UCLA STAT 110B

Applied Statistics for Engineering and the Sciences

•Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

•Teaching Assistants: Brian Ng, UCLA Statistics

University of California, Los Angeles, Spring 2003 http://www.stat.ucla.edu/~dinov/course_students.html

tat 110B. UCLA, Ivo Dinov

REVIEW Estimation (ch. 6, 7) Hypothesis Testing (ch. 8)

• Two Important Aspects of Statistical Inference

• Point Estimation – Estimate an unknown parameter, say θ , by some statistic computed from the given data which is referred to as a point estimator. Example: S² is a point estimate of σ^2

•Interval Estimation – A parameter is estimated by an interval that we are "reasonably sure" contains the true parameter value. Example: A 95% confidence interval for θ

• Hypothesis Testing – Test the validity of a hypothesis that we have in mind about a particular parameter using sample data.

lide 2 Stat 110B. UCLA. Ivo Dinov

Confidence Intervals for the Mean, µ

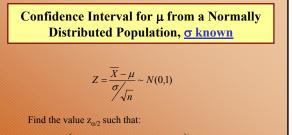
• Normally Distributed Population -

• If σ known – construct with normal distribution

• If σ unknown and $n \le 30$ – construct with student's T distribution

Arbitrarily Distributed Population -

• If n >> 30 – apply Central Limit Theorem and use normal distribution



$$P\left(-z_{a_{2}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{a_{2}}\right) = 1 - \alpha$$

Example

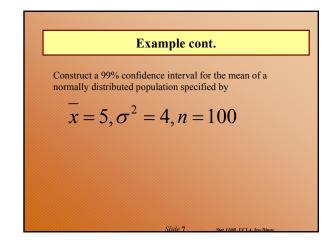
Construct a <u>90%</u> confidence interval for the mean of a normally distributed population specified by

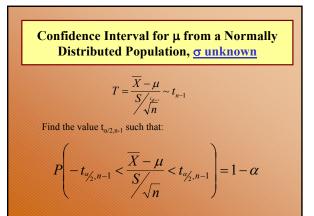
$$x=5, \sigma^2=4, n=25$$

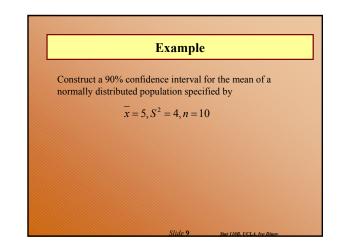
Example cont.

Construct a **99%** confidence interval for the mean of a normally distributed population specified by

$$x=5, \sigma^2=4, n=25$$







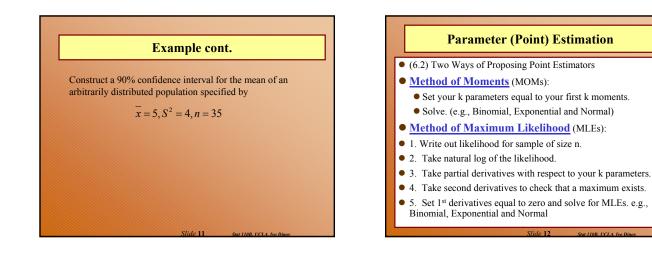
Apply Central Limit Theorem

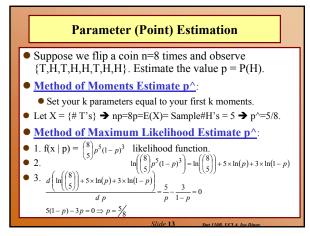
• Since n is large, the T-distribution limits to the standard normal. Hence, use a standard normal when computing confidence intervals regardless of whether σ is known or unknown.

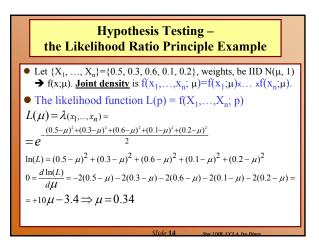
$$T_{df=n-1} \sim T_o = \frac{\overline{X} - \mu}{S / \sqrt{n}} \approx Z_o = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

lida 12

at 110B. UCLA. Ivo I







Hypothesis Testing

- In any problem there are two hypotheses:
- Null Hypothesis, H_o
- Alternative Hypothesis, H_a
- We want to gain inference about H_a, that is we want to establish this as being true.
- Our test results in one of two outcomes:
 - \bullet Reject $H_{\rm o}-$ implies that there is good reason to believe $H_{\rm a}$ true

Slide 15

Stat 110P LICEA Inc.D.

