

Binomial Experiment

- n independent trials
- Two possible outcomes (S) success and (F) failure
- p = Probability of success on each trial
- X = Number of successes in n trials

Multinomial Experiment

- n independent trials results in one of k possible categories labeled 1, ..., k
- p_i = the probability of a trial resulting in the ith category, where p_1 +...+ p_k = 1
- N_i = number of trials resulting in the ith category, where N_1 +...+ N_k = n

Multinomial Cont'd

• The random variables N_1, \ldots, N_k have a multinomial distribution

$$p(n_1,\ldots,n_k)=\frac{n!}{n_1!\cdots n_k!}p_1^{n_1}\cdots p_k^{n_k}$$

Multinomial Cont'd

- Expected Value: $E[N_i] = np_i = E_i$
- Variance: Var $[N_i] = np_iq_i$
- Covariance: Cov [N_i, N_j] = -np_ip_j

Testing Goodness of Fit with Specified Cell Probabilities

We wish to test whether the cell probabilities are specified by $p_1^o, ..., p_k^o$ where $p_1^{o+}...+p_k^o = 1$.

We will use a test statistic to compare the observed cell count N_i to the expected cell count under H_o ,

 $E_i = np_i^{o}$

 $H_{0}:p_{1} = p_{1}^{o}, \text{ (and), (and)} \quad p_{k} = p_{k}^{o}$ $H_{a}: \text{ Some } p_{i} \neq p_{i}^{o}$

Example

A study is run to see whether the public favors the construction of a new dam. It is thought that <u>40% favor dam construction</u>, <u>30% are</u> <u>neutral</u>, <u>20% oppose the dam</u>, and the rest have not thought about it. A random sample of 150 individuals are interviewed resulting in 42 in favor, 61 neutral, 33 opposed, and the rest have not though about it. Does the data indicate that the stated proportions are incorrect? Use α =0.01.

Example Cont'd $H_0: p_1=0.4, p_2=0.3, p_3=0.2, p_4=0.1$ $H_a:$ At least one probability is not as specifiedTest Statistic: X²Rejection Region: $X^2 > \chi^2_{0.01, 3} = 11.34$

	Favor	Neutral	Oppose	Unaware	Total
ni	42	61	33	14	150
pio	0.4	0.3	0.2	0.1	1
Ei	60	45	30	15	150
X ²	$e^{2} = \frac{(42 - 6)}{6}$	$\frac{-60)^2}{60}$ +	$\frac{(61-45)}{45}$	$(33)^{2} + (33)^{2}$	$\frac{(-30)^2}{30}$
+ (14–15) 15	2 = 11.4	6		
Sino	$e^{X^2} = 11$	16 > ~	2 - 11	21 mar	aiaat

Since $X^2 = 11.46 > \chi_{0.01,3}^2 = 11.34$, we reject H_0 . Conclude that at least one of the true proportions differs from that hypothesized

Goodness of Fit for Distributions (Continuous and Discrete)

- Uses the concept of Maximum Likelihood Estimations (MLE)
- The range of a hypothesized distribution is divided into a set of k intervals (cells). After finding the MLE of unknown parameters, the cell probabilities are calculated and the χ^2 test performed
- •Found in many computer packages SOCR

Testing Normality

Many test procedures that we have developed rely on the assumption of Normality. There are many test for Normality of data. One uses the normal to provide cell probabilities for the chi-square goodness-of-fit test. A "better" test is based on the Normal Probability Plot

Testing Normality Cont'd

Recall: The NPP should be approx linear for normal data, and the correlation coefficient is a measure of linearity.

If r is much less than one, we would conclude that the data doesn't come from a Normal distribution.

Ryan-Joiner Test

- 1. Order the data $x_{(1)}, \ldots, x_{(n)}$
- 2. Compute the normal percentiles

$$y_i = \Phi^{-1}\left(\frac{i - .375}{n + .25}\right)$$

3. Compute the correlation coefficient, R, for the $(y_i, x_{(i)})$ pairs and look up the distribution table for the Ryan-Joiner Statistics, A.12.

Ryan-Joiner Test

- 4. State the Null and Alternative Hypotheses
 - H_o: The population is normal
 - H_a: The population is not normal
- 5. Specify alpha and obtain critical values from Table A.12. Compare *R* to this value

Example

Consider the following data. Use the Ryan-Joiner test to test the assumption of normality at $\alpha = 0.10$ 1.15; 1.4 1.34 1.29 1.36 1.26 1.22 1.4 1.29 1.14 1.32 1.34 1.26 1.36 1.36 1.3 1.28 1.45 1.29 1.28 1.38 1.55 1.46 1.32

Normal(0,1) random sample:

Testing Homogeneity of Populations

*We wish to compare I multinomial populations, each with J categories. *

Take n_i samples from the ith population

Let N_{ij} be the number of observations from the ith population in the jth category. Hence, $\Sigma_j N_{ij} = n_i$

Place the data in a I x J table

			Tab	le		
				Category		
			2		J	Total
		n11	n12		n1J	n1.
	2	n21	n22		n2J	n2.
Pop.						
						•
		nl1	nl2		nIJ	nl.
	Total	n.1	n.2		n.J	n
			Slide	21	Stat 110P LICE A	Ina Dinan

Corresponding to each cell, there is a cell probability p_{ij} =probability and outcome for the ith population falls into the jth category, where $\Sigma_i p_{ij} = 1$

Test
$$H_o: p_{1j} = p_{2j} = \ldots = p_{1j}, j = 1, \ldots, J$$
 $H_a: Some p_{ij} \neq p_{i'j}$ Under H_o , the common cell probability p_j is
estimated by $\hat{p}_j = \frac{n_{jj}}{n}$

Slide 23

Testing for Association

* Individuals are categorized by two categorical variables. We wish to determine whether these variables are associated. *

Row Categories $-A_1, \dots, A_I$

Column Categories – B₁,...,B₁

n = Total number of observations

$$n_{ij}$$
 = the number of individuals classified as
 A_i and B_j
Hence, $\Sigma\Sigma n_{ij} = n$
 H_0 : $P(A_i \cap B_j) = P(A_i)P(B_j)$ for all i,j
 H_a : Some $P(A_i \cap B_j) \neq P(A_i)P(B_j)$

Expected Frequency:

$$\hat{E}_{ij} = \frac{\mathbf{n}_{i} \cdot \mathbf{X} \mathbf{n}_{\cdot j}}{\mathbf{n}}$$
Test Statistic:

$$X^{2} = \sum_{rows} \sum_{columns} \frac{\left(n_{ij} - \hat{E}_{ij}\right)^{2}}{\hat{E}_{ij}}$$
Rejection Region: $X^{2} > \chi^{2}_{\alpha}$ with d.f = (I-1)(J-1)

] [Lotto after 399 numbers have been drawn – Do some numbers appear more frequently in LOTTO?
N	Jumber-range: [1:40]
N	Number of balls selected at each draw: 7
N	Sumber of samples: 57
Т	otal number of balls selected: 57*7=399,
E	Expected value of each number: $399/40 = 9.975$
0	Observed χ^2 statistics is $x_0=30.97$
di	f=40-1=39
P	-value = 0.817
C	Conclusion: No evidence for departure from the null hypothesis.
	Slide 30 Stat 110B, UCLA, Iva Dinav

Chi-Square Tests of Independence

An Example, Researchers in a California community have asked a sample of 175 automobile owners to select their favorite from three popular automotive magazines. Of the 111 import owners in the sample, 54 selected *Car and Driver*, 25 selected *Motor Trend*, and 32 selected *Road & Track*.

Of the 64 domestic-make owners in the sample, 19 selected *Car and Driver*, 22 selected *Motor Trend*, and 23 selected *Road & Track*. At the 0.05 level, is import/domestic ownership independent of magazine preference? What is the most accurate statement that can be made about the *p*-value for the test?

Chi-Square Tests of Independence

• First, arrang	e the dat	ta in a tabl	e.			
(Car and	Motor	Road &			
<u> </u>	<u>)river (1)</u>	<u>Trend (2)</u>	<u>Track (3)</u>			
Import (Imp)	54	25	32	111		
Domestic (Dom)	<u>19</u>	22	<u>23</u>	<u>64</u>		
Totals	73	47	55	175		
• Second, compute the expected values and contributions to χ^2 for each of the six cells.						
• Then to the hypothesis test						

Chi-Square Tests of Independence					
	(ar and	Motor	Road &	
	<u>D</u>	river <u>(1)</u>	<u>Trend (2)</u>	<u>Track (3)</u>	
Import (Imp):	0 -	54	25	32	
	Е-	46.3029	29.8114	34.8857	
χ^2 contribution	on -	1.2795	0.7765	0.2387	
Domestic (Dom) :	0 -	19	22	23	
	Е-	26.6971	17.1886	20.1143	
χ ² contribution	on -	2.2192	1.3468	0.4140	
$\Sigma \chi^2$ contributions = 6.2747					

