

Properties:

1. 0≤ r2 ≤ 1

2. If all the data lies in a straight line, r2 = 1

SST
SSE

SST
SSRr −== 12
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3. No Linear Relationship, r2 = 0

4. r2 is the proportion of variation of y 
“explained” by the linear relationship with x. 
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Testing for a Linear Relationship

Inference about β1 is more important that βo
in that β1 measures the effect on E[Y] of 
changing x by one unit. 

Hypothesis Test:

Ho: β1 = 0

Ha: β1 ≠ 0
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2

2
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Test Statistic:

Rejection Region:

F > Fα,1,n-1
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Mean and Variance of 1β̂
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Hypothesis Testing

Hypothesis Test:

Ho: β1 = β1o

Ha: β1 (≠,>,<) β1o

2
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11 ~
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−

= n
o t

s
t

β

ββ

The inequality test when β1o = 0 is referred 
to as the “model utility” test and is 
equivalent to the ANOVA test shown 
previously
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data = {{3, 4}, {8, 7}, {10, 8}, {11, 8}, {13, 10}, {16, 
11}, {27, 16}, {30, 26}, {35, 21}, {37, 9}, {38, 31}, {44, 
30}, {103, 75}, {142, 90}}

Example 12.4, Cont’d
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In the regression analysis that we have 
considered so far, we assume that x is a 
controlled independent variable and Y is an 
observed Random Variable.  What if both X and 
Y are observed Random Variables (i.e., we 
observe both X and Y together)?  A correlation 
analysis may be used to study the relationship 
between these two R.V.’s

Linear Correlation (12.5)
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• Regression Analysis – We wish to form a 
model to estimate µy·x or to predict Y for a 
given value of x

•Correlation Analysis – We wish to study the 
relationship between X and Y

A measure of the linear relationship between 
X and Y is the population covariance

Cov(X,Y) = E[(X- µX)(Y- µY)]
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The computed sample covariance is given by

∑ −−
−

))((
1

1 yyxx
n ii

The measure of covariance is affected by 
the units of the measurement of X&Y.  The 
correlation coefficient, however, is not 
affected by the measurement unit of X&Y 
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The population correlation coefficient for 
X&Y is given by 

YX

YXCov
σσ

ρ ),(
=

The computed correlation coefficient is 
given by 
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Remarks about ρ:

1. -1 ≤ ρ ≤ 1

2. ρ = ±1 if the distribution of X&Y is concentrated on 
a straight line

3. ρ near 0 indicated no linear relationship

4. ρ > 0 indicates that Y has a tendency to increase as X 
increases

5. ρ < 0 indicates that Y has a tendency to decrease as X 
increases

6. r has a similar interpretation for the scatter plot of 
(x,y)
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Testing for a Linear Relationship

Assume that X&Y are distributed as a 
bivariate normal distribution.  The 
parameters of this distribution are µX, µY, 
σX

2, σY
2, and ρ. 
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Hypothesis:

Ho: ρ = 0

Ha: ρ ≠ 0

Test Statistic:

Rejection Region:

|t| > tα/2, n-2

2
1 2

−
−

=

n
r

rt
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Example (12.59)

Toughness and Fibrousness of asparagus are 
major determinants of quality.  A journal 
article reported the accompanying data on x 
= sheer force (kg) and y = percent fiber dry 
weight

x 46 48 55 57 60 72 81 85 94
y 2.18 2.1 2.13 2.28 2.34 2.53 2.28 2.62 2.63

x 109 121 132 137 148 149 184 185 187
y 2.5 2.66 2.79 2.8 3.01 2.98 3.34 3.49 3.26
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1. Calculate the sample correlation coefficient.  
How would you describe the nature of the 
relationship between these two variables? 

2. If sheer force were to be expressed in 
pounds, what happens to the value of r?  

3. If simple linear regression model were to be 
fit to this data, what proportion of observed 
variation in percent dry fiber weight could 
be explained by the model relationship?  

4. Test at a 0.01 los for a positive linear 
correlation between these populations. 
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Example 12.52

x 1.5 1.5 2 2.5 2.5 3 3.5 3.5 4
y 23 24.5 25 30 33.5 40 40.5 47 49

X = Chlorine Flow

Y = Etch Rate
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Model Residual Plots

The linear model for regression:

Yi = βo + β1xi + εi  , i=1,..,n

where ε1,…, εn ~ N(0,σ2) 

This model yields the following assumptions:

1. Linear relationship between x and Y: 
xoxY 1ββµ +=⋅
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2. Equal variance for errors

3. Normally distributed errors

4. Independent errors

The estimated error (residual) may be used to 
test whether these assumptions are satisfied 
(i.e., the model is appropriate) 
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Recall:
iii yye ˆ−=

io x1
ˆˆ ββ +=

Expectation and Variance of ei
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If the assumptions are correct, the residuals 
should behave like normally distributed 
random variables and the standardized 
residuals like standard normal random 
variables. 