• Fail to reject H_o – implies that the data does not support that H_a is true; does not imply, however, that H_o is true

Hypothesis Testing - Motivation

- Point Estimates don't mean a thing unless you know how reliable the measurement is. Reporting an interval estimate at a certain level of confidence is a simple way to express uncertainty in your estimates.
- Hypothesis testing is about making one of two conclusions, reject or fail to reject, about a specified hypothesis, while knowing something about the probabilities of the two types of errors in your conclusion. The type I error you control by choosing α and your rejection region. If the sample size is fixed, the probability of a type II error can be found assuming a certain alternative is true. If the sample size hasn't been determined, you can find a sample size sufficient to ensure the probability of a type II error is below a desired level for a certain alternative.

Stat 110P UCLA Inc D

Hypothesis Testing - Motivation

- Hypothesis Testing Steps in General:
- 1. Identify parameter of interest. Describe it in context.
- 2. Determine Null Value and State Null Hypothesis.
- 3. Determine alternative value/region and state null hypothesis.
- 4. Write Test Statistic without entering sample quantities.
- 5. State α and rejection region.
- 6. Calculate Test Statistic using necessary sample quantities.
- 7. State conclusion (reject or fail to reject) and interpret in context.

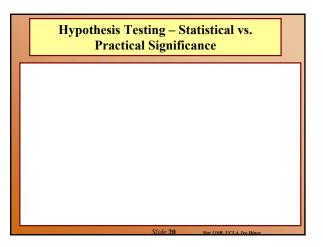
lida 17

Hypothesis Testing - Motivation

- What Test Do I Use when ... ?
- 1. X ~ N($\mu_{unknown}, \sigma_{known}^2$) \rightarrow one-sample Z
- 2. X ~ N($\mu_{unknown}, \sigma^2_{unknown}$) \rightarrow one-sample T
- 3. $X \sim D(\mu_{unknown}, \sigma^2_{unknown})$, where D is fairly symmetric and n is moderately big \rightarrow one-sample T
- 4. X ~ $D(\mu_{unknown}, \sigma^2_{unknown})$, where D is not symmetric and n is really big \rightarrow one-sample T
- 5. X ~ $D(\mu_{unknown}, \sigma^2_{unknown})$, where D is not symmetric and n is not big \rightarrow non-parametric, e.g. sign test.
- 6. $X \sim Bin(n_{known}, p_{unknown}) \rightarrow Z$ test for proportions

Hypothesis Testing - Motivation

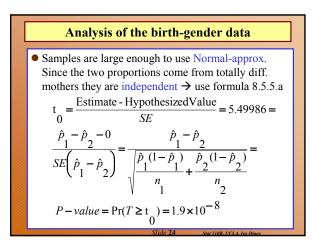
• The above situations each have their corresponding power calculations and confidence intervals. In cases 1-4, the confidence intervals can be used to answer the hypothesis testing question. However, in case 6 the confidence intervals should not be used to answer the hypothesis testing question.

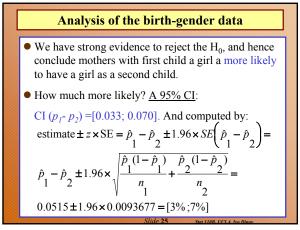


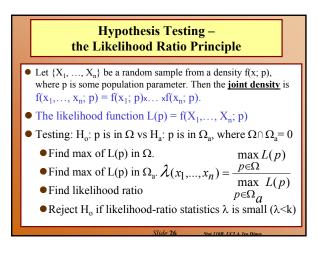
			econd Births by	<mark>with >1 kid</mark> / Sex	•
S	`		Second Child Male	Female	
The	First Child N	1 ale	3,202	2,776	
NPKA	F	emale	2,620	2,792	
	Т	otal	5,822	5,568	
before co will be u a girl are		king/ir ss it. N to hav	nterpreting th Aothers whos	e data that le 1 st child is second child,	,

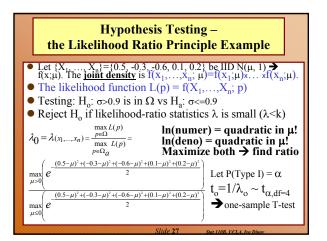
Analysis of the birth-gender data – data summary			
	Seco	nd Child	
Group	Number of births	Number of girls	
1 (Previous child was girl)	5412	2792 (approx. 51.6%)	
2 (Previous child was boy)	5978	2776 (approx. 46.4%)	
	e proportion of girl <u>Parameter of intere</u> ptical reaction). H _a :	s in mothers with est is $p_1 - p_2$.	

