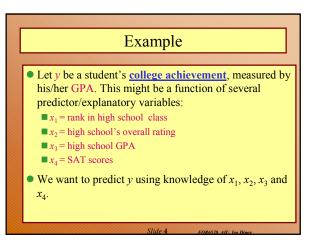


Multiple Regr	ession Analys	is	
C 6520, AIU, Ivo Dinov	Slide 2		

FOR 6520, AIU, Ivo Dine

• We extend the concept of simple linear regression as we investigate a response y which is affected by several independent variables, x_1 , x_2, x_3, \dots, x_k .

• Our objective is to use the information provided by the x_i to predict the value of y.



Example

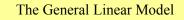
 Let y be the monthly sales revenue for a company. This might be a function of several variables:
 \$\$x_1\$= advertising expenditure
 \$\$x_2\$= time of year

- $\blacksquare x_3 =$ state of economy
- $\blacksquare x_4 = \text{size of inventory}$
- We want to predict y using knowledge of x_1, x_2, x_3 and x_4 .

Questions

- How well does the model fit?
- How strong is the relationship between the response *y* and the predictor variables, *x_k*?
- Have any assumptions been violated?
- How good are the estimates and predictions?

We collect information using *n* observations on the response *y* and the independent variables, x_1 , x_2 , x_3 , ..., x_k .



 $\blacksquare y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon$

• where

 $\checkmark y$ is the response variable you want to predict.

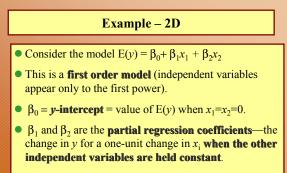
- \checkmark **\beta_0, \beta_1, \beta_2,..., \beta_k are unknown constants (regression parameters).**
- $\checkmark x_1, x_2, \dots, x_k$ are independent predictor variables, measured without error.

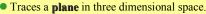
The Random Error

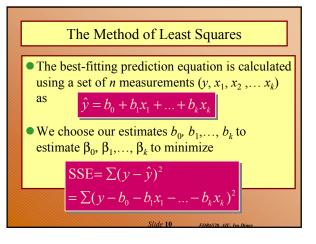
- The deterministic part of the model,
- $\blacksquare E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k ,$
- describes average value of y for any fixed values of x₁, x₂,..., x_k. The population of measurements is generated as y deviates from the **line of means** by an amount **ɛ**, We assume

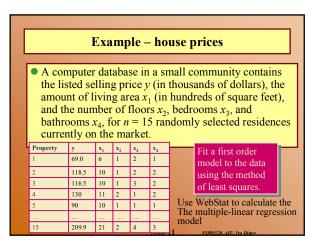
✓ **ε** are independent and identically distributed (IID)

- \checkmark Have a mean 0 and common variance σ^2 for any set $x_1, x_2, ..., x_k$.
- ✓ Have a normal distribution.

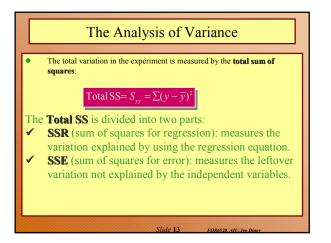




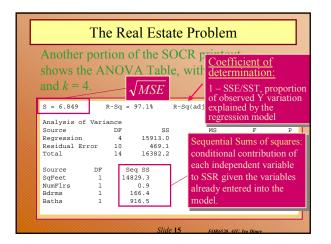




		Exan	nple		
• The t	first order r	model is			
E(v)	$= \beta_0 + \beta_1 x_1$	$+\beta_2 x_2 + \beta_3 x_3$	$+\beta_{x}$		
				the four inder	andant
	fit using WebStat with the values of y and the four independent				
variables entered into five columns of the Minitab worksheet.					
Regression equation					
			R	egression equa	ition
					ition
		ce versus SqFeet			ition
The regressi	on equation	is	NumFirs, B		
The regressi ListPrice =	on equation 18.8 + 6.27	is SqFeet - 16.	2 NumFirs, B	drms, Baths - 2.67 Bdrms +	
The regressi ListPrice = Predictor	on equation 18.8 + 6.27 Coef	is SqFeet - 16. SE Coef	2 NumFirs, B 2 NumFirs T	drms, Baths - 2.67 Bdrms + P	
The regressi ListPrice = Predictor Constant	on equation 18.8 + 6.27	is SqFeet - 16. SE Coef 9.207	2 NumFirs, B 2 NumFirs T 2.04	drms, Baths - 2.67 Bdrms + P	
The regressi ListPrice = Predictor	on equation 18.8 + 6.27 Coef 18.763	is SqFeet - 16. SE Coef	2 NumFirs, B 2 NumFirs T	drms, Baths - 2.67 Bdrms + P 0.069	
The regressi ListPrice = Predictor Constant SqFeet	on equation 18.8 + 6.27 Coef 18.763 6.2698	is SqFeet - 16. SE Coef 9.207 0.7252	2 NumFirs, B 2 NumFirs T 2.04	drms, Baths - 2.67 Bdrms + P 0.069 0.000 0.026	



