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| Coverage of Research & Design I —Spring 03 |

|| ® Applications of Central Limit Theorem,

\ Law of Large Numbers.

®Design of studies and experiments.

®Fisher's F-Test & Analysis Of Variance
(ANOVA, 1- or 2-way).

®Principle Component Analysis (PCA).

®y2 (Chi-Square) Goodness-of-fit test.

®Multiple linear regression

®General Linear Model

®Bootstrapping and Resampling
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{eCourse Description
eClass homepage
eOnline supplements, VOH’s etc.
eFinal Exam/Project Format

http://www.stat.ucla.edu/~dinov/courses_students.html

| Review of Research & Design | —Fall’02 |

|| ®Intro to stats, vocabulary & intro to SPSS
| ®Displaying data

®Central tendency and variability

®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error

®Type I and Type II errors; Power of a test

®Intro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques
®Non-parametric statistical tests

Newtonial science vs. chaotic science

® Article by Robert May, Nature, vol. 411, June 21, 2001

®Science we encounter at schools deals with crisp
certainties (e.g., prediction of planetary orbits, the periodic table
as a descriptor of all elements, equations describing area, volume,
velocity, position, etc.)

® As soon as uncertainty comes in the picture it shakes
the foundation of the deterministic science, because only
probabilistic statements can be made in describing a
phenomenon (e.g., roulette wheels, chaotic dynamic
weather predictions, Geiger counter, earthquakes, etc.)

®What is then science all about — describing absolutely
certain events and laws alone, or describing more
general phenomena in terms of their behavior and
chance of occurring? Or may be both!




Introduction to statistics |

®|ntro to stats, vocabulary & intro to SPSS
®Displaying data

®(Central tendency and variability

®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error

®Type I and Type II errors; Power of a test

®Intro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques
®Non-parametric statistical tests

Errorsin Samples ...

® Sclection bias: Sampled population is not a representative subgroup of
the population really investigated.

® Non-response bias: If a particular subgroup of the population studied
does not respond, the resulting responses may be skewed.

® Question effects: Survey questions may be slanted or loaded to
influence the result of the sampling.

® [s quota sampling reliable? Each interviewer is assigned a fixed quota
of subjects (subjects district, sex, age, income exactly specified, so
investigator can select those people as they liked).

® Target population —entire group of individuals, objects, units we study.

® Study population —a subset of the target population containin
all “HI%}ISIZ Wpilich could possibly be used in the s%.ldyp P g

® Sampling protocol — procedure used to select the sample

L] Sample — the subset of “units” about which we actually collect info.

M ore definitions ...

® How could you implement the lottery method to randomly sample 10
students from a class of 2502 — list all names; assign numbers 1.2.3.....250 to
all students; Use a random-number generator to choose (10-times) a number in
range [0;250]; Process students drawn.

® Random or chance error is the difference between the sample-value and
the true population-value (e.g., 49% vs. 69%, in the above body-
overweight example).

® Non-sampling errors (e.g., non-response bias) in the census may be
considerably larger than in a comparable survey, since surveys are much
smaller operations and easier to control.

® Sampling errors-arising from a decision to use a sample rather than entire population
® Unbiased procedure/protocol: (e.g., using the proportion of

left-handers from a random sample to estimate the
corresponding proportion in the population).

® Cluster sampling- a cluster of individuals/units are used as a sampling
unit, rather than individuals.

Variation in sample per centages

Poll: Do you 'con51der yourself Target: True population
overweight? percentage = 69%

Sarlngles of 20 people — O <] @@) 5] o O
10 @@
Samples of 500 people —— o]
Palh=:

We are getting closer to 50 /t{ 70 80 90
The population mean, as

N — s this a coincidence?
Figurel.1.1 Comparing percentages from 10 different surveys each of

20 people with those from 10 surveys each of
500 people (all surveys from same population).

Sample percentage

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Moreterminology ...

® Census — attempt to sample the entire population

® Parameter — numerical characteristic of the population,
e.g., income, age, etc. Often we want to estimate population
parameters.

@ Statistic — anumerical characteristic of the sample.
(Sample) statistic is used to estimate a
corresponding population parameter.

® Why do we sample at random? We draw “units” from
the study population at random to avoid bias. Every subject in
the study sample is equally likely to be selected. Also random-
sampling allows us to calculate the likely size of the error in
our sample estimates.

M oreterminology ...

©® What are some of the non-sampling errors that

plague surveys? (non-response bias, question effects, survey format
effects, interviewer effects)

® [f we take a random sample from one population, can
we apply the results of our survey to other

populatlons? (It depends on how similar, in the respect studied, the
two populations are. In general- No! This can be a dangerous trend.)

® Are sampling households at random and interviewing people
at random on the street valid ways of sampling people from an
urban population? (No, since clusters (households) may not be urban in
their majority.)

® Pilot surveys — after prelim investigations and designing the trial surve
Q’s, we need to get a “small sample” checking clearness and ambiguity o
the questions, and avoid possible sampling errors (e.g., bias).




Questions ...

® Give an example where non-representative

information from a survey may be useful. Non-
representative info from surveys may be used to estimate parameters of the actual
sub-population which is represented by the sample. E.g., Only about 2% of
dissatisfied customers complain (most just avoid using the services), these are the
most-vocal reps. So, we can not make valid conclusions about the stereotype of the
dissatisfied customer, but we can use this info to tract down changes in levels of
complains over years.

® Why is it important to take a pilot survey?

® Give an example of an unsatisfactory question in a
questionnaire. (In a telephone study: What time is it?

Do we mean Eastern/Central/Mountain/Pacific?)

Questions ...

® Why should we try to “blind” the investigator in an
experiment?

® Why should we try to “blind” human experimental
subjects?

® The basic rule of experimentor :

“Block what you can and randomize what you cannot.”

Questions ...

® What is the difference between a designed experiment and an
observational study? (no control of the design in observational studies)

® Can you conclude causation from an observational study?
‘Why or why not? (not in general!)

How do we try to investigate causation questions using
observational studies? In a smoking-lung-cancer study: try to divide
all subjects, in the obs. study, into groups with equal, or very similar levels
of all other factors (age, stress, income, etc.) — I.e. control for all outside
factors. If rate of lung-cancer is still still higher in smokers we get a
stronger evidence of causality.

® What is the idea of controlling for a variable, and why is it
used? Effects of this variable in the treatment/control groups are similar.

® Epidemiology — science of using statistical methods to find causes or
risk factors for diseases.

Questions ...

® Random allocation — randomly assigning treatments to units,
leads to representative sample only if we have large # experimental units.

® Completely randomized design- the simplest experimental
design, allows comparisons that are unbiased (not necessarily
fair). Randomly allocate treatments to all experimental units,
so that every treatment is applied to the same number of units.
E.g., If we have 12 units and 3 treatments, and we study treatment efficacy,
we randomly assign each of the 3 treatments to 4 units exactly.

® Blocking- grouping units into blocks of similar units for
making treatment-effect comparisons only within individual
groups. E.g., Study of human life expectancy perhaps income
is clearly a factor, we can have high- and low-income blocks
and compare, say, gender differences within these blocks
separately.

Experimentsvs. observational studies
for comparing the effects of treatments

® In an Experiment
B experimenter determines which units receive which
treatments. (ideally using some form of random allocation)

® Observational study — useful when can’t design a
controlled randomized study

B compare units that happen to have received each of the
treatments

M Ideal for describing relationships between different
characteristics in a population.

B often useful for identifying possible causes of effects, but
cannot reliably establish causation.

® Only properly designed and executed experiments
can reliably demonstrate causation.

The Subject of Statistics

Statistics is concerned with the process of finding out
about the world and how it operates -

® in the face of variation and uncertainty

® by collecting and then making sense (interpreting) of
data.




Displaying data

@®]ntro to stats, vocabulary & intro to SPSS
®Displaying data

®(Central tendency and variability

®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error

®Type I and Type II errors; Power of a test

®Intro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques
®Non-parametric statistical tests

Distinguishing between types of variable

Types of Variables

Quantitative Qualitative
(measurements and counts) W
Continuous Discrete Categorical Ordinal
few repeated values) (many repeated values) (no idea of order) (fall in natural order)

Different graphs of the same set of numbers—

percentages of the world’s gold production in 1991
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Types of variable

® Quantitative variables are measurements and
counts

MW Variables with few repeated values are treated as
continuous.

B Variables with many repeated values are treated
as discrete

@ Qualitative variables (a.k.a. factors or class-
variables) describe group membership

Questions ...

® What is the difference between quantitative and
qualitative variables?

® What is the difference between a discrete variable
and a continuous variable?

® Name two ways in which observations on qualitative
variables can be stored on a computer. (strings/indexes)

® When would you treat a discrete random variable as
though it were a continuous random variable?
B Can you give an example? ($34.45, bill)

Questions ...

® For what two purposes are tables of numbers
presented? (convey information about trends in the data, detailed

analysis)

® When should you round numbers, and when should you
preserve full accuracy?

® How should you arrange the numbers you are most

interested in comparing? (Arrange numbers you want to compare in
columns, not rows. Provide written/verbal summaries/footnotes. Show

row/column averages.)

® Should a table be left to tell its own story?




Thedot plot

Dot plot.

SSb oo0o0 o
—— —— T
cluster gap outlier

Dot plot showing special features.

Scale breaks
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10 20 30 40 50 60

(a) Unbroken scale
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scale break

(b) Broken scale

Dot plot with and without a scale break.

Example of a stem-and-leaf plot

Units: 7|2 =72

S Values 52, 54 and
tem | 5 Leafs

their frequencies

1
2
3
4
5
6
7

Example of exploiting gaps and clusters

o o @ 00 000 OO0 oo o

40 50 60 70 80 90 100

Grading of a university course.

A labeled dot plot
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% Growth in GDP

Forecast of percent growth in GDP for 1990
for some South-East Asian and Pacific countries.

Traffic death-rates data

Traffic Death-Rates (per 100,000 Population) for 30 Count

17.4 Australia 20.1 Austria 19.9 Belgium 12.5 Bulgaria 15.8 Canada
10.1 Czechoslovakia 13.0 Denmark 11.6 Finland 20.0 France 12.0 E. Germany

13.1 W. Germany 211 Greece 54HongKong  17.1 Hungary 15.3 Ircland

10.3 Israel 10.4 Japan 26.8 Kuwait 11.3 Netherlands 20.1 New Zealand
105 Norway 14.6 Poland 25.6 Portugal 12.6 Singapore 9.8 Sweden

15.7 Swi 18.6 United States 12.1 N. Ireland 12.0 Scotland. 10.1England & Wales

[Data for 1983, 1984 or 1985 depending on the country (prior to reunification of Germany)
ISource: Hutchinson [1987, page 3].