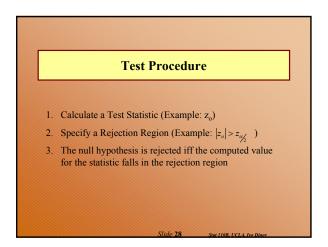
Hypothesis te	sting as decisio	n making		
Decision Making				
	Actual situation			
Decision made	H ₀ is true	H ₀ is false		
Accept H ₀ as true	OK	Type II error		
Reject H ₀ as false	Type I error	OK		
 Sample sizes: n₁=5 (estimates) p̂₁=279 H₀: p₁- p₂=0 (skept (research hypothes) 	$2/5412 \approx 0.5159$, $\hat{p}_2 =$ tical reaction). H _a :	2776/5978≈0.4644,		

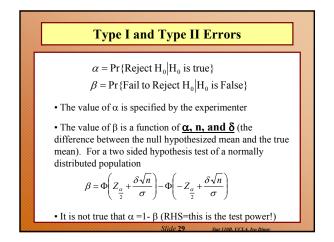


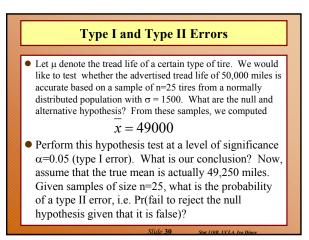


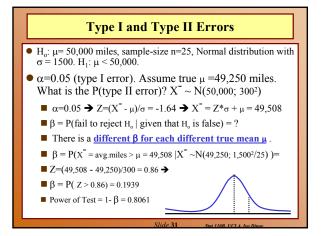








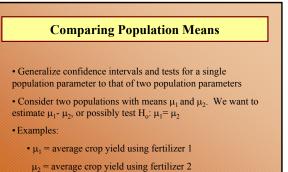




Another Example – Type I and Type II Errors

- One type of car is know to sustain no visible damage in 25% of 10-mph crash tests. A new bumper is proposed that increases this proportion. Let p be the new proportion of cars with no damage using the new bumpers. H_0 : p=0.25, H_1 : p>0.25.
- X = number of crushes/test with no damage in n=20 experiments. Under H_o we expect to get about n*p=5 no damage tests. Suppose we'd invest in new bumper technology if we get > 8 no damage tests → rejection region R={8,9,...20}.
- Find α and β . How powerful is this test?

Another Example – Type I and Type II Errors• H_0 : p=0.25, H_1 : p>0.25. X = number of crushes/test with no
damage in n=20 experiments.• X-Binomial(20, 0.25). Rejection region $R=\{8,9,...20\}$.• Find $\alpha = P(Type I) = P(X >= 8 when X-Binomial(20, 0.25))$.• Use SOCR resource $\Rightarrow \alpha = 1-0.898 = 0.102$ • Find $\beta(p=0.3) = P$ (Type II) =
• P(can't reject $H_0 | X-Binomial(20, 0.3)) = P(X <7 | X-Binomial(20, 0.3))$ • Use SOCR resource $\Rightarrow \beta = 0.772$ • Find $\beta(p=0.5) = P$ (Type II) =
• P(can't reject $H_0 | X-Binomial(20, 0.5)) = P(X <7 | X-Binomial(20, 0.5))$ • Use SOCR resource $\Rightarrow \beta = 0.772$ • Find $\beta(p=0.5) = P$ (Type II) =
• P(can't reject $H_0 | X-Binomial(20, 0.5)) = P(X <7 | X-Binomial(20, 0.5))$ • Use SOCR resource $\Rightarrow \beta = 0.132$



- μ_1 = women's average height
- μ_2 = men's average height

le 34 Stat 11

Assumptions

• $X_{1_1}X_{2_2}$,..., X_m is a random sample from a population with mean μ_1 and variance σ_1^2

- $Y_1, Y_2, ..., Y_n$ is a random sample from a population with mean μ_2 and variance σ_2^2
- The X and Y samples are independent of one another

We will investigate using $\overline{X} - \overline{Y}$

as an estimator of the difference in the means $\mu_1 - \mu_2$

Expectation and Variance of $\overline{X} - \overline{Y}$

Test Procedures and Confidence Intervals for Normal Populations with Known Variances (9.1)

If both samples have a normal distribution, then the test statistic $\overline{X} - \overline{Y}$ has a normal distribution as well. It may be standardized by

Test Procedures and Confidence Intervals for Large Samples (9.1)

When both samples are large (n>30 and m>30):

- The CLT guarantees that regardless of the distribution of the data, \overline{X} and \overline{Y} will have a Normal distribution.
- •The estimated standard deviations will be close to the population standard deviations

Example

Use the following data to construct a 95% confidence interval for $\mu_1 - \mu_2$.

 $m = 45, \bar{x} = 42500, s_1 = 2200, n = 45, \bar{y} = 40400, s_2 = 1900$

table record	s the sample	e mean and stan ting for 97 male	boredom. The following dard deviation of the and 148 female college that the mean rating is
			1 6 ' ' ' "
	nen than wo		el of significance.
higher for n	nen than wo	men at a .05 lev	

Two Sample t Test and Confidence Interval (9.2)

- The population variances are unknown
- At least one of the samples has a small sample size
- Assume each population is normally distributed. Experimentally, this may be established through normal probability plots.
- \overline{X} and \overline{Y} are standardized and distributed according to a t distribution

Consider the following stress limits for different types of woods. Test the hypothesis that the true average stress limit for red oak exceeds that of Douglas fir by 1MPa				
Туре	N	Avg	SampISD	
Red Oak	14	8.48	0.79	
Douglas Fir	10	6.65	1.28	

Slide 12

Stat 110R LICEA IN

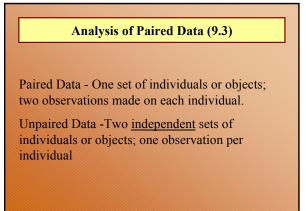
Pooled t Procedures

- · Not covered by the current edition of the book
- Assumes that the population variances are equal, i.e. $\sigma_1^2 = \sigma_2^2$
- Outperforms the two sample t-test in β for a given level of α if the hypothesized equality of variances is true. Same is true for the confidence intervals
- May give erroneous results, however, if the variances are not equal, i.e. not robust to violations of this assumption

Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as follows: $\{\bar{x}_1, N(\mu_1, \sigma_1)\}$ and $\{\bar{x}_2, N(\mu_2, \sigma_2)\}$. We've seen before that to make inference about $\mu_1 - \mu_2$ we can use a T-test for H₀: $\mu_1 - \mu_2 = 0$ with $t_0 = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{SE(\bar{x}_1 - \bar{x}_2)}$ And $Cl(\mu_1 - \mu_2) = \bar{x}_1 - \bar{x}_2 \pm t \times SE(\bar{x}_1 - \bar{x}_2)$ If the 2 samples are independent we use the SE formula $SE = \sqrt{s_1^2 / n_1 + s_2^2 / n_2}$ with $df = Min(n_1 - 1; n_2 - 1)$ This gives a conservative approach for hand calculation of an approximation to the what is known as the Welch procedure, which has a complicated exact formula.

Means for independent samples – equal or unequal variances? **Pooled T-test** is used for samples with assumed equal variances. Under data Normal assumptions and equal variances of $(x_1 - x_2 - 0)/SE(x_1 - x_2)$, where $SE = s_r \sqrt{1/n} + 1/n_2; s_p^2 = \sqrt{\frac{(n-1)s^2 + (n-1)s_2^2}{n_1 + n_2 - 2}}$ is exactly Student's t distributed with $df = (n_1 + n_2 - 2)$ Here s_p is called the pooled estimate of the variance, since it pools info from the 2 samples to form a combined estimate of the single variance $\sigma_1^2 = \sigma_2^2 = \sigma^2$. The book recommends routine use of the Welch unequal variance method.



Example

Consider testing whether a new drug significantly lowers blood pressure using 20 randomly selected patients

Unpaired Data – Randomly select 10 patients for the drug (1) and 10 for the placebo (2). Observe the magnitude of the reduction in blood pressure after taking medication. Test H_0 : $\mu_1 = \mu_2$ vs. H_a : $\mu_1 > \mu_2$ using two-sample ttest What about the age of the persons selected? Younger people may be more susceptible to a decrease in blood pressure than are older people. Can use pairing to "block" out age effect.

The Paired t-test

Assume that the data consists of n independently selected pairs $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$

Define $D_1=X_1-Y_1$, $D_2=X_2-Y_2$,..., $D_n=X_n-Y_n$. The D_i 's are the differences within pairs. Check that the D_i 's are normally distributed using a normal probability plot.

Let $D = \overline{X} - \overline{Y}$

Then $\mu_D =$

Hence testing H_0 : $\mu_D = \Delta$

is equivalent to testing H_0 : $\mu_1 - \mu_2 = \Delta$

Since the D_i's are independent and normally distributed R.V'.s, we can use a one sample t-test to test the above hypothesis

Let d and s_D be the sample mean and sample standard deviation. It follows that the Confidence Interval and Hypothesis Test for the paired t-test are

Paired t- vs. Two-Sample t-test

The paired t-test has fewer degrees of freedom than the two-sample t-test. Hence, the twosample t-test has a smaller β error for a fixed level of α than does the paired t-test. However, if there is a positive correlation between experimental units, the paired t-test will reduce the variance accordingly resulting in a more significant T statistic, where the two-sample t-test does not.

Paired t- vs. Two-Sample t-test

Use paired t-test if:

• There is great heterogeneity between experimental units and a large correlation within pairs

Use Two-Sample t-test if:

• The experimental units are relatively homogenous and the correlation between pairs is small Inferences Concerning the Difference in Population Proportions (9.4)

• Previous sections (9.1,2,3): We compared the difference in the means $(\mu_1 - \mu_2)$ of two different populations

• This section (9.4): We compare the difference in the proportions $(p_1 - p_2)$ of two different populations