UCLA STAT 110B

Applied Statistics for Engineering and the Sciences

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Brian Ng, UCLA Statistics

University of California, Los Angeles, Spring 2003
http://www.stat.ucla.edu/~dinov/courses_students.htmI

- n independent trials
- Two possible outcomes (S) success and (F) failure
- $p=$ Probability of success on each trial
- $\mathrm{X}=$ Number of successes in n trials

[^0]

Multinomial Experiment

- n independent trials results in one of k possible categories labeled $1, \ldots, \mathrm{k}$
- $p_{i}=$ the probability of a trial resulting in the i ith category, where $\mathrm{p}_{1}+\ldots+\mathrm{p}_{\mathrm{k}}=1$
- $\mathrm{N}_{\mathrm{i}}=$ number of trials resulting in the ith category, where $\mathrm{N}_{1}+\ldots+\mathrm{N}_{\mathrm{k}}=\mathrm{n}$
Multinomial Experiment

Categorical Data

Categorical Data is that which counts the number of outcomes falling into various categories.

- Binomial Experiment - consists of two categories
-Multinomial Experiment - consist of more than two categories

Binomial Distribution Pdf, E[X], Var[X]

Slide 4

Multinomial Cont'd

- The random variables $\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{k}}$ have a multinomial distribution

$$
p\left(n_{1}, \ldots, n_{k}\right)=\frac{n!}{n_{1}!\cdots n_{k}!} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}
$$

Multinomial Cont'd

- Expected Value: $\mathrm{E}\left[\mathrm{N}_{\mathrm{i}}\right]=\mathrm{np} \mathrm{p}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}}$
- Variance: $\operatorname{Var}\left[\mathrm{N}_{\mathrm{i}}\right]=\mathrm{np}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}$
- Covariance: $\operatorname{Cov}\left[\mathrm{N}_{\mathrm{i}}, \mathrm{N}_{\mathrm{j}}\right]=-n \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$

Test Statistic

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(N_{i}-E_{i}\right)^{2}}{E_{i}}
$$

This is a Pearson's goodness-of-fit statistic
Rejection Region: $\mathrm{X}^{2}>\chi_{\alpha}{ }^{2}$ where χ^{2} is the chi-squared distribution with k -1 degrees of freedom.

General Rule: We want $\mathrm{np}_{\mathrm{i}}{ }^{\circ} \geq 5$ for all cells

Testing Goodness of Fit with Specified Cell Probabilities

We wish to test whether the cell probabilities are specified by $\mathrm{p}_{1}{ }^{\circ}, \ldots, \mathrm{p}_{\mathrm{k}}{ }^{\circ}$ where $\mathrm{p}_{1}{ }^{0}+\ldots+\mathrm{p}_{\mathrm{k}}{ }^{0}=1$.
We will use a test statistic to compare the observed cell count N_{i} to the expected cell count under H_{o},

$$
\mathrm{E}_{\mathrm{i}}=\mathrm{np}_{\mathrm{i}}{ }^{0}
$$

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{1}{ }^{\circ}, \text { (and) } \ldots ., \text { (and) } \mathrm{p}_{\mathrm{k}}=\mathrm{p}_{\mathrm{k}}{ }^{\circ} \\
& \mathrm{H}_{\mathrm{a}}: \text { Some } \mathrm{p}_{\mathrm{i}} \neq \mathrm{p}_{\mathrm{i}}{ }^{\circ}
\end{aligned}
$$

A study is run to see whether the public favors the construction of a new dam. It is thought that 40% favor dam construction, 30% are neutral, 20% oppose the dam, and the rest have not thought about it. A random sample of 150 individuals are interviewed resulting in 42 in favor, 61 neutral, 33 opposed, and the rest have not though about it. Does the data indicate that the stated proportions are incorrect? Use $\alpha=0.01$.

Example Cont'd

$\mathrm{H}_{0}: \mathrm{p}_{1}=0.4, \mathrm{p}_{2}=0.3, \mathrm{p}_{3}=0.2, \mathrm{p}_{4}=0.1$
H_{a} : At least one probability is not as specified
Test Statistic: X^{2}
Rejection Region: $\mathrm{X}^{2}>\chi^{2}{ }_{0.01,3}=11.34$

	Favor	Neutral	Oppose	Unaware	Total
ni	42	61	33	14	150
pio	0.4	0.3	0.2	0.1	1
Ei	60	45	30	15	150
$X^{2}=\frac{(42-60)^{2}}{60}+\frac{(61-45)^{2}}{45}+\frac{(33-30)^{2}}{30}$					
$\frac{(14-15)^{2}}{15}=11$.					
15					
Since $X^{2}=11.46>\chi_{0.01,3,}{ }^{2}=11.34$, we reject H_{o}. Conclude that at least one of the true proportions differs from that hypothesized					

Goodness of Fit for Distributions (Continuous and Discrete)

- Uses the concept of Maximum Likelihood Estimations (MLE)
- The range of a hypothesized distribution is divided into a set of k intervals (cells). After finding the MLE of unknown parameters, the cell probabilities are calculated and the χ^{2} test performed \bullet Found in many computer packages $-\underline{\text { SOCR }}$

Testing Normality

Many test procedures that we have developed rely on the assumption of Normality. There are many test for Normality of data. One uses the normal to provide cell probabilities for the chi-square goodness-of-fit test. A "better" test is based on the Normal Probability Plot

Testing Normality Cont'd

Recall: The NPP should be approx linear for normal data, and the correlation coefficient is a measure of linearity.

If r is much less than one, we would conclude that the data doesn't come from a Normal distribution.

Ryan-Joiner Test

4. State the Null and Alternative Hypotheses
H_{o} : The population is normal
H_{a} : The population is not normal
5. Specify alpha and obtain critical values from Table A.12. Compare \boldsymbol{R} to this value

Ryan-Joiner Test

1. Order the data $\mathrm{x}_{(1)}, \ldots, \mathrm{x}_{(\mathrm{n})}$
2. Compute the normal percentiles

$$
y_{i}=\Phi^{-1}\left(\frac{i-.375}{n+.25}\right)
$$

3. Compute the correlation coefficient, \boldsymbol{R}, for the $\left(\mathrm{y}_{\mathrm{i}}, \mathrm{x}_{(\mathrm{i})}\right)$ pairs and look up the distribution table for the Ryan-Joiner Statistics, A. 12.
Example

Consider the following data. Use the RyanJoiner test to test the assumption of normality at $\alpha=0.10$ \qquad

$$
\begin{array}{lllllllll}
& 1.15 ; & 1.4 & 1.34 & 1.29 & 1.36 & 1.26 & 1.22 & 1.4 \\
\text { Raw } \\
\text { Data } & 1.29 & 1.14 & 1.32 & 1.34 & 1.26 & 1.36 & 1.36 & 1.3 \\
& 1.28 & 1.45 & 1.29 & 1.28 & 1.38 & 1.55 & 1.46 & 1.32
\end{array}
$$

Table

Testing Homogeneity of Populations

*We wish to compare I multinomial populations, each with J categories. *

Take n_{i} samples from the ith population
Let N_{ij} be the number of observations from the $\mathrm{i}^{\text {th }}$ population in the $\mathrm{j}^{\text {th }}$ category. Hence, $\Sigma_{\mathrm{j}} \mathrm{N}_{\mathrm{ij}}=\mathrm{n}_{\mathrm{i}}$
Place the data in a I x J table

Corresponding to each cell, there is a cell probability $\mathrm{p}_{\mathrm{ij}}=$ =probability and outcome for the $\mathrm{i}^{\text {th }}$ population falls into the $\mathrm{j}^{\text {th }}$ category, where $\Sigma_{\mathrm{j}} \mathrm{p}_{\mathrm{ij}}=1$
 Slide 22

Test Cont'd

The estimated expected cell frequency is

$$
\hat{E}_{i j}=n_{i} \hat{p}_{j}=\frac{n_{i} n_{\cdot j}}{n}
$$

The test statistic is

$$
X^{2}=\sum_{\text {rows columns }} \sum_{i j} \frac{\left(n_{i j}-\hat{E}_{i j}\right)^{2}}{\hat{E}_{i j}}
$$

Rejection Region: $\mathrm{X}^{2}>\chi^{2}{ }_{\alpha}$ with d.f. $=(\mathrm{I}-1)(\mathrm{J}-1)$

Testing for Association

* Individuals are categorized by two categorical variables. We wish to determine whether these variables are associated. *

Row Categories - $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{I}}$ Column Categories - $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{J}}$
$\mathrm{n}=$ Total number of observations
$\mathrm{n}_{\mathrm{ij}}=$ the number of individuals classified as A_{i} and B_{j}
Hence, $\Sigma \Sigma \mathrm{n}_{\mathrm{ij}}=\mathrm{n}$
$\mathrm{H}_{\mathrm{o}}: \mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{B}_{\mathrm{j}}\right)=\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{B}_{\mathrm{j}}\right)$ for all i, j
H_{a} : Some $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{B}_{\mathrm{j}}\right) \neq \mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{B}_{\mathrm{j}}\right)$

Expected Frequency:

$$
\hat{E}_{i j}=\frac{\mathrm{n}_{i .} \times \mathrm{n}_{\cdot \mathrm{j}}}{\mathrm{n}}
$$

Test Statistic:

$$
X^{2}=\sum_{\text {rows columns }} \frac{\left(n_{i j}-\hat{E}_{i j}\right)^{2}}{\hat{E}_{i j}}
$$

Rejection Region: $\mathrm{X}^{2}>\chi^{2}{ }_{\alpha}$ with d. $\mathrm{f}=(\mathrm{I}-1)(\mathrm{J}-1)$

Lotto after 399 numbers have been drawn -

Do some numbers appear more frequently in LOTTO?
Frequency of Winning Numbers in LOTTO
 11. (13) 12. (10) 13. (9) 14. (11) 15. (11) 16. (6) 17. (11) 18. (13) 19. (6) 20. (13) 21. (7) 22. (9) 23. (8) 24. (12) 25. (6) 26. (4) 27. (10) $28 . \quad$ (8) 29. (14) 30. (12) $\begin{array}{llllllllllllllll}\text { 31. (11) } & \text { 32. (12) } & \text { 33. (9) } & \text { 34. (11) } & \text { 35. (6) } & \text { 36. (8) } & \text { 37. (14) } & \text { 38. (10) } & \text { 39. (15) } & \text { 40. (10) }\end{array}$

Lotto after 399 numbers have been drawn -
Do some numbers appear more frequently in LOTTO?
Number-range: [1:40]
Number of balls selected at each draw: 7
Number of samples: 57
Total number of balls selected: $57 * 7=399$,
Expected value of each number: $399 / 40=9.975$
Observed χ^{2} statistics is $x_{0}=30.97$
$\mathrm{df}=40-1=39$
P-value $=0.817$
Conclusion: No evidence for departure from the null hypothesis.

Chi-Square Tests of Independence

An Example, Researchers in a California community have asked a sample of 175 automobile owners to select their favorite from three popular automotive magazines. Of the 111 import owners in the sample, 54 selected Car and Driver, 25 selected Motor Trend, and 32 selected Road \& Track.

Of the 64 domestic-make owners in the sample, 19 selected Car and Driver, 22 selected Motor Trend, and 23 selected Road \& Track. At the 0.05 level, is import/domestic ownership independent of magazine preference? What is the most accurate statement that can be made about the p-value for the test?

Chi-Square Tests of Independence

	Car and Driver (1)	Motor Trend (2)	 Track (3)
Import (Imp): O	- 54	25	32
E	46.3029	29.8114	34.8857
χ^{2} contribution -	1.2795	0.7765	0.2387
Domestic (Dom) : O	- 19	22	23
E	- 26.6971	17.1886	20.1143
χ^{2} contribution -	2.2192	1.3468	0.4140
$\Sigma \chi^{2}$ contributions $=6.2747$			

Chi-Square Tests of Independence

- III. Test Statistic:

$$
\chi^{2}=6.2747
$$

- IV. Conclusion:

Since the test statistic of 6.2747 falls beyond the critical value of 5.991 , we reject the null hypothesis with at least 95% confidence.

- V. Implications:

There is enough evidence to show that magazine preference is not independent from import/domestic auto ownership.

- p-value: In a cell on a Microsoft Excel spreadsheet, type:
$=$ CHIDIST $(6.2747,2)$. The answer is: \boldsymbol{p}-value $=\mathbf{0 . 0 4 3 3 9 8}$

Chi-Square Tests of Independence

- I. Hypotheses:
H_{0} : \quad Type of magazine and auto ownership are independent.
H_{1} : Type of magazine and auto ownership are not independent.
- II. Rejection Region:

$$
\begin{aligned}
\alpha & =0.05 \\
\mathrm{df} & =(r-1)(k-1) \\
& =(2-1) \cdot(3-1) \\
& =1 \cdot 2=2
\end{aligned}
$$

If $\chi^{2}>5.991$, reject H_{0}.

[^0]: Slide 3