Coyote Lengths Data (cm)

Females
93.0 97.0  92.0 101.6  93.0 845 1025 978  91.0 98.0 93.5 91.7
90.2 915 80.0 86.4 914 83.5 88.0 71.0 813 88.5 86.5 90.0
84.0 89.5 84.0 850 87.0 88.0 86.5 96.0  87.0 93.5 93.5 90.0
85.0 97.0 86.0 73.7
Males

97.0 95.0  96.0 91.0 950 845 88.0 96.0 96.0 87.0 95.0 100.0

101.0 96.0  93.0 925 95.0 985 88.0 81.3 91.4 88.9 86.4 101.6
83.8  104.1 88.9 92.0 910 90.0 850 935 78.0 100.5  103.0 91.0

105.0 86.0 955 86.5 90.5 80.0 80.0

Units: 174 =17.4 deaths per 100,000
5| 4
6
7
8
9] 8 Units: 1|7=17 deaths per 100,000
w1 13 45 0| s
1113 6 0
1200 01 5 6 0
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211 216 17
22
23 (b)
24
25| 6
26| 8
(a)
' Two stem-and-leaf plots for the traffic deaths dat
Frequency Table for
Female Coyote Lengths
Class Interval Tally Frequency Stem-and-leaf plot
7075 || 2 7|1 4
75-80° 0 7
80-85" i 6 80 1 444
85-90 N 12 8555667777889
90-95" MU 13 900 0001122233444
95-100° i 5 916 7788
-«
* a3
- compare 29
5 -— ~ o
ES Ed
£ 3823
<+ dworm
o o owowvN
70 80 90 100 rrooaag
length (cm)
(a) Histogram (b) Stem-and-leaf plot rotated

Histogram of the female coyote-lengths data.

Questions ...

® What advantages does a stem-and-leaf plot have over

a histogram? (S&L Plots return info on individual values, quick to
produce by hand, provide data sorting mechanisms. But, histograms are

more attractive and more undexstandable).

® The shape of a histogram can be quite drastically
altered by choosing different class-interval
boundaries. What type of plot does not have this
problem? (density trace) What other factor affects the
shape of a histogram? (bin-size)

® What was another reason given for plotting data on a
variable, apart from interest in how the data on that

variable behaves? (shows features, cluster/gaps, outliers; as well as
trends)

Coyotes captured in Nova Scotia, Canada. Data courtesy of Dr Vera Eastwood.

Frequency Table for
Female Coyote Lengths
Class Interval ~ Tally Frequency Stem-and-leaf plot
70757 W 2 711 4
75-80" 0 7
BOdy 80-85° M| 6 sfo 1 44 4
length85-90' W 12 8555667777889
9095 WMl 13 9/0 000 1 1 22233444
95-100 S 5 9(6 7 7 8 8
100-105 || 2 102 3
Total 40

Histogram bin-size change
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(a) Original histogram (b) Change class-interval width

Histogizem' biti-boundary change (interval width = 3)

12

S
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(c) Same widths, different boundaries (d) Density trace

(interval width = 5) (window width = 5)

Interpreting Stem-plots and Histograms |

A ALYAN

(a) Unimodal (b) Bimodal (c) Trimodal
(e) Positively skewed (f) Negatively skewed

(long upper tail) (long lower tail)

(1) A e—m
(g) Symmetric (h) Bimodal with gap (i) Exponential shape




Inter prethtem-pIots and Histograms

<—spike

(j) Spike in pattern

outlier outlier
v v
o

(k) Outliers (1) Truncation plus outlier

Features to look for in histograms and stem-and-leaf plots.

Skewness & Kurtoss |

® What do we mean by symmetry and positive and
negative skewness? Kurtosis? Properties?!?

> (r-7) >0 -7)
=f__——— . Kurtosis =£2——
(N =-1)SD (N -1)SD

® Skewness is linearly invariant Sk(aX+b)=Sk(X)

Skewness

® Skewness is a measure of unsymmetry
® Kurtosis is (also linearly invariant) a measure of flatness
® Both are used to quantify departures from StdNormal
® Skewness(StdNorm)=0; Kurtosis(StdNorm)=3

Box plot compared to dot plot

Q,_ Median Q,
Box plot _E} o o °
Dot plot @00 QWD QO@MO 0@ 00 O O @® o o o
T T T T
50 100 150 200
SYSVOL
Box plot for SYSVOL.

Fasci n| ons with histograms —
Histogram of heights

Descriptive statistics from computer
programs like STATA

Descriptive Statistics
Vari abl e N Mean Median  TrMean  StDev SE Mean
age 45 50. 133 51.000 50. 366 6. 092 0.908
Vari abl e M nimum  Maxi num QL o]
age 36. 000 59. 000 46. 508 56. OO‘O

Standard deviation

Lower quartile  Upper quartile

Construction of a box plot

Q, Med Q,
Data O o o 0& 0000 o o (o)
1.5 IQR 1.5 IQR
—
(pull back until hit observation) (pull back until hit observation)
[o] o
T T T T T T T T T
Scale
_ Construction of a box plot.



Frequency Table

TABLE 2.5.1 Word Lengthsfor the First 100
Words on a Randomly Chosen Page
3 2 2

3 4
6 9
5.9
7_S

4 4
29
3 2
37
3 2

9 3
3 2
4 4
3 6
4 5

Frequency Table

1 2 3 4 5 6
1 22 18 22 13 8

2
3
2
7

Central tendency and varlillt

@®]ntro to stats, vocabulary & intro to SPSS
®Displaying data

®Central tendency and variability
®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error
®Type I and Type II errors; Power of a test
®Intro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques

®Non-

parametric statistical tests

Percentage of species

1

2

3 4 5 6 7 8 10"
Number of strata occupied

Bar graph for species data.




Beware of inappropriate averaging

%Y
m
M 5 o O
Welcometo b o
MEANSTOWN
Founded 1867
Area 20

Altitude 584
Population 372
Average 711

Il

rom Chan by C.J. Wild and G.A.F. Seber. © John Wiley & Sons, 1999,

The five-number summery = (Min, Q,, Med, Q;, Max) IQR = Q3 = Q1
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Z—scores, Normal star

®Displaying data

®(Central tendency and variability

®Normal z-scor es, standar dized distribution
®Probability, Samples & Sampling error

®Type I and Type II errors; Power of a test

®]ntro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques
®Non-parametric statistical tests

(a) Changing p

shifts the curve along the axis

increases the spread and flattens the curve

(b) Increasing o

The Normal distribution density curve

® |s symmetric about the mean! Bell-shaped and
unimodal.

® Mean = Median!

Under standing the standard deviation: o

Shaded area = 0.683 Shaded area = 0.954 Shaded area = 0.997

t t t t t t
U-o u+o 1L=2c H+20 p-3c 1+30]

68% chance of falling 95% chance of falling 99.7% chance of falling
between p-c and p+o between ¢ —20 and u+20 between ¢ —30 and u+30

15



Basic method for obtaining probabilities

® Sketch a Normal curve, marking the mean and other
values of interest.

® Shade the area under the curve that gives the desired
probability.

® Devise a way of getting the desired area from lower-
tail areas.

® Obtain component lower-tail probabilities from a
computer program

Obtaining an upper-tail probability

We want Programs supply

(X > 25) pr(X<25) pr(X>25)
=7

=0.2874

11 t1
25 - U=27.2 25L‘u:27,2
Since total area under curve =1, pr(X>25)=1-pr(X < 25

Generally, pr(X>x) = 1= pr(X<x)

Theinverse problem — upper-tail
per centiles/quantiles

‘Obtainingan inver se upper-tail probability |

“What value gives

thetop 25%7” What does this say about the lower tail?
prob=0.25 1 -prob prob
=0.75
0.25 0.75 o5
H 162.7—)A T ,11:162.7—J T
27?

Obtain fromprogram ~ #~ *°°
[ Program returns 166.88]

(a) omputing pr(160 < X =< 180) |

Programs supply Wewant

pr(X<180) and pr(X=<160) pr(160 < X <180) = difference

Shaded Shaded Shaded
area area area

160 H= 174

u= 174 160 M= 174
| pr(160 < X < 180) = pr(X<180) — pr(X<160)

The inver se problem — Per centiles/quantiles
(a) p-Quantile (b) 80th percentile (0.8-quantile)
of women'’s heights
Programs supply x
P B Normal(u=162.1 80% of people have
x-value for which pr(X=<x p) =p .
prob=0.8 height below the
prob=p 80th percentile.
5 This is EQ to
i HE1627 — 92 saying there’s
=7 progamrenms|  80% chance that a
[ Thus 80% lie beloy random
[ (© Further percentilesof women'sheights | observation from
[Percent 1% } 5% | 10% | 20% | 30% | 70% | 80% | 90% | 95% the distribution
Propn 001 005 | 01 02 03 07 08 09 099 .
[Percentile | (or quTnnIe) will fall below the
148.3 11525 1548 157.5 159.4 | 166.0 167.9 | 170.6  172. o
o it e e e I e S o ] 80th percentile.

The inverse problem is what is the height for the 80th percentile/quantile? So

far we studied given the height value what’s the corresponding percentile?

Review

® What is meant by the 60th percentile of heights?

® What is the difference between a percentile and a
quantile? (percentile used in expressing results in %, whereas quantiles used
to express results in term of probabilities)

® The lower quartile, median and upper quartile of a
distribution correspond to special percentiles. What
are they? express in terms of quantiles. @sv%, s0%,75%)

® Quantiles are sometimes called inverse cumulative
probabilities. Why?

16



Standrd Normal Curve

® The standard normal curve is described by the equation:

Where remember, the natural number e ~ 2.7182...
We say: X~Normal(y, @), or simply X~N(y, o)

General Normal Curve |

® The general normal curve is defined by: _(I‘ﬂ)z
W Where [ is the average of (the symmetric) e 207

normal curve, and O is the standard
deviation (spread of the distribution).

V= 27107

B Why worry about a standard and general normal curves?
B How to convert between the two curves?

The z-score

® The z-scor e of x is the number of standard deviations x
is from the mean. (Body-Mass-Index, BMI)

TABLE 6.3.1 Examplesof z -Scores
X | z -score=(x -u)lo Inter pretation
Male BMI values (kg/m?)
25 (25-27.3)/4.1 = -0.56 25 kg/m * is 0.56 sd's below the me:]
35 (35-27.3)4.1= 1.88 35 kg/m * is 1.88 sd's above the me:
Female heights (cm)
155 T‘ (155-162.7)/6.2 = -1.24 155¢m is 1.24 sd's below the mean \
180 (180-162.7)/6.2 = 2.79 180cm is 2.79 sd's above the mean
[Male BMI-values: 11=27.3, 0=4.1 ~ Females heights: p=162.7, 0=6.2

® Which ones of these are unusually large/small/away from the mean?

Standard Normal Approximation

® The standard normal curve can be used to estimate the percentage of
entries in an interval for any process. Here is the protocol for this
approximation:
W Convert the interval (we need the assess the percentage of entries in) to
standard units. We saw the algorithm already.
W Find the corresponding area under the normal curve (from tables or online
databases);

Compute %
Transform to Std.Units

What percentage of the

density scale histogram
is shown on this graph?

Areas under Standard Normal Curve —
Normal Approximation

® Protocol:
B Convert the interval (we need to assess the percentage of entries in)
to Standard units. Actually convert the end points in Standard units.
OIn general, the transformation X - (X-l)/0, standardizes the
observed value X, where |1 and O are the average and the
standard deviation of the distribution X is drawn from.
B Find the corresponding area under the normal curve (from tables or
online databases);
O Sketch the normal curve and shade the area of interest

Separate your area into individually computable sections

Check the Normal Table and extract the areas of every sub-
section

QAdd/compute the areas of all

sub-sections to get the total area.

The standard Normal distribution

Standard Normal distribution:

mean(H) =0, SD(0)=1



Working in standard units

What values contain the central 90%?

What does that say about the lower tail?

The central 90%

5% ( 90% '\ 5% 95%|

Obtaln zfrom program
[Program returns 1.6449]

file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionallnstructorAids

Thedensity curve

® The probability distribution of a continuous variable
is represented by a density curve.

B Probabilities are represented by areas under the curve,
Qthe probability that a random observation falls between a and b
equal to the area under the density curve between a and b.

M The total area under the curve equals 1.

B The population (or distribution) mean £, = E(X), is where
the density curve balances.

B When we calculate probabilities for a continuous random
variable, it does not matter whether interval endpoints are
included or excluded.

What values contain the central 90%?

What does that say about the lower tail?

The central 90%

5% ( 90% '\ 5% 95%|

Obtaln zfrom program
[Program returns 1.6449]

Continuous Variables and Density Curves

® There are no gaps between the values a continuous
random variable can take.

® Random observations arise in two main ways: (i) by
sampling populations; and (ii) by observing
processes.

For any random variable X

® E(aX+b)=aE(X)+b and SD(aX +b)=|a|SD(X)

18



The Normal distribution

X ~Normal(u. = i, g, = 0)
Features of the Normal density curve:
® The curve is a symmetric bell-shape centered at /4.

® The standard deviation o governs the spread.

M 68.3% of the probability lies within 1 standard deviation of
the mean

M 95.4% within 2 standard deviations
M 99.7% within 3 standard deviations

Standard Units

The zscore of avalueais....

® the number of standard deviations a is away from the
mean

® positive if a is above the mean and negative if a is
below the mean.

The standard Normal distribution has ¢/=0 and o= 0.

® We usually use Z to represent a random variable with
a standard Normal distribution.

Combining Random Quantities

Variation and independence:

® No two animals, organisms, natural or man-made
objects are ever identical.

® There is always variation. The only question is
whether it is large enough to have a practical impact
on what you are trying to achieve.

® Variation in component parts leads to even greater
variation in the whole.

Probabilities

® Computer programs provide lower-tail (or
cumulative) probabilities of the form pr(X < x)
B We give the program the x-value; it gives us the
probability.

® Computer programs also provide inverse lower-tail
probabilities (or quantiles)

B We give the program the probability; it gives us the x-
value.

® When calculating probabilities, we shade the desired
area under the curve and then devise a way of
obtaining it via lower-tail probabilities.

Ranges, extremes and z-scor es

Central ranges:
B P(z < Z<z) is the same as the probability that a random
observation from an arbitrary Normal distribution falls
within z SD's either side of the mean.

Extremes:

B P(Z 2 z) is the same as the probability that a random
observation from an arbitrary Normal distribution falls
more than z standard deviations above the mean.

B P(Z < -z) is the same as the probability that a random
observation from an arbitrary Normal distribution falls
more than z standard deviations below the mean.

Independence

Wemodel variables asbeing independent ....

® if we think they relate to physically independent
processes

® and if we have no data that suggests they are related.

Both sums and differences of independent random
variables are more variable than any of the
component random variables
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Formulas

® For a constant number a, E(aX) = aE(X)
and SD(aX) = |a| SD(X).

® Means of sums and differences of random variables
act in an obvious way
B the mean of the sum is the sum of the means
M the mean of the difference is the difference in the means

® For independent random variables, (cf. Pythagorean theorem),
SD(X +X )=SD(X =X )=.SD(X ) +SD(X )
E(X] +XZ) = E(X]) +E(XZ)
[ASIDE: Sums and differences of independent Normally distributed random
variables are also Normally distributed]

Areas under Standard Normal Curve —
Normal Approximation, Scottish Army Recruits

® The mean height is 64 in and the standard deviation is 2 in.

B Only recruits shorter than 65.5 in will be trained for tank operation.
What percentage of the incoming recruits will be trained to operate

armored combat vehicles (tanks)?
X > (X-64)/2
65.5 > (65.5-64)/2 = %
restrictions on duties. About what percentage of the recruits will have

64 65566 68 Percentageis 77.34%
no restrictions on training/duties?

=)

62 63 64 65 66 68

B Recruits within ' standard deviations of the mean will have no

X > (X-64)12
65 > (65-64)/12 = %
63 > (63-64)/2 = -¥>
Percentage is 38

Percentiles for Standard Normal Curve |

Example, suppose the Math-part SAT scores of newly admitted freshmen at
UCLA averaged 535 (out of [200:800]) and the SD was 100. Estimate the 95
percentile for the score distribution.

/‘z\ ;e'ea
95% 165 (] [0 95%
170 W\ 91.09
909 \
A . W \\_/v

-Z z=?

@ Solution:

® 7=1.65 (std. Units) > 700 (data units), since
X > (X — p)/0, converts data to standard units and

X = O X + |, converts standard to data units!

=100; p =535, 100x 1.65+ 535

Example

® For constant numbers a & b, E(aX+b) = aE(X)+b
and SD(aX+b) = |a| SD(X).

® For independent random variables
SD(X +X)=SD(X =X )=./SD(X) +SD(X )"
E(X +X )=E(X)+E(X)
® For Dependent variables: Ex. E(X)=1, SD(X)=3
BY=2X-1 E(Y)=1and SD(Y)=6
B SD(X+Y)=SD(3X-1) =9, NOT
= SD(X+Y) = Sqrt(SD? (X)+SD(Y)).
B Defense vs. prosecution argument may be different for an
X+Y value of 18, say.

Percentiles for Standard Normal Curve

® When the histogram of the observed process follows the normal
curve Normal Tables (of any type, as described before) may be
used to estimate percentiles. The N-th percentile of a distribution
is P is N% of the population observations are less than or equal
to P.

® Example, suppose the Math-part SAT scores of newly admitted
freshmen at UCLA averaged 535 (out of [200:800]) and the SD
was 100. Estimate the 95 percentile for the score distribution.

® Solution:
/4 \grea
95% Les ([ [oon 95%

90%
7 i R \/V

Summary

1. e Standard Normal curve is symmetric w.r.t. the origin (0,0) and
the total area under the curve is 100% (1 unit)

2. Std units indicate how many SD’s is a value below (-)/above (+) the
mean

3. Many histograms have roughly the shape of the normal curve (bell-
shape)

4. If a list of numbers follows the normal curve the percentage of
entries falling within each interval is estimated by: 1. Converting
the interval to StdUnits and, 2. Computing the corresponding area
under the normal curve (Normal approximation)

5. A histogram which follows the normal curve may be reconstructed
just from (W,02), mean and variance=std_dev?

6. Any histogram can be summarized using percentiles
7. E(aX+b)=aE(X)+b, Var(aX+b)=a?Var(X), where E(Y) the the

mean of Y and Var(Y) is the square of the StdDev(Y),
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Example — work out in your notebooks

1. Compute the chance a random observation from a distribution
(symmetric, bell-shaped, unimodal) with m=75 and SD=12 falls
within the range [53 : 71]. Check Work

Should it be

<50% or >50%7?

53 7175 87
w
91
General Normal Curve |
® The general normal curve is defined by: _Gu 7

W Where | is the average of (the symmetric) e 207?

normal curve, and O is the standard —

deviation (spread of the distribution). y - F
B Why worry about a standard and general normal curves?

B How to convert between the two curves?

Standard Normal Curve — Table differences

® There are different tables and computer packages for representing the area under
the standard normal curve. But the results are always interchangeable.

Example — work out in your notebooks

—

Compute the chance a random observation from a distribution (symmetric, bell-
shaped, unimodal) with m=75 and SD=12 falls within the range [53 : 71].

(53-75)/12 = -11/6=-1.83 Std unit Check Work
Should it be

(71-75)/12=-0.333(3) Std units S G SR

Area[53:71] =

(SN_area[-1.83:1.83] -SN_area[-0.33:0.33])2 >3 7175 87

b+atb=100% a=80%) = A=0.8

= (93% - 25%)/2 =34%
b b
a+b=90% b=10% Z=13SU

90% P = gl.3 + p=12x1.3+75=90.6 91

Compute the 90" percentile for the same data:

2P N s e e

p
S

Areas under Standard Normal Curve

® Many histograms are similar in shape to the standard normal curve. For
example, persons height. The height of all incoming female army recruits
is measured for custom training and assignment purposes (e.g., very tall
people are inappropriate for constricted space positions, and very short Q!
people may be disadvantages in certain other situations). The mean
height is computed to be 64 in and the standard deviation is 2 in. Only
recruits shorter than 65.5 in will be trained for tank operation and recruits
within %2 standard deviations of the mean will have no restrictions on
duties.

B What percentage of the incoming recruits will be trained to operate o &
armored combat vehicles (tanks)?

W About what percentage of the recruits will have no restrictions on
training/duties?

Standard Normal Curve — Table differences

® There are different tables and computer packages for representing the area under
the standard normal curve. But the results are always interchangeable.




Probability, Samples & Sampling error

@®]ntro to stats, vocabulary & intro to SPSS
®Displaying data

®(Central tendency and variability

®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error
®Type I and Type II errors; Power of a test

®]ntro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques

®Non-parametric statistical tests

Let'sMake a Deal Paradox.

® After the contestant chose an initial door, the host of
the show then revealed an empty door among the two
unchosen doors, and asks the contestant if he or she
would like to switch to the other unchosen door. The

question is should the contestant switch. Do the odds

of winning increase by switching to the remaining

> > >

Let's Make a Deal Paradox.

® The probability of picking the wrong door in the
initial stage of the game is 2/3.

® If the contestant picks the wrong door initially, the
host must reveal the remaining empty door in the
second stage of the game. Thus, if the contestant
switches after picking the wrong door initially, the
contestant will win the prize.

® The probability of winning by switching then reduces
to the probability of picking the wrong door in the
initial stage which is clearly 2/3.

Let'sMake a Deal Paradox — W
aka, Monty Hall 3-door problem SE
® This paradox is related to a popular television show
in the 1970's. In the show, a contestant was given a
choice of three doors/cards of which one contained a

prize (diamond). The other two doors contained gag
gifts like a chicken or a donkey (clubs).

&
[ 3
\4

Let'sMake a Deal Paradox.

® The intuition of most people tells them that each of
the doors, the chosen door and the unchosen door, are
equally likely to contain the prize so that there is a
50-50 chance of winning with either selection? This,
however, is Not the case.

® The probability of winning by using the switching
technique is 2/3, while the odds of winning by not

switching is 1/3. The easiest way to explain this is as

follows:

Let'sMake a Deal Paradox.

® Demo: Applets.dir/StatGames.exe
® Uncertainty—>Pick a door




Properties of probability distributions

® A sequence of number {p,, p,, ps, ..., pn } is a probability
distribution for a sample space S = {s,, s,, 53, ..., 8,}, if
pr(sy) = py, for each 1<=k<=n. The two essential
properties of a probability distribution p,, p,, ..., p,?

7,20 7 =
® How do we get the probability of an event from the
probabilities of outcomes that make up that event?

® [fall outcomes are distinct & equally likely, how do we calculate
171:(14) ?1f4 = {ay, a5 aj, ..., ap} and pr(a,)=pr(a,)=...=pr(ay)=p;
then

pr(A) =9x pr(a,) = 9p.

Conditional Probability

The conditional probability of A occurring given that
B occurs is given by
pr(A and B)

pria|B) =B

Suppose we select one out of the 400 patients in the study and we
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

Multiplication rule- what's the per centage of
|sraelisthat are poor and Arabic?

v(4| B)pr(B) = pr(B| Apr(4) |

pr(4 and B) =

0.0728
0\ 014 1.0
1

All peoplein Israel |

l:l 14% of these are Arabic
D 52% of this 14% are poor

7.28% of Israelis are both poor and Arabic
(0.52x.014 = 0.0728)

Example of probability distributions

7,20 7 =

®p="=025.

® Tossing a coin twice. Sample space S={HH, HT, TH,
TT}, for a fair coin each outcome is equally likely, so
the probabilities of the 4 possible outcomes should be
identical, p. Since, p(HH)=p(HT)=p(TH)=p(TT)=p and

Melanoma — type of skin cancer —

an example of laws of conditional probabilities

TABLE4.6.1: 400 Melanoma Patients by Type and Site
Site

Head and Row
Type Neck Trunk Extremities Totals
Hutchinson's
melanomic freckle 22 2 10 34
Superficial 16 54 115 185
Nodular 19 33 73 125
Indeterminant 11 17 28 56
Column Totals 68 106 226

400

Let'sMake a Deal Paradox.

® After the contestant chose an initial door, the host of

unchosen doors, and asks the contestant if he or she

would like to switch to the other unchosen door. The
question is should the contestant switch. Do the odds
of winning increase by switching to the remaining
door?
® P(Win (swap strat.) | 15tis Club) =1
® P(Win (swap strat.) & 1%t is Club) =
= P(Win (swap strat.) | 15t is Club) x P(1% is Club)
=1x2/3=2/3.

the show then revealed an empty door among the two
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Review |

pr(4 and B)=pr(4| B)pr(B) = pr(B| A)pr(4)
pr(A) 1-pr(A)

PI‘OpOI’thl’lS (partlal description of a real population) and
probablhtles (glvmg the chance of something happening in a random
experiment) may be identical - under the experiment choose-a-
unit-at-random

2. Properties of probabilities.

{p, } define probabilities = p 20; =p =1

Second Path
Draw

3 ( )
(BB~ B3
pr(pp/ 2

S
I
=
o

P A,

((Biwo _

Conditional probabilities

® Example. Callate the Probability of having Exactly
One Black ball given that Ball-2 is black?

(Recall: 4 black and 3 white balls given!)
® P(B, | Exactly One Black) = P(I) /P(exactly1B)
=P(W1 & B2) / (P(W,&B,) + P(B,&W,)) = Y2
® P(Exactly 1 Black | B,) =??? (Not trivial!)

= P(B, | Exactly One Black) x P(B,) / P(Exactly One Black)
= (% x4/7)/P({B,&W,} or {W,&B,} )
=(4/14)/ (4/7x 3/6 + 3/7 x 4/6) = 1/2

[ = 5% of 32%] [ = 6% of 3%]
Method
Steril. Oral Barrier 1UD Sperm. Total
v rd
Outcome Failed |0x.38 .05x.32 .14x.24 .06x.03 .26x.03 ?
idn’t ? ? ? ? ? ?
Total 38 32 24 .03 .03 1.00

A treediagram for computing
conditional probabilities

Suppose we draw 2 balls at random one at a time
without replacement from an urn containing 4 black
and 3 whiteballs, otherwise identical. What is the
probability that the second ball is black? Sample Spc?

Mutually
P({2-nd ball is blacky)= ] exclusive

P({2-nd is black} &{I-st is black})/+
P({2-nd is black} &{/-st is white}) =
4/7x3/6 + 4/6 x 3/7 =4/7.

Conditional probabilities and 2-way tables

® Many problems involving conditional probabilities
can be solved by constructing two-way tables

® This includes reversing the order of conditioning

Proportional usage of oral contraceptives
and their rates of failure

-way contingency table of proportions

pr(Failed and Oral) =
pr(Failed | Oral) x pr(Oral)

pr(Failed and 1UD) =
pr(Failed | IUD) x pr(IUD)

pr(Steril.) = .38 -/pr(Earrier) =.24 -/ kpr(l UD) = .03




Oral contraceptives cont.
- pr(Failedand IUD) =
pr(Failed | Oral) x pr(Oral) pr(Failed | IUD) x pr(IUD)
[ = 5% of 32%] [ = 6% of 3%]
Method
Steril. Oral Barrier 1UD Sperm. Total
Kl
Outcome Failed | 0x.38 .05x.32 .14x.24 .06x.03 .26x.03 ?
Didn’t ? ? ? ? ? ?
Total 38 32 24 .03 .03 1.00
pr(Steril.) = .38 Jpr(Barrier) =24 J —pr(IUD) = .03
TABLE 4.6.4 TableConstructed from the Datain Example 4.6.¢
Method
Steril. Oral Barrier 1UD Sperm. Total
Outcome  Failed 0 .0160 0336 .0018 .0078 0592
Didn't .3040 2064 0282

Total .3200 .2400 .0300

Typel & Typell errors—Power of atest |

@®]ntro to stats, vocabulary & intro to SPSS
®Displaying data

®(Central tendency and variability

®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error

®Typel and Typell errors; Power of atest
®]ntro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques

®Non-parametric statistical tests

HIV cont.

pr(HIV and Positive) pr(Not HIV and Negative) =
pr(Positive|HIV) x pr(HIV) pr(Negative|Not HIV) X pr(Not HI
[=98% of 1%] [=93% of 99%]
Test result
\Positive Negative [ Total
K
Disease HIV .98 x.01 ? .01 <— pr(HIV) =01
status  Not HIV ? 93%.99 | .99 ~— pr(Not HIV) = .99
Total ? ? 1.00
Figure4.6.6 Putting HIV information into the table.
f-rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Remarks...

given that.

® In pr(4 | B), how should the symbol “ | ” is read

® How do we interpret the fact that: The event A
always occurs when B occurs? What can you say
about pr(4 | B)?

® When drawing a probability tree for a particular
problem, how do you know what events to use for
the first fan of branches and which events to use for

the subsequent branching? (at each branching stage condition on
all the info available up to here. E.g., at first branching use all simple events, no
prior is available. At 3-rd branching condition of the previous 2 events, etc.).

TABLE 4.6.5 Number of Individuals
| Having a Given Mean Absor bance Ratio
(MAR) inthe ELISA for HIV Antibodies
MAR Healthy Donor HIV patients
<2 202 } 275 0 , False:
2 -299 73 Test cut-off 2 Negativey
(FNE)
o ! poue
4 False- 7 atedis
339 2 (" positives 15 1-P(ENE)=
6 -11.99 2 36 1-P(Neg|HIV)
12+ 0 21 ~OfE
Total 297 88

Adapted from Weiss et al.[1985]

HIV —reconstructing the contingency table

pr(HIV and Positive) =
pr(Positivel HIV) X pr(HIV)
[=98% of 1%]

pr(Not HIV and Negative) =
pr(Negative|Not HIV) x pr(Not HIV)
[=93% of 99%)]

.01 < pr(HIV)=.01
.99 — pr(Not HIV) = .99

Test result
\Positive Negative /| Total
)
Disease HIV .98 x.01 ?
status  Not HIV ? 93 .99
Total ? ? 1.00

TABLE 4.6.6 Proportions by Disease Status

and Test Result

Test Result
Positive Negative Total
Disease HIV .0098 .0002 .01
Status Not HIV .0693 9207 .99
Total 0791 -9209




Proportions of HIV infections by country

TABLE 4.6.7 ProportionsInfected with HIV

No. AIDS  Population Having | Test

Country Cases (millions) pr(HIV) pr(HIV | Positive)
United States 218,301 252.7 0.00864 0.109
Canada 6,116 26.7 0.00229 0.031
Australia 3,238 16.8 0.00193 0.026
New Zealand 323 34 0.00095 0.013
United Kingdom 5,451 573 0.00095 0.013

Ireland 142 3.6 0.00039

ESP (extra sensory perception) Or just guessing?

n=60,000

A random draws
+ W O $$ D resulting in
12,489
correct guesses

True value for Pratt & Woodruff’s

Just guessing (0.200) proportion (0.2082)
—0 oo 00 [
H Sample proportions v
T T From ¥ just-guessing games ! T
0.198 0.200 0.202 0.20§ 0.206

0.208

Was Cavendish’s experiment biased?

A number of famous early experiments of measuring physical
constants have later been shown to be biased.

M ean density of the earth
True value = 5.517

Cavendish’sdata: (from previous Example 7.2.2)
5.36,5.29, 5.58, 5.65,5.57,5.53, 5.62, 5.29, 5.4, 5.34, 5.79, 5.10,
5.27,5.39, 5.42, 5.47,5.63, 5.34, 5.46, 5.30, 5.75, 5.68, 5.85

n =23, sample mean = 5.483, sample SD = 0.1904

Hypothesis testing

@®]ntro to stats, vocabulary & intro to SPSS
®Displaying data

®(Central tendency and variability

®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error

®Type I and Type II errors; Power of a test

®|ntro to hypothesistesting

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques

®Non-parametric statistical tests

SP or just guessing? @@l

Pratt & Woodruff’s
proportion

20 Og%) .

12

T T T T T T T
0.194 0.196 0.198 0.2100 0.202 0.204 0.206  0.208

True value for just guessing Computer simulation

. . making 60,000 guesses
Figure9.1.1 S"il'mple proportions frq with 20% chance of
‘just-guessing” experiments.
correct guess.

y C.J. Wild and G.A.F. Scber, © John Wiley & Sons, 2000.

21.5% of the means were
smaller than this

@ 033540335
T — T T T
sas 1 ossot 5.55 5.60
Cavendish True N(5.517,0.1904)
mean (5.483)  value 65517) ’
SD=0.1904 SD=0.1904

Figure9.1.2 Sample means from 400 sets of observations
from an unbiased experiment.
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Cavendish: measuring distancesin std errors

20.5% of samples had t,
values smaller than this

Cavendish

data lies within
the central 60%
of the distribution

T T i T T T
3 2 4l o 1 2 3
Cavendish tu-value =-0.844

Figure 9.1.3  Sample -values from 400 unbiased experiments
(each #,-value is distance between sample mean and 5.517 in std errors)

M easuring the distance between the
true-value and the estimate in terms of the SE

® Intuitive criterion: Estimate is credible if it’s
not far away from its hypothesized true-value!

® But how far is far-away?

® Compute the distance in standard-terms:
T= Estimator — TrueParameterValue
SE
® Reason is that the distribution of T is known in
some cases (Student’s t, or N(0,1)). The
estimator (obs-value) is typical/atypical if it is
close to the center/tail of the distribution.