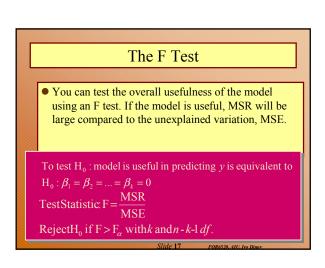
	Г	The AN	JOVA	Table		
Total	df = n	-1]	Mean Squ	ares	
	ession $d\bar{f} =$	k		MSI	R = SSR/k	
Error	df = n - n	-1 - k = n	- <i>k</i> -1	MS	$E = SSE/(n \cdot$	- <i>k</i> -1)
	Source	df	SS	MS	F	
	Regression	k	SSR	SSR/k	MSR/MSE	
	Error	n – k - l	SSE	SSE/(n-k-1)		
	Total	n -1	Total SS			
			Slide 14	FOR6520.	AIU. Ivo Dinov	

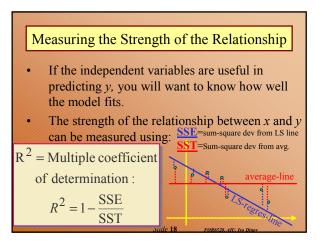


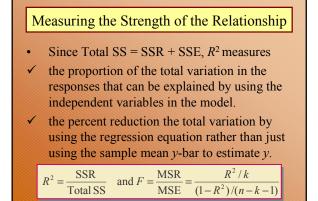
Testing the Usefulness of the Model

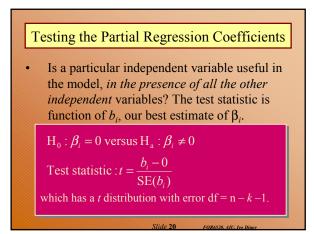
- The first question to ask is whether the regression model is of any use in predicting *y*.
- If it is not, then the value of y does not change, regardless of the value of the independent variables, $x_1, x_2, ..., x_k$. This implies that the partial regression coefficients, $\beta_1, \beta_2, ..., \beta_k$ are all zero.

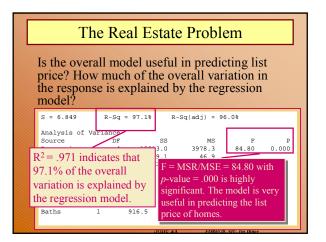
 $H_0: \beta_1 = \beta_2 = ... = \beta_k = 0 \text{ versus}$ $H_a: \text{ at least one } \beta_i \text{ is not zero}$

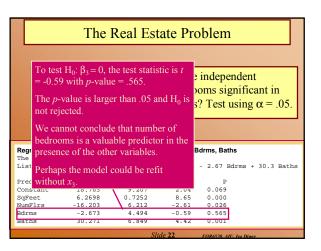




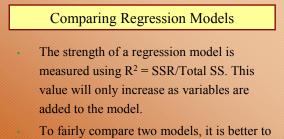


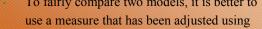






Comparing Regression Models





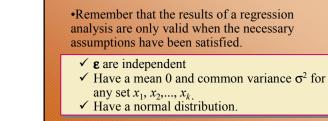
MSE

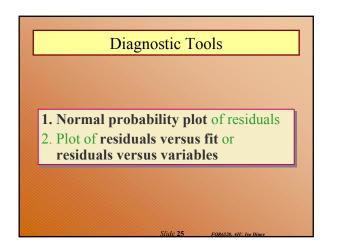
Total SS/(n-1)

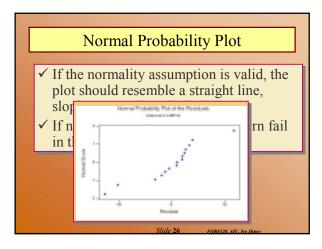
100%

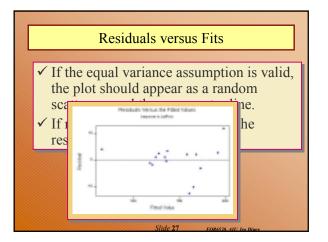
df:

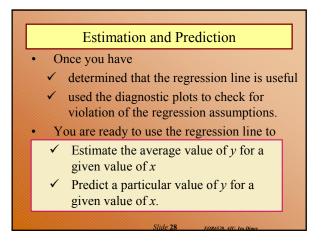
 $R^2(adj) =$

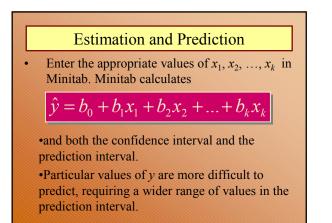


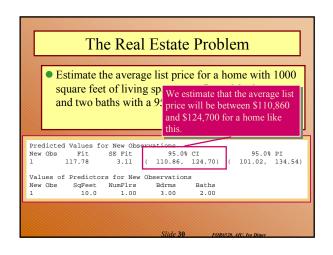








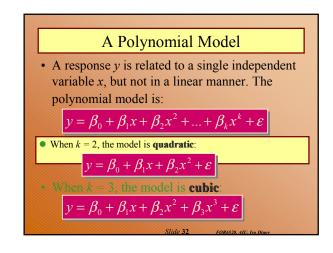


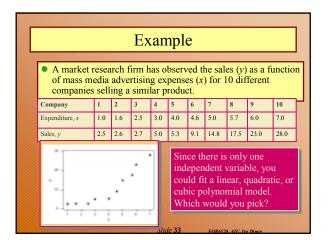


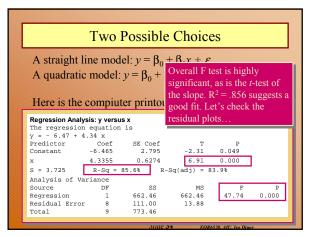
Using Regression Models

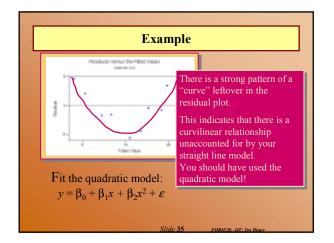
When you perform multiple regression analysis, use a step-by step approach:

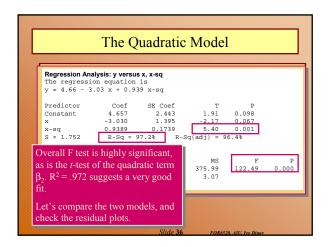
- 1. Obtain the fitted prediction model.
- 2. Use the analysis of variance *F* test and R^2 to determine how well the model fits the data.
- 3. Check the *t* tests for the partial regression coefficients to see which ones are contributing significant information in the presence of the others.
- 4. If you choose to compare several different models, use $R^{2}(adj)$ to compare their effectiveness.
- 5. Use diagnostic plots to check for violation of the regression assumptions.

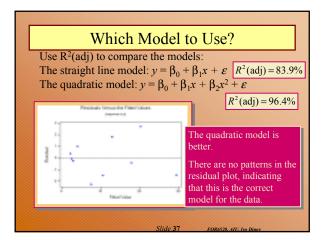


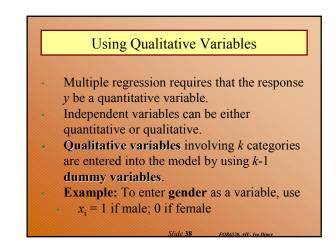




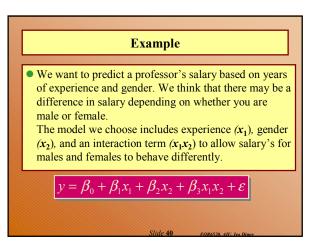


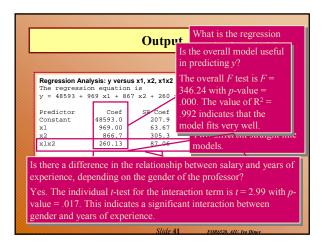


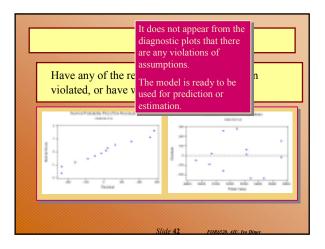




Example				
Data was collected on 6 male and 6 female assistant professors The researchers recorded their salaries (<i>y</i>) along with years of experience (x_1). The professor's gender enters into the model as a dummy variable: $x_2 = 1$ if male: 0 if not.				
Professor Salary, v Experience, x, Gender, x, Interaction, x, x,				
Professor	Salary, y	Experience, x ₁	Gender, x ₂	Interaction, x1x2
Professor 1	Salary, y \$50,710	Experience, x ₁	Gender, x ₂	Interaction, x ₁ x ₂
Professor 1 2		Experience, <i>x</i> ₁ 1 1 1	Gender, x2 1 0	Interaction, x ₁ x ₂ 1 0
1	\$50,710	Experience, x1 1	1	1
1	\$50,710	Experience, x1 1 5	1	1







Testing Sets of Parameters

- Suppose the demand y may be related to five independent variables, but that the cost of measuring three of them is very high.
- If it could be shown that these three contribute little or no information, they can be eliminated.
- You want to test the null hypothesis
- H_0 : $\beta_3 = \beta_4 = \beta_5 = 0$ —that is, the independent variables x_3 , x_4 , and x_5 contribute no information for the prediction of *y*—versus the alternative hypothesis:
- H_a : At least one of the parameters β_3 , β_4 , or β_5 differs from 0 —that is, at least one of the variables x_3 , x_4 , or x_5 contributes information for the prediction of y.

Slide 43

Testing Sets of Parameters• To explain how to test a hypothesis concerning a set of model parameters, we define two models:• Model One (reduced model) $\mathcal{E}(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_r x_r$ Model Two (complete model) $\mathcal{E}(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_r x_r + \beta_{r+2} x_{r+2} + \dots + \beta_k x_k$ • terms in model 1 additional terms in model 2

	Testing Sets of Parameters			
•	The test of the hypoth	iesis		
•	$H_0: \boldsymbol{\beta}_3 = \boldsymbol{\beta}_4 = \boldsymbol{\beta}_5 = \boldsymbol{0}$			
•	$H_{\rm a}$: At least one of			
•	uses the test statistic	$F = \frac{(SSE_1 - SSE_2)/(k - r)}{k - r}$		
	uses the test statistic $F = \frac{(SSE_1 - SSE_2)/(k - r)}{MSE_2}$			
wh	where F is based on $df_1 = (k - r)$ and $df_2 =$			
n -	(k+1).			
Th	e rejection region for th	ne test is identical to		
oth	ner analysis of variance	<i>F</i> tests, namely $F > F_{\alpha}$.		

Stepwise Regression

- A stepwise regression analysis fits a variety of models to the data, adding and deleting variables as their significance in the presence of the other variables is either significant or nonsignificant, respectively.
- Once the program has performed a sufficient number of iterations and no more variables are significant when added to the model, and none of the variables are nonsignificant when removed, the procedure stops.
- These programs always fit first-order models and are not helpful in detecting curvature or interaction in the data.

Some Points of Caution

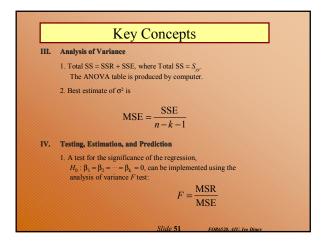
- Causality: Be careful not to deduce a causal relationship between a response y and a variable x.
- Multicollinearity: Neither the size of a regression coefficient nor its *t*-value indicates the importance of the variable as a contributor of information. This may be because two or more of the predictor variables are highly correlated with one another; this is called multicollinearity.

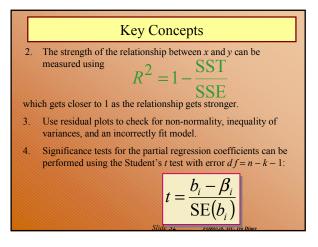
Key Concepts

The General Linear Model

I.

- 1. $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$
- 2. The random error ε has a normal distribution with mean 0 and variance σ^2 .
- II. Method of Least Squares
 - 1. Estimates $b_0, b_1, ..., b_k$ for $\beta_0, \beta_1, ..., \beta_k$, are chosen to minimize SSE, the sum of squared deviations about the regression line $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$.
 - 2. Least-squares estimates are produced by computer.





Key Concepts

5. Confidence intervals can be generated by computer to estimate the average value of y, E(y), for given values of x₁, x₂, ..., x_k. Computer-generated prediction intervals can be used to predict a particular observation y for given value of x₁, x₂, ..., x_k. For given x₁, x₂, ..., x_k, prediction intervals are always wider than confidence intervals.

Key Concepts

V. Model Building

- The number of terms in a regression model cannot exceed the number of observations in the data set and should be considerably less!
- To account for a curvilinear effect in a quantitative variable, use a second-order polynomial model. For a cubic effect, use a third-order polynomial model.
- 3. To add a **qualitative** variable with k categories, use (k 1) dummy or indicator variables.
- 4. There may be interactions between two qualitative variables or between a quantitative and a qualitative variable. Interaction terms are entered as βx_{X_i} .
- 5. Compare models using $R^2(adj)$.