This leads to the standardized residual
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To check the linearity and equal variance 
assumptions, plot ei or ei* against xi or

The use of standardized residuals ei* in 
these plots additionally provides some 
information about the normality 
assumption. 

iŷ
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Good Residual Plots
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Residual Plots w/ Nonlinear Data
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Residual Plots w/ Unequal Varaiances
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Residual Plots w/ Autocorrelation
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To check the Independence assumption – In 
general, this is difficult to check.  A plot of 
the residual vs. time of observation may be 
used.

To check the Normality Assumption – A 
Normal Probability Plot (NPP) of the 
residuals may be used.  Recall, a linear plot 
indicates that the normal distribution is 
consistent with the data (residuals). 
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Forming an NPP for the residuals:

1. Order the residuals: e(1),…,e(n)

2. Compute the normal percentiles:

3. Plot the (Pi, e(i)) pairs







 −
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n
iPi

5.1

Stat 110B, UCLA, Ivo DinovSlide 63

What If Some of the Assumptions Are 
Violated?

• Residual plot shows non-linearity – Fit a 
non-linear function (polynomial regression) 
or use a transformation to linearize (if 
possible)

• Residual plot supports linearity, but shows a 
violation of the equal variances assumption –
Use weighted least squares (WLS); give less 
weight to observation with larger variance.  
Consult the text Applied Linear Regression 
Models as referenced in Lecture 17. 
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• The residuals support linearity and equal 
variances, but one of the standardized 
residuals is much greater (less) than +2 (-2) –
This point is an outlier.  If an assignable 
cause for this point may be found, throw it 
out and recalculate the regression parameters.  
If no assignable cause may be found, a MAD 
(minimum absolute deviation) approach may 
be used in place of L.S. (Least Squares).  
This approach, however, may be tedious. 
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• A plot of the residuals vs. time show a 
violation of the independence assumption –
A transformation may be used (if possible) or 
the time variable may be included in the 
model via multiple regression.  See Applied 
Linear Regression Models.

• A plot of the residuals vs. an independent 
variable not included in the model exhibits a 
definite pattern – Include this independent 
variable in a multiple regression analysis
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Example: (12.4) Cont’d
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Residuals vs. Predicted
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Standardized Residual vs. Predicted
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Scatter Plot
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Revised Data Set – Outlier Omitted

Stat 110B, UCLA, Ivo DinovSlide 71

Scatter Plot
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Residuals vs. Predicted
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Standardized Residuals vs. Predicted
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Multiple Regression

The objective of multiple regression is to 
build a probabilistic model that relates a 
dependent (response) variable y to more 
than one independent (predictor) variables xi

Example: A particular steel company uses 
multiple regression to relate the dependent 
variable y = strength of hardened steel (psi) to 
the independent variables x1= temperature of 
heat treatment (oC) and x2= length of time 
treatment was applied (hours)
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General Multiple Regression Model

εβββ ++++= kk xxY ...110

Mean Response:
**

110,..., ...**
1

kkxxY xx
n

βββµ +++=
⋅
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Two Variable Models

First Order Model:

εβββ +++= 22110 xxY

First Order Model with Interactions:

εββββ ++++= 21322110 xxxxY
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Two Variable Models Cont’d

Second Order Model:

εβββββ +++++= 2
24

2
1322110 xxxxY

Second Order Model with Interactions:

εββββββ ++++++= 215
2
24

2
1322110 xxxxxxY
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Data from Multiple Regression Model: 

n observations: (y1,x11,…,xk1), (y2,x12,…,xk2), 
… , (yn,x1n,…,xkn)

Estimation of β’s:  Take partial derivatives 
of D wrt b0,…,bk to obtain k+1 equations 
with k+1 unknowns.  The solution yields 
L.S. estimates of the β’s

[ ]∑
=

+⋅⋅⋅++−=
n

i
kikioi xbxbbyD

1

2
11 )(
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Obtaining the ANOVA Table
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Overall Measure of Fit

Coefficient of Determination:

SST
SSE

SST
SSRR −== 12

Adjusted R2:

kn
kRnRadj.