Comments

® Why can't we (rule-in) prove that a hypothesized value of a
parameter is exactly true? (Because when constructing estimates
based on data, there’s always sampling and may be non-sampling errors,
which are normal, and will effect the resulting estimate. Even if we do
60,000 ESP tests, as we saw earlier, repeatedly we are likely to get
estimates like 0.2 and 0.200001, and 0.199999, etc. — non of which may be
exactly the theoretically correct, 0.2.)

® Why use the rule-out principle? (Since, we can’t use the rule-in
method, we try to find compelling evidence against the observed/data-
constructed estimate — to reject it.)

® Why is the null hypothesis & significance testing typically
used? (H,: skeptical reaction to a research hypothesis; ST is used to check

if differences or effects seen in the data can be explained simply in terms A
of sampling variation!)

20.5% of samples had t,
values smaller than this

Cavendish { -value = =0.844

Figure 9.1.3  Sample ;values from 400 unbiased experiments
(each fy-value s distance between sample mean and 5.517 in std errors).

3 2 a\ o /1 2 3
-0.844 0.844

Figure9.1.4 Student(df=22) density.

Hypotheses

Guiding principles
We cannot rulein a hypothesized value for a parameter, we

can only determine whether there is evidence to rule out a
hypothesized value.

The null hypothesis tested is typically a skeptical reaction
to a research hypothesis

Comments

® How can researchers try to demonstrate that effects

or differences seen in their data are real? (Reject the
hypothesis that there are no effects)

® How does the alternative hypothesis typically relate
to a belief, hunch, or research hypothesis that initiates

a Stlldy? (H,=H,: specifies the type of departure from the null-
hypothesis, H, (skeptical reaction), which we are expecting (research
hypothesis itself).

® |n the Cavendish’s mean Earth density data, null
hypothesis was H, : 1 =5.517. We suspected bias, but |
not bias in any specific direction, hence H,:p!=5.517.
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Comments

® In the ESP Pratt & Woodruff data, (skeptical
reaction) null hypothesis was H;, : 1 =0.2 (pure-
guessing). We suspected bias, toward success rate
being higher than that, hence the (research
hypothesis) H,:pu>0.2

® Other commonly encountered situations are:

B H, gy =0 > Hy = K >0

W H © Preg™ Mactivation =0 > H; ¢ Meegt™ Hactivation =0

Thet-test

Alternative | Evidence against Ho: 8 > B0
hypothesis provided by P-value

H:8> 6 6 too much bigger than g, |P =pr(7>1,)
(i.e., & - By too large)
H:0<6 @ too much smaller than g, |P = pr(Tg to)
(ie., é- 6 too negative)
H:0%£6) étoofmﬁomeo

(ie., |é - B too large)

P =2pr(12 |to])

where T’ ~ Student(df)

Alternative Evidence against
Hypothesis Hd 0= 90 provided by

A
HI: 0> 00 0 too much bigger than 90

0-scale —  t-scale
(#of std errors)
A
6 0 1

Thet-test

Using 6 to test Ho: @ = @o versus some alternative H ;.
STEP 1 Calculate the test gatidic,

0- 90 estimate - hypothesized value
s 6(9) standard error

[This tells us howmanystandard errors the estimate is above the hypothesized

value (t, positive) or below the hypothesized value (t, negative).]
STEP 2 Calculate the P -value using the following table.
STEP 3 Interpret the P-value in the context of the data.

I nterpretation of the p-value

TABLE9.3.2 Interpreting the Size of a P-Value
Approximate size
of P-Value
>0.12  (12%)
0.10  (10%)
0.05  (5%)
0.01  (1%)
0.001  (0.1%)

Translation
No evidence against H,

Weak evidence against H,

Some evidence against H,,

Strong evidence against H,,
Very Strong evidence against H

igure 9.3.1: Testing HO: 0= 90

Alternative Evidence against
Hypothesis HO' 0= 60 provided by
A
H: 0< @ 6 too much smaller than 90

1 0
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Isa second child gender influenced by the
gender of thefirst child, in familieswith >1 kid?
ABLE9.3.4 First and Second Births by Sex

Second Child
Male Female Total
Male 3,202 2,776 5,978
Female | 2,620 2,792 5,412
Total 5,822 5,568 11,390

® Research hypothesis needs to be formulated first
before collecting/looking/interpreting the data that
will be used to address it. Mothers whose 1% child is
a girl are more likely to have a girl, as a second child,
compared to mothers with boys as 15t children.

® Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.

Hypothesis testing as decision making

Decision Making

Actual situation
Decision made H, is true H, is false
Accept Hy as true OK Type II error
Reject Hy as false Type error OK

® Sample sizes: n,=5412, n,=5978, Sample proportions
(estimates) p, =2792/5412=0.5159, p, =2776/5978 = 0.4644,

® H: p,- p,=0 (skeptical reaction). H: p;- p,>0
(research hypothesis)

Analysis of the birth-gender data

® We have strong evidence to reject the H, and hence
conclude mothers with first child a girl a more likely
to have a girl as a second child.

® How much more likely? A 95% CI:

CL(p,- p,) =[0.033; 0.070]. And computed by:
estimatexzXSE=p —p *196xXSE| p —p |=
pl p2 (pl p2)

pa=p) b.(-p)
po-p #196x L L4 2 2 =
12 n n

1 2
0.0515£1.96%0.0093677 =[3%:7%]

Analysis of the birth-gender data —
data summary

Second Child

Group Number of births Number of girls

1 (Previous child was girl) 5412
2 (Previous child was boy) 5978

2792 (approx. 51.6%)
2776 (approx. 46.4%)

® Let p,=true proportion of girls in mothers with girl as
first child, p,=true proportion of girls in mothers with
boy as first child. Parameter of interest is p;- p,.

® H,: p,- p,=0 (skeptical reaction). H: p;- p,>0
(research hypothesis)

Analysis of the birth-gender data

® Samples are large enough to use Normal-approx.
Since the two proportions come from totally diff.
mothers they are independent - use formula 8.5.5.a

_ Estimate - HypothesizedValue
0 SE
b -p_-0 b -p
1 = 1

=5.49986 =

P-value =Pr(T 21 ) =1.9x1078

Hypotheses

The null hypothesis, denoted by H,, is the (skeptical
reaction) hypothesis tested by the statistical test.

® Principle guiding the formulation of null hypotheses:
We cannot rule a hypothesized value in; we can only
determine whether there is enough evidence to rule it
out. Why is that?

® Research (alternative) hypotheseslay out the
conjectures that the research is designed to
investigate and, if the researchers hunches prove
correct, establish as being true.
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Example: Isthereracial profiling or
ar e there confounding explanatory effects?!?

® The book by Best (Damned Lies and Statistics: Untangling
Numbers from the Media, Politicians and Activists, Joel Best)
shows how we can test for racial bias in police arrests. Suppose
we find that among 100 white and 100 black youths, 10 and 17,
respectively, have experienced arrest. This may look plainly
discriminatory. But suppose we then find that of the 80 middle-
class white youths 4 have been arrested, and of the 50 middle-
class black youths 2 arrested, whereas the corresponding
numbers of lower-class white and black youths arrested are,
respectively, 6 of 20 and 15 of 50. These arrest rates correspond
to 5 per 100 for white and 4 per 100 for black middle-class
youths, and 30 per 100 for both white and black lower-class
youths. Now, better analyzed, the data suggest effects of social

class, not race as such.

Analysis of two independent samples

Urinary androsterone levels — data, dot-plots and 95% CI. Relations
between hormonal levels and homosexuality, Margolese, 1970.
Hormonal levels are lower for homosexuals. Samples are

independent, as unrelated. Results, P-value of t-test 0.004 with a

CI (Myger-Mpon)=10.4:1.7]. Normal hypothesis satisfied?Skewed?

Urinary Androsterone Level s(mg/24 hr)

Homosexual: 2.5, 1.6, 3.9, 34, 23, 1.6, 25, 34, 16, 43, 2.0,
18, 22, 3.1, 13
Heterosexual: 3.9, 4.0, 3.8, 3.9, 29, 32, 46, 43, |3.1, |27, 2.3

—a—
Homosexuals ° § o0 oo 8 o 8 o o
——
Heterosexuals o o o oo o080 o o
r T T T
1 2 3 4

Androsterone (mg/24 hrs)

I mportant points

1. The distinction between a randomized experiment
and an observational study is made at the time of
result interpretation. The very same statistical
analysis is carried for the two situations.

2. We’ve already stressed the importance of plotting
data prior to stat-analysis. Plots have many important
roles — prevent dangerous misconceptions from
arising (data overlaps, clusters, outliers, skewness,
trends in the data, etc.)

One sampletests & Two independent
samples tests

@®]ntro to stats, vocabulary & intro to SPSS
®Displaying data

®(Central tendency and variability

®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error

®Type I and Type II errors; Power of a test

®Intro to hypothesis testing

®Onesampletests & Two independent samplestests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques
®Non-parametric statistical tests

Urinary androster one levels cont.

Two Sample T-Test and Confidence Interval
Two sanple T for androsterone

95% Cl for mu (hetero) - nu (honose): ( 0.35, 1.69)
T-Test nu (hetero) = nu (honpbse) (vs not=):

/
t-test statistic _P-value

N Mean St Dev SE Mean Confid. . !
hetero 11 3.518 0.721 0.22 onfidence interva
honose 15 2.500 0.923 0.24

T=3.16 P=0.0044 DF=23

Minitab 2-sample z-output for the androstenone data

Comparing two meansfor independent samples

Suppose we have 2 samples/means/distributions as
follows: {X ,N(u .0 )} and {YZ,N(II ,02)}. We’ve
seen before that %0 make inference a%bout H —H we
can use a T-test for Hy: KK = 0 with . (x:-%)-0

And CI@ ~#) = X\ - X: £ XSE(X. ~ X2) DAGEED)

If the 2 samples are independent we use the SE formula

2 2
SE=_[s“/n +s°/n i =Mi oiem =
VT with df Mln(n1 l,n2 1)

This gives a conservative approach for hand calculation of an
approximation to the what is known as the Welch procedure,
which has a complicated exact formula.
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Means for independent samples—
equal or unequal variances?

Pooled T-test is used for samples with assumed equal
variances. Under data Normal assumptions and equal
variances of (.- x.-0)/SE(% - x.), where

2
SE=s, l/n +1/n_;s° =
1 2 p

is exactly Student’s t distributed with 4 = (”l + T 2)

2 2
n =Ds“+n_=1)s
(1 )1 (2 )2

n +n =2
2

Here s, is called the pooled estimate of the variance,

since it pools info from the 2 samples to form a

combined estimate of the single variance 0,?= 0,° =02
The book recommends routine use of the Welch unequal variance method.

Two sampletests - dependent samples &
Estimation

@®Intro to stats, vocabulary & intro to SPSS

®Displaying data

®(Central tendency and variability

®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error

®Type I and Type II errors; Power of a test

®Intro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sampletests - dependent samples & Estimation
®Correlation and regression techniques
®Non-parametric statistical tests

Moon illusion Data
_______TheMoon Illusion
Difference
Subject Eyes Elevated  Eyes Level (Elevated - Level)
1 2.03 2.03 0.00
2 1.65 1.73 -0.08
3 1.00 1.06 -0.06
4 1.25 1.40 -0.15
5 1.05 0.95 0.10
6 1.02 1.13 -0.11
7 1.67 1.41 0.26
8 1.86 1.73 0.13
9 1.56 1.63 -0.07
10 1.73 1.56 0.17
Source: Kaufman and Rock [1962].

Comparing two means for independent samples

1. How sensitive is the two-sample #-test to non-Normality
in the data? (The 2-sample T-tests and CI’s are even
more robust than the 1-sample tests, against non-
Normality, particularly when the shapes of the 2
distributions are similar and n,=n,=n, even for small n,
remember df=n,+n,-2.

3. Are there nonparametric alternatives to the two-sample

t-test? (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same P-
values.)

4. What difference is there between the quantities tested
and estimated by the two-sample 7-procedures and the
nonparametric equivalent? (Non-parametric tests are based on
ordering, not size, of the data and hence use median, not mean, for
the average. The equality of 2 means is tested and CI(p, - [, ").

Paired Comparisons

® Sometimes we have two data sets, which are not
independent, but rather observations matched in pairs.

® Back to the Kaufman & Rock study of the Moon size
illusion. Does the moon size appear different with eyes
level and with eyes raised? Does eye position make a
difference? Eyes elevated refers to raising the eye from

horizontal to zenith position. 10 Subjects are tested under eye-
level (control) condition, by physically moving the subject’s body from level
to zenith position with fixed eye direction — horizontal. Ratios of the Moon
size in level and zenith positions, for the two paradigms are given below.

Plotting Eyes elevated rationsvs. eyeslevel rations
2.0 ©
1.8 . ©

g 0 o
S 1.64 0
2
S 1.44
2]
2121 °
1.0 ° T 00 T T T T T
1.0 1.2 1.4 1.6 1.8 2.0
Eyes level
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L ooking for an effect dueto elevating eyes

For paired data, analyze the differences. | -

evidence eye posittion——@——
causes 111usug1 ° o oo o °
)

02 01 0.0 0.1 0.2 0.3
Differences (Elev. - Level)

Dot plot of differences for the moon illusion data
(with a 95% CI for the mean difference).

Test of mu = 0.0000 vs mu > 0.0000
Variable N Mean StDev SE Mean t-sta
Difference 10 0.0190 0.1371 0.0434 0.44 0.34

95% CI ( -0.0791, 0.1171)

2-samplet-tests and intervalsfor differences
between means -,

Assume
W statistically independent random samples from the two
populations of interest
Oboth samples come from Normal distributions
B Pooled method also assumes that 0;=0,
Welch method (unpooled) does not
Two-sample -methods are
Oremarkably robust against non-Normality

Ccan be sensitive to the presence of outliers in small to moderate-
sized samples

QOne-sided tests are reasonably sensitive to skewness.
B The Wilcoxon or Mann-Whitney test is a nonparametric
alternative to the two-sample #-test.

We know how to analyze 1 & 2 sample data.
How about if we have than 2 samples—
One-way ANOVA, F-test

One-way ANOVA refers to the situation of having one
factor (or categorical variable) which defines group
membership — e.g., comparing 4 reading methods, effects
of different reading methods on reading comprehension,
data: 50 — 13/14 y/o students tested.

Hypothesesfor the one-way analysis-of-variance F-test

Null hypothesis: All of the underlying true means are identical.
Alternative:  Differences exist between some of the true means.

Paired data

® We have to distinguish between independent and
related samples because they require different

methods of analysis.
® Paired data is an example of related data.

® With paired data, we analyze the differences

M this converts the initial problem into a one-sample
problem.

® The sign test and Wilcoxon rank-sum test are
nonparametric alternatives to the one-sample or
paired z-test.

ANOVA — One-Way

@®]ntro to stats, vocabulary & intro to SPSS
®Displaying data

®(Central tendency and variability

®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error

®Type I and Type II errors; Power of a test

®Intro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
OANOVA

Comparing 4 reading methods

Comparing 4 reading methods, effects of different reading
methods on reading comprehension, data: 50 — 13/14 y/o
students tested.

-Mapping: using diagrams to relate main points in text;
-Scanning: reading the intro and skimming for an
overview before reading details;

-Mapping and Scanning;

-Neither.

Table below shows increases in test scores, of 4 groups of
students taking similar exams twice, w/ & w/o using a
reading technique.

Research question: Are the results better for students
using mapping, scanning or both?
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TABLE 10.3.1 Increase in Reading Age
Both: 01 32 43 -05 19 33 25 36 04 23 -14 -07
0.1 02 04 09 12 14 18 1.8 24 3.1
Map Only: 10 -05 1.0 06 06 1.0 10 -14 22 36 31 26
Scan Only : 1.0 33 14 -09 1.0 00 06
[Neither: -03 -13 16 -04 -07 06 -18 -20 -0.7
—a—
Map and scan o o0 0ow8 000 & aw oo o
—.—
Map only o o 88 oo o o
—_——
Scanlonly ) o o8o )
Neither 8
oo o @ o o
2 B 0 1 2 3 4 5
Increase in reading age

Figure10.3.1 Increases in reading ages with individual 95% Cls.

[From Chance Encounrers by C.J_Wild and G.AF. Seber, © John Wiley & Sans, 2000

Computer output

One-way Analysis of Variance
Anal ysi s of Variance for Increase £I-statistic /P—value

Source  DF SS Vs T F P

Gp 3 27.06 9.02 4.45 0.008 Anova Table
Error 46 93. 35 2.03

Tot al 49 120. 41 |

I ndi vidual 95% Cl's For Mean

Level N

MapOnly 12 1.233 1.
ScanOnly 7 0.914 1.302
Neither. 9 -0.556 1.135

Pool ed StDev = 1.425

Figure 10.3.2 Minitab analysis of variance output for reading ages

rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,

Form of atypical ANOVA table

TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA
Sum of Mean sum

Source squares df of Squares”  F -statistic P-value
- -2 2 - >
Between Z"’(x“ 2 k-1 Sp Jo=salsy pr(F2 fo)
2 2
Within PACRIS ny-k Sy

Total LYY, =il

"M ean sum of squares = (sum of squares)/df

® The F-test statistic, f;, applies when we have
independent samples each from k Normal
populations, N(l;, 0), note same variance is assumed.

———
Mapandscan 5 50 ow8 o000 B a ao o

Map only PR 8 § 00 o o
——
€=y o o o080 o
——
Neither
00 o 8w ° °
2 1 0 1 2 3 4

Increase in reading age

One-way Analysis of Variance

Anal ysi s of Variance for |ncrease I F-Staﬁsticl I;-value I

Sour ce DF Ss Vs F P

Gp 3 27.06 9.02 4,45  0.008 > Anova Tuble
Error 46 93.35 2.03 H

Tot al 49 120. 41

I ndi vi dual 95% Cl's For Mean
Based on Pool ed St Dev
...... Hemeenea e

St Dev
MapScan 22 1.459 1.544
MapOnly 12 1.233 1.441
ScanOnly 7 0.914 1.302
Nei t her 9 -0.556 1.135 (-

Pool ed StDev =

Figure10.3.2 Minitab analysis of variance output for reading ages

ters by C1 Wi snd G.AF_ Seber, © John Wiley & Sors, 2000,

Interpreting the P-value from the F-test

(The null hypothesis is that all underlying true means are identical.)

® A |large P-value indicates that the differences seen
between the sample means could be explained simply

in terms of sampling variation.

® A small P-value indicates evidence that real
differences exist between at |east some of the true
means, but gives no indication of where the
differences are or how big they are.

® To find out how big any differences are we need
confidence intervals.

Wheredid the F-statistics came from?

® Let’s look at this example comparing groups. How do
we obtain intuitive evidence against H,? Far separated
sample means + differences of sample means are large
compared to their internal (within) variability! Which of
the following examples indicate group diff’s are “large”?

o ocoo 9| o o o Gp 1
Example I o o o o | @ o o Gp 2
@ oo | o oo o Gp3
om¢oo o Gp 1
Example 2 oomje Gp 2
© o o Gp 3
o Gp 1
Example 3 [} Gp 2
@® Gp 3

T T T T
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M ore about the F-test

® 52, is a measure of variability
of sample means, how far apart

they are. B~ k=1

® 2, reflects the avg. internal (1, =1)s.2
Variability within the samples. I%V - ! !

N k
ntot

® The F-test statistic, f;, tests H, by comparing the

variability within the samples (denominator).

® Evidence against H,, is provided by values of f;
which would be unusually large if H, was true.

T n(x, -x.)?

variability of the sample means (numerator) with the

What are x;, X.., X j, tc.?
Need Onlinereference

oty A AR ot
Conunos @ uallty Frige
CRl 204

Applejuice sales a5z gz
(units per week) — e i
82 8T

Tip am4

i1 azn

Hy: 0= 1= 13 I
628 16

H,: at least 2 aes T
= 404 TET

means differ ave ius
428 6T 2

Xijs 1<=i<=nj; 1<j<=3 Tre e
BET aE4

6437 620

ai14 a24

arg
CER
443
CRX:]
a0z
§032
aE8
L
arE
5132
CERI

Tig |

BEE
Tra
81
§r32
488
BE1
are
552

What are x;, X.., X j, tc.?

Sum of squaresfor the Error

k(B
Sum of Sguares for Error: SSE = Z
P

i=

= 5006,967.88

, 55 —fj)ﬂ

SSE = 10010,774.44) + 10(7,238.61) + 19(8,669.47)

What arex;, x.., X G

(

One-Way Ano urces of Variability)

between treatments varability J-index*g

£

- :

p E
: f
@

£ | 2
=

1)

=3

Eg

Treatmenits I'Inde)(q

What are x;, X.., X j, tc.?
Sum of Squaresfor treatments (cities)

k

SST =Y n (X, -%)°

=1
88T =20(377.55- 6§13.07¢

+ 20(653.00 - 613.07)

+ 20(608.65 - 613.07)2

=5751223

What are x;, X.., X j, tc.?
F-test

o MST _ 8ST/(k-1)
MSE  SSE/(n-k)
57,512.23/3-1)
 506,967.8%/(60-3)
=3.23

Test Statistic:

Rejection Region: F=F 1 1 037F g5 25=3.15
Conclusion: Reject Hy
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What are x;, X.., X , etc.?
One-Way Design ANOVA Table

Skip - Pertussis data cont.

Vaccine used
Degrees Sum of Mean F o APV o ®o Oo@m
Sour ce of Freedom Sguares Squares Statistic
DAPV o @O ®
Treatments k-1 55T MST MST/MSE wev @afom b 0o ofp e o
Error n-k 55E MSE ) -2 0 2 4 6
Y n.(x. —X..) Anal'ysi's of Variance Procedure .
Total n-1 SS(TOtal) 2_ . bk Dependent Vari abl e: PERTUSS F'S'f”mc P-ralue
SB - k-1 Sour ce DF Sumof Squares Mean Square F Value Pr > F
Z( 1) 2 Model 2 15. 81677991 7.90838996 6.17  0.0031
n.—1)s. Error 87 111. 47241564 1.28129213
IHote: MST=SST/{k-1) / 32 I ! ! Corrected Total 89 127. 28919556
MISE=SSEf(n-k) w ntO[ -k ‘With the outlier included, the P-value increases to 0.023

Figure10.3.5 Anova output for the pertussis data from SAS.

From Clance Encouners by C.. Wild and G.A-F. Seber, © John Wiley & Sos, 2000

Correlation and regression techniques |
@®]ntro to stats, vocabulary & intro to SPSS

F-test assumptions

Samples are independent, physically independent
subjects, units, objects are being studies.

2. Sample Normal distributions, especially sensitive
for small n;, number of observations, N(l;, 0).

®Displaying data
®Central tendency and variability

®Normal z-scores, standardized distribution
3. Standard deviations should be equal within all

®Probability, Samples & Sampling error
samples, 0,= 0,= 05=... 0,=0. (122 <= 0,/0;<=2)

®Type I and Type II errors; Power of a test
. . ®Intro to hypothesis testin

How to check/validate these assumptions for your data? P &
For the reading-score improvement data:

- independence is clear since different groups of students are used.

- Dot-plots of group data show no evidence of non-Normality.

- Sample SD’s are very similar, hence we assume population SD’s are
similar.

®0One sample tests & Two independent samples tests

®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques
®Non-parametric statistical tests

Chapter 12: Linesin 2D
Regression and Correlation)

Chapter 12: Linesin 2D
Rron and Correlation)

®Vertical Lines ®Draw the following lines:

®Horizontal Lines OY=2X+1
®Oblique lines

®Increasing/Decreasing

®Line through (X;,Y,) and
(X2>Y2)'

O(Y-Y )(Yy-Y))=
(XXX

®Slope of a line

®Intercept
®Y=qa X + 3, in general.




Approaches for modeling data relationships
Regression and Correlation

®There are random and nonrandom variables

®Correlation applies if both variables (X/Y) are
random (e.g., We saw a previous example, systolic vs.
diastolic blood pressure SISVOL/DIAVOL) and are
treated symmetrically.

@®Regression applies in the case when you want to
single out one of the variables (response variable, Y)
and use the other variable as predictor (explanatory
variable, X), which explains the behavior of the
response variable, Y.

Regression relationship = trend + residual scatter

(a) Sales/income \

6600
)
© o

Retail sales ($)
6000
Retail sales ($)

o
%
oo
9000 10000 11000 12000 9000 10000 11000 12000
Disposable income ($) Disposable income ($)

5400

® Regression is a way of studying relationships between
variables (random/nonrandom) for predicting or explaining
behavior of 1 variable (response) in terms of others

(explanatory variables or predictors).

Correlation Coefficient

Examle:

1 N Xk = l.l! Ve— M
R(X,Y)= z
N -1 k=1 g g
A
Studert Height Weight %-T ¥-7 (%-%) (y-§F (4 -By -7
i L ¥i
1 167 B8 B 167 W 21,8089 28M2
2 170 B4 @ 867 &1 751683 78,13
3 18 & A 167 1 27333 N
4 192 45 4 933 a1 70489 83ar
5 157 &% 4 033 16 0.1082 1.32
] L O - 28.4082 533
Tatal 966 332 0 =0 216 2153334 1950

Causal relationship?
infant death rate (per 1,000) in 14 countries
140 1 o
) 0o
2100 oo
E
S 601 o o © o
ER o o S
E 8 o
= 201 ° \ESO' o o
o o0 S 0o
; ; ; )
40 60 = °
% Breast feeding at 6 months ig [9) ©
g &
=
< o
20 40 60 80 100
% Access to safe water

Correlation Coefficient

Correlation coefficient (-1<=R<=1): a measure of linear
association, or clustering around a line of multivariate
data.

Relationship between two variables (X, Y) can be
summarized by: (Uy, Oy), (Hy, Oy) and the correlation
coefficient, R. R=1, perfect positive correlation (straight
line relationship), R =0, no correlation (random cloud
scatter), R = —1, perfect negative correlation.

Computing R(X,Y): (standardize, multiply, average)

N (e g\ m
R(X.Y) = Nl_lkz_ 1("* aﬂ)(y*a/")

Correlation Coefficient

e (52
Sl

o o

966 332
=——=161cm, = ——
He 6 K 6

g = 2516 =6.573, o=, 2155'3 =6.563,

Corr(X,Y)=R(X,Y)=0.904

=55kg,
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Correlation Coefficient - Properties

Correlation is pseudo-invariant w.r.t. linear transformations of X or Y

N _ _
R =Y (’”‘ ”")(y" ”yj:
k=N & %

R(aX +b,cY +d), since

(axk +b—/.lax+b)_ axk +b—(a:+b) ) _
Oux + b | x 0%

a(xk =) +b=b|_ sign(a)(Xk - /,lx)
la| % o

X

Correlation Coefficient - Properties |

N - -
R(X,Y)= ]bkg I(Xka-u)(w) =R(Y,X)

AQEH—TZQ

1. R measures the extent of
linear association between Maths

two continuous variables, ~ SEare 0

2. Association does not imply e 3-10
causation - both variables hge 78
may be affected by a third Ag a56

variable — age was a
Shae Size

confounding variable.

Trend and Scatter - Computer timing data

=
E
o
£
E
o
n 20
©ll ° =
>~ ° v
0 10 20 30 40 50 6053 15
X'=Number of terminals &
o
210
&
I
5 o
>~

0 10 20 30 40 50 60
X = Number of terminals

Correlation Coefficient - Properties

Correlation is Associative

N (v_ _
R(X,Y)= ;]kg l(x* a”‘)(y : '”) = R(Y, X)

Correlation measures linear association, NOT an association in
general!!! So, Corr(X,Y) could be misleading for X & Y related in
a non-linear fashion.

a

Trend and Scatter - Computer timing data

® The major components of a regression relationship
are trend and scatter around the trend.

® To investigate a trend — fit a math function to data, or
smooth the data.

® Computer timing data: a mainframe computer has X users,
each running jobs taking Y min time. The main CPU swaps
between all tasks. Y* is the total time to finish all tasks. Both
Y and Y* increase with increase of tasks/users, but how?

umber of terminals: 40 50 60 45 40 10 30 20

ime Per Task (secs): 99 178 184 165 119 55 11 8.1

umber of terminals: 50 30 65 40 65 65
otal Time (mins): 126 67 236 92 202 214
ime Per Task (secs): 15.1 133 21.8 138 186 19.8

otal Time (mins): 6.6 149 184 124 79 09 55 27

Equation for the straight line—
linear/affine function

ﬂlw units
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Choosing the
“best-fitting”
line

B, positive

Thequadratic curve

Quadratic Curve

B, negative

Thequadratic curve

Segments of the curve

@) The data

b) Which line?

Least-squares line
Choose line with smallest

sum of squared
prediction errors

A2 i
Min £ O;=Y;) I

Its parameters are denoted:
A
Intercept: /3
A
Slope: B

(c) Prediction errors

ith data point

Figure12.3.1

Fitting a line by least squares.

Oton-linear model curves
(trigonometric, piece-wise polynomial)

® Data from the Keck telescope in Hawaii (red points) show the
variation over time of the radial velocity of the star Gliese
876. The white curve is the best fit to the data points,
implying that there are two unseen planets perturbing the
motion of the star and each other.

L]

II 'II III |Ii |I| |I| |I| |I| |I| |I| |I| |I|- |I| II| |I| rl
tr Ir .,r IF |I|:I '."I II-.I i A '.I,I W "l.I I,|_| i I'll- I'|.| 1k

Nature, Jack Lissauer 419, 355 - 358 (Sept. 26, 2002); v =

The exponential curve, Y = a €%

a [b_negative | 4

-~
0+
0

0 x

Fitting a line through the data

(a) The data (b) Which line?




Least-squaresline
Choose line with smallest

sum of squared
prediction errors

Min = (; -5

Its parameters are denoted:
Intercept: ﬁo
Slope: [31

Theidea of aresidual or prediction error

(c) Prediction errors

ith data point

Time per task (s)

Y =

34+0.25x
(Sum sq’d err = 37.46)

7+0.15x
(Sum sq’d err = 90.3

30 40 50

X = Number of terminals

Figure12.32  Two lines on the computer-timings data.

5 OV and AT Scber © Joim Wiy & Soms 3000

L east squarescriterion

Least squares criterion: Choose the values of the
parameters to minimize the sum of squared
prediction errors (or sum of squared residuals),

Z(yi - ):Yi)z
i=1

Theleast squaresline

Least-squaresline:

glkg—xxn—yﬂ

B == : B =y-Bx

n
> (-0

i=1

TABLE1231 PredaionErrors | COMPUteT timings data
34025 740150
x v y y=p y Y=y
40 9.90 13.00 -3.10 13.00 -3.10
50 17.80 15.50 230 14.50 330
60 1840 18.00 040 16.00 240
45 1650 1425 225 1375 275
40 1190 13.00 -L10 13.00 -L10
10 550 550 0.00 850 300
30 11.00 10.50 0.50 11.50 -0.50
20 8.10 8.00 0.10 10.00 -1.90
50 15.10 15.50 -0.40 14.50 0.60
30 13.30 10.50 2.80 11.50 1.80
65 2180 19.25 255 16.75 5.05
40 1380 13.00 0.80 13.00 0380
65 1860 19.25 2065 16.75 1.85
19.80 19.25 16.75

Sum of squared errors
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Figure12.3.3 Computer-timings data with least-squares line.

Adding the least squaresline

Here f},=3.05, f,=026 o

P =B+ Bx
FERTA

™~

e}
o Some Minitab regression output

The regression equation is
timeper = 3.05 + 0.260 nterm
Predictor Coef ...
i Const ant 3.050 ...
ﬂo nterm 0.26034 ...
0 20 40 60

X = Number of terminals

Y CJ_Wild amd G AT Seber.© John Wiley & Som 2000

1.X={-1,2,3,4}, Y={0,-1, 1,2},

Hands — on worksheet !

(x=x)%

X | Y |x=x|y=7|c-0H0-9 o-p

Course Material Review

Part [

Data collection, surveys.

Experimental vs. observational studies
Numerical Summaries (5-#-summary)
Binomial distribution (prob’s, mean, variance)

Probabilities & proportions, independence of events and
conditional probabilities

Normal Distribution and normal approximation

Review, Fri., Oct. 19, 2001

1. The least-squares line j = ’[;0 + .[31 x passes through
the points (x =0, 5=7 and (x= ¢, p=7. Supply
the missing values.

n
z [, =00 - )
Bl = n R >
) (xi _x)
i=1

Hands — on worksheet !

X={-1,2,3,4}, Y={0,-1,1,2}, x=2, y=05

(x=x)%

X | Y |x=x|y=7|c-0H0-9 o-p

-1 0 -3 -0.5 |9 025 (1.5

2 -1 0 -1.5 |0 225 |0

3 1 1 05 |1 0.25 (0.5

1.5 2.25

Course Material Review — cont.

Part II

Central Limit Theorem — sampling distribution of X’
Confidence intervals and parameter estimation

Hypothesis testing

Paired vs. Independent samples

Analysis Of Variance (1-way-ANOVA, one categorical var.)

Correlation and regression

e & & fa s I

Best-linear-fit, least squares method
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Review

. What are the quantities that specify a particular line?

2. Explain the idea of a prediction error in the context
of fitting a line to a scatter plot. To what visual
feature on the plot does a prediction error
COITCSpOIId? (scatter-size)

3. What property is satisfied by the line that fits the data
best in the least-squares sense?

4. The least-squares line ¥ = B, + B,x passes through
the points (x =0,  =?) and (x=x%, J = ?). Supply
the missing values.

The simplelinear model

y o
2 1
o
o
(o)
1 *2 *3 Xy * *2 *3 y

(a) The simple linear model (b) Data sampled from the model

When X=x, Y~Normal(i,0) where ty=p4,+ B x, OR

when X=x, Y=L+ B X + U, where U~Normal(0,0)

Random error

Data generated from Y= 6 + 2x + error(U) |

~ ~
Sample 4: §=7.92, = 1.59

A A
Sample 3: §,=7.38, f3,=2.10

0 2 4 6 8 0 2 4 6 8
~ x ~
Sample 5: f=9.14, B=1.13 Combined: =744, =170
30 30
° o]
-
20 o8 8 o
y 8 2 o 8 o
0] _g=8 o o
=0
0 0
0 2 4 6 8 0 2 4 6 8
X X

M otivating the simplelinear model

el 40 1 8
o) o)
§ 304 © °
g
2 o
= 20- o 8
g o
£ 104 ° 8
o o

T T T T
90 95 100 105 110
X = Cutting speed (surface-ft/min)

Figure 12.4.1Lathe tool lifetimes.

Data generated from Y= 6 + 2x + error (U)
Dotted line w-eeeeeee is true line and

solid line is the data-estimated LS line.
Note differences between true B;=6, 3,=2 and
their estimates B, & 3

~ ~ x A
Sample 1: f=3.63, ;=2.26 Sample 2: f=9.11, B;=144

30 30

Hﬁstograms of least-squares estimates from 1,000 data sets ‘

Estimates of slope, ﬂl

Estimates of intercept,

E | 1| Mean | "1 | Mean=1.98
- Std dev. ] Std dev. = 0.46
QD — 1
2= — -

g =3
2
o
= (=2
0 5 10 15 05 1.0 15 20 25 3.0 35
True value True value

Figure12.43  Data generated from the model Y=6+2x+U
where U~Normal( p=0, o =3).
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Summary

For the simple linear model, least-squares estimates
areunbiased [ E(8")= B] and Normally distributed.

Noisier data produce more-variable least-squares
estimates.

Summary

4. In the simple linear model, what behavior is
governed by T 7 (the spread of scatter of the data around trend)

5. Our estimate of o can be thought of as a sample
standard deviation for the set of prediction errors
from the least-squares line.

30

Computethe RM S Error for this
regression line

® Error = Actual value — Predicted value

XY

30 1 9
Y 2 15
20 3 12
4 19

10 5 11
6 20

X 7 22

0

0 2 4 6 8 8 18

® The RMS Error for the regression line Y= 3, + B, X is

J(y. =) 4= 90+ (=902 + (= 902 + (=)
5-1

where p =B+ fx, 1<k<5

Summary

1. Before considering using the simple linear model, what
sort of pattern would you be looking for in the scatter
plot? (linear trend with constant scatter spread across the range of X)

2. What assumptions are made by the simple linear model,
SLM? (X is linearly related to the mean value of the Y obs’s at
each X, py= B, + B, x; where 3, & B, are the true values of the
intercept and slope of the SLM; The LS estimates B & B,
estimate the true values of B, & B;; and the random errors U=Y-
Uy~N(H, 0).)

3. If the simple linear model holds, what do you know about
the sampling distributions of the least-squares estimates? |
(Unbiased and Normally distributed)

RMSError for regression

® Error = Actual value — Predicted value
30
Y
20

Y=B,+B; X

X
0 2 4 6 8
® The RMS Error for the regression line Y= 3, + B, X is
J(y. =) 4= 90+ (=902 + (= 902 + (=)
5-1
where =B+ fx, 1<k<5

Computethe RM S Error for this
regression line

® Error = Actual value — Predicted value

® The RMS Error for the regression line Y= 3, + B, X is

J(y‘ =902 4= 902 + (= 9+ 0= 9 + (= 99
5-1

where p=f+fBx, 1<k<5

® First compute the LS linear fit (estimate B," + B,")
® Then Compute the individual errors
® Finally compute the cumulative RMS measure.

0NV B W =X
—_
o
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Computethe RM S Error for this
regression line

® First compute the LS linear fit (estimate B, +f," ),u=45p=1575

XY Xepy Y= Xepy (Xoph)? (Yopy ) (X-py) 2 (Y-py)?
9

Recall the correlation coefficient... |

Another form for the correlation coefficient is: |

n
'Z I(xl. 00, -?)J
R(X;Y) = Corr(X;Y)= =1 =

(ERAAE

Linear Regression

6600

® Regression relationship =
trend + residual scatter
D= B+ Bx+
p2bobrorEr

® Trend=best linear fit Line (LS)a

9000 10000 11000 12000

[}0 :?—ﬁﬁ

6000

b= Sl -00;-7)] / > (x; -
i=1 i=1

® Scatter = residual (prediction) error Err=obsPred

S =P 204 =5+ (s = 5 4t (3, =5,

i=1

Computethe RM S Error for this
regression line

® Then Coput the individual errors
(y« —)”/K)z,where p=Po+Bx, 15ks8

® Finally compute the cumulative RMS measure.
N2 A \2 A2 £ 2 £12
=9 + (= P)" + (= P)” + (e =P)” + (s =F)
5-1
where §.=fB.+fx, 1sks5
® Note on the Correlation coefficient formula,

oD (2175
=1\ & 23

0N LB W =X
—_
©

Misuse of the correlation coefficient

| Some patternswith r =0 \
a) (b) <)

Another Notation for the Slope of theLSline

1. Note that there is a slight difference in the formula for
the slope of the Least-Squares Best-Linear Fit line:




Non-par ametric statistical tests

@®]ntro to stats, vocabulary & intro to SPSS
®Displaying data

®Central tendency and variability
®Normal z-scores, standardized distribution
®Probability, Samples & Sampling error

®Type I and Type II errors; Power of a test

®]ntro to hypothesis testing

®0One sample tests & Two independent samples tests
®Two sample tests - dependent samples & Estimation
®Correlation and regression techniques
®Non-parametric statistical tests

TABLE 10.1.2 Air Force Head Sizes Data

Flying helmet sizesfor NZ Air Force

Measure the head-size of all air force recruits. Using
cheaper cardboard or more expensive metal calipers. Are
there systematic differences in the two measuring

methods? Again, paired comparisons.

Helmet sizesfor NZ Air Force— completetable

TABLE 10.1.2 Air Force Head Sizes Data

Recruit Cardboard Metal Difference Sign of
(mm) (mm) (Card-metal) difference

1 146 145 1 +

2 151 153 -2 -

3 163 161 2 +

4 152 151 1 +

H 151 145 6 +

6 151 150 1 +

7 149 150 -1 -

8 166 163 3 +

9 149 147 2 +

10 155 154 1 +

11 155 150 5 +

12 156 156 0 0

13 162 161 1 +

14 150 152 -2

Review

. What is a paired-comparison experiment? (obs'd data are
matched in pairs).

2. In a paired-comparison experiment, why is it wrong
to treat the two sets of measurements as independent
data Sets? (data are usually taken from the same unit under diff. Treatments, so obs’s
should be related).

3. How do you analyze the data from a paired-

comparison experiment? (analyze the difference).

4. What situations is appropriate to use the paired-

comparison method to analyze the data? (pre- and post-
metrifonate study using FDG PET imaging).

Recruit Cardboard Metal Difference Sign of
(mm) (mm) (Card-metal) difference
1 146 145 1 +
2 151 153 2 -
3 163 161 2 +
4 152 151 1 +
5 151 145 6 +
6 151 150 1 +

Head sizes. Doestypeof caliper make a difference?

Hypothesized value
P —.—
, 88
8 [e) o 8 o o
3 : : I

Differences (Cardboard - Metal)

Figure10.1.8 Dot plot of differences in size (with 95% CI).

Paired T-Test and Confidence Interval
paired T for cardboard - metal

N Mean St Dev SE Mean
car dboard 18 154.56 5.82 1.37
met al 18 152.94 5.54 1.30
Di f ference 18 1.611 2.146 0.506

95% CI for mean difference: (0.544, 2.67
IT-Test of mean difference=0 (vs not=0)/ -Value=3. 197y
P-Val ue=0. 005 >

Figure10.1.9 Minitab paired-7 output for the size data.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

The population median — 1~

Pos. skewed Symmetric Neg. skewed
50%
M edi S
- ian
Median  Mean = Mean Mean  Median
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Definition of the population median

1. he population median is defined as the number in
the middle of the distribution of the RV, i.e., 50% of
the data lies below and 50% above the median.

2. Under what circumstances is the population median
the same as the [gopulation mean? (symmetry of the distribution.)

3. Why do we use the population median rather than the
population mean in the sign test? (fra skewed distribution, mean

may not be representative, or may be outlier heavily influenced.)

4. Why is the model for the sign test like tossing a fair
€0oin? (In the sign-test we test Hy: U =0, under H, a random observation

is as likely to be < L™ as to be > Y. So observation has + or — sign with
the same probability, hence the coin-toss model, distribution-free, non-
parametric approach. Testing H is just like testing biased/unbiased coin).

Comments

5. What independence assumption must hold before the
sign test is applicable? How important is it that this
aSSumptiOn is true? (requires that obs’s are independent (one-sample test) and

different pairs are independent (paired data), very sensitive.)

6. What advantages and disadvantages does the sign test
have in comparison with the #-test? (Main advantage — test is

distribution-free and i itive to outliers. Disad — when hypothesis for T-test, or a
parametric test are met the CI are shorter and the parametric tests are more likely to detect
departure from normality.)

Why Use
Nonparametric Statistics?

® Parametric tests are based upon assumptions that
may include the following:

B The data have the same variance, regardless of the treatments or
conditions in the experiment.

B The data are normally distributed for each of the treatments or
conditions in the experiment.

® What happens when we are not sure that these
assumptions have been satisfied?

Helmet paired head measurements

From the cardboard vs. metal caliper tests, we see 14 +
and 3 — signs, implying larger overall measurements
using the cardboard calipers. It’s like tossing a coin 17
times and getting 14 heads. How likely is that?

If Y~Binomial(17, 0.5), number of successes (heads) in
17 fair coin tosses, then P(Y>=14)=0.00636, hence if
we test p=0.5, vs. p!=0.5, two-tailed test, the chance is
2P(Y>=14)=0.0127.

Review

7. Why is the sign test called a distribution-free test?
Does this mean that distributions are not used in

performjng the test? (no assumptions on the data underlying
distribution, but distributions are actually used, e.g., Binomial).

8. In applying the sign test to paired data, how do you
handle situations where both observations are tied
(indistinguishable)? (ignore them)

How Do Nonparametric Tests Compare
with the Usual z, ¢, and F Tests?

® Studies have shown that when the usual
assumptions are satisfied, nonparametric tests are
about 95% efficient when compared to their
parametric equivalents.

® When normality and common variance are not
satisfied, the nonparametric procedures can be
much more efficient than their parametric

equivalents.
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The Wilcoxon Rank Sum Test

® Suