

Sensitivity v	s. Specifi	city	
• <u>Sensitivity</u> is a measure of t known examples that are corre • <u>Sensitivity= TP/(TP+FN</u>)	he fraction ectly classif D	of gold sta ied/identif	indard ied.
•Specificity is a measure of t	he fraction	of negativ	e
examples that are correctly cla	ssified:	U	
• Specificity = TN/(TN+I	FP)	H _o : no eff	ects (μ=0)
• $TP = True Positives$		True I	Reality
•FN = False Negatives		H_o true	H _o false
•TN = True Negatives	Can't reject	TN	FN
\bullet FP = False Positives	Reject H _o	FP	TP
EOR 6520 All' Iva Dinav	ide ?		

1-dim classify <i>n</i> -inc	ension dividua	al tab Is in J	les – J-cat	egor	ies		
Qualitative (factors), class variabl define class/group membership (marital-status, blood-type, etc.)	es 🗾	Fr Sum	equenc marize	y table: discret	s can b e/quali	e use tative	ed to e var's.
**** (Ņ		R		
tegory	Cat. 1	Cat. 2	e 200	n Cat. j		× (Cat. J
Probability	p_1	p_2 .		p_i		•	p_I
Observed count	o_1	$\bar{O_2}$.	• •	O_{i}	• •	•	$\tilde{O_J}$
Expected count	E_1	E_2 .	• •	E_{j}	• •	•	E_J
			$E_j =$	n p _j			

Goo	dness-of-Fit: An Example
 <u>Problem</u>: In a st 13.5% of U.S. h owning 1 vehicle or more vehicles households in a 0.05 level of sig vehicle-ownersh of the nation as 	udy of vehicle ownership, it has been found that buseholds do not own a vehicle, with 33.7% e, 33.5% owning 2 vehicles, and 19.3% owning 3 i. The data for a random sample of 100 resort community are summarized below. At the nificance, can we reject the possibility that the ip distribution in this community differs from that a whole?
# Vehicles Owned	<u># Households</u>
0	20
1	35
2	23
3 or more	22

		Good	lness-	of-Fit: An Example
#	Vehicles	<u> </u>	E,	$[O_{ij} - E_{ij}]^2 / E_{ij}$
	0	20	13.5	3.1296
	1	35	33.7	0.0501
	2	23	33.5	3.2910
	3+22	19.3		0.3777
				Sum = 6.8484
I.	$H_0: p_0 = 0$	$0.135, p_1$	= 0.33	7, $p_2 = 0.335$, $p_{3+} = 0.193$
	Vehicle-c is in the n	wnershi ation as	p distrib a whole	bution in this community is the same as it
	H.• At les	ast one o	f the pr	oportions does not equal the stated value

H₁: At least one of the proportions does not equal the stated value Vehicle-ownership distribution in this community is <u>not</u> the same as it is in the nation as a whole.

Chi-Squ	are Tes	sts of Inde	pendence	
• First, arrange	the dat	a in a tabl	e.	
, j	ar and	Motor	Road &	
<u>Di</u> Totals	<u>river (1)</u>	<u>Trend (2)</u>	<u>Track (3)</u>	
Import (Imp)	54	25	32	111
Domestic (Dom)	<u>19</u>	<u>22</u>	<u>23</u>	64
Totals	73	47	55	175
 Second, comp contributions 	pute the to χ^2 for	e expected or each of	values and the six cell	l ls.
• Then to the h	ypothes	sis test		

	C	ar and	Motor	Road &
	<u>D</u>	river <u>(1)</u>	<u>Trend (2)</u>	<u>Track (3)</u>
Import (Imp):	0 -	54	25	32
	Е-	46.3029	29.8114	34.8857
χ^2 contribution	on -	1.2795	0.7765	0.2387
Domestic (Dom) :	0 -	19	22	23
	Е-	26.6971	17.1886	20.1143
χ^2 contribution	on -	2.2192	1.3468	0.4140
		Σ χ ² c	ontributions	s = 6.2747