−−
−−

=
1
)1( 

2
2
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Model Utility Test

To test the fit of the overall model, we can test

Ho:β1=…= βk=0 versus Ha: at least one βj≠0

Use the ANOVA table for regression.  The 
rejection region is

)1(,,2

2

1
)1(

+−>
−

+−
== knkF

R
R

k
kn

MSE
MSRF α
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Inference Concerning βj

To test Ho: βj = βjo use the test statistic

j
s

t jj

β

ββ

ˆ

0
ˆ −

=

Under H0, this test statistic is distributed as a 
t with n-(k+1) degrees of freedom.  A test of 
Ho: βj = 0 is used to see whether xj should be 
included in the model. 
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Testing a set of βj’s

Formulate Two Models:

Full Model:

Reduced Model: 

εβββ +++++= kkll xxY ......0

εββ +++= ll xY ...0
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Testing a set of βj’s Cont’d

To choose between these models, we test 

Ho: βl+1=…= βk= 0 versus 

Ha: at least one βl+1 ,…, βk ≠ 0

Calculate the SSE for the Full and Reduced   
Models.  (SSEk and SSEl respectively).  The 
test statistic and rejection region are given by 

)1(,, +−−>−
−

= knlk
k

kl

F
MSE

lk
SSESSE

F α
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Confidence Intervals for the parameters βj
and the mean response                 , and 
Prediction Intervals for future Y at x=x* are 
calculated in the usual manner. Consult page 
583 of the text for the specific form of these 
intervals.  

**
1 ,..., nxxY ⋅

µ
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Picking a Regression Model – Variable 
Selection 

1. Use Scientific Knowledge of the Problem

2. (Full Enumeration) Use a summary 
measure of fit on a possible regression 
models (R2, adj.R2, and SSE).  Select the 
model with the “best” measures 
comparatively. 
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3. (Backward Selection) Fit a model with all 
possible predictors included.  Use t-tests 
for Ho: βj = 0 to suggest candidate xj
predictors to omit.  Eliminate the “least 
significant” predictor and fit a new 
model.  Continue until all variables are 
needed.  Note: One cannot eliminate 
more than one variable at a time on this 
basis
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3. (Forward Selection) Build a model 
starting with the predictor most highly 
correlated with the response.  Then 
find the best two-predictor model 
including this predictor, and so forth
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Multicollinearity

Multicollinearity among the predictor variables 
is said to exist when these variables are 
highly correlated amongst themselves.

Effects of Multicollinearity:

1. In general, data that exhibits multicollinearity 
does not inhibit our ability to obtain a good 
fit or affect inferences about the mean 
response and future observation
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2. In the presence of multicollinearity, The 
information obtained about the 
regression parameters, however, is 
imprecise.  Hence the usual 
interpretation about these parameters in 
unwarranted (i.e. the effect of varying 
one parameter while holding the others 
constant).  

Consult “Applied Linear Regression 
Models” for a detailed discussion of 
multicollinearity and possible remedies. 
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Detecting Multicollinearity

1. The value of R2 is large, yet the t 
statistics for a particular βj is small even 
though the predictor are known to 
significantly affect the response

2. The sign of a particular βj is opposite to 
what intuition would suggest. 
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Multiple Regression Example

A hospital administrator wished to study the 
relation between patient satisfaction (Y) and the 
patient’s age (X1), severity of illness (X2), and 
anxiety level (X3).  The administrator randomly 
selected 23 patients a collected the following 
data where larger values of Y, X2, and X3 are, 
respectively, associated with more satisfaction, 
increased severity of illness, and more anxiety.  
The data is of the form (X1, X2, X3,Y).
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Backward Elimination
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Forward Selection
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Reduced Sets of βj’s
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All “Possible” Models; 
X1,X2 Only
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Multicollinearity Example

The following data is a portion of that from a 
study of the relation of the amount of body fat 
(Y) to the predictor variables (X1) Tricep 
skinfold thickness, (X2) Thigh circumference, 
and (X3) Midarm circumference based on a 
sample of 20 healthy females 25-34 years old. 
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Subject Triceps Thigh Midarm Body Fat
1 19.5 43.1 29.1 11.9
2 24.7 49.8 28.2 22.8
3 30.7 51.9 37 18.7
… … … … …
18 30.2 58.6 24.6 25.4
19 22.7 48.2 27.1 14.8
20 25.2 51 27.5 21.1
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The L.S. regression coefficients for X1 and X2
of various models are given in the table

Variables in Model b1 b2
X1 0.8572 …
X2 … 0.8565

X1, X2 0.224 0.6594
X1, X2, X3 4.334 -2.857
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Hence, the regression coefficient of one 
variable depends upon which other variables 
are in the model and which ones are not.  
Therefore, a regression coefficient does not 
reflect any inherent effect of particular 
predictor variable on the response variable 
(Only a partial effect, given what other 
variables are included) 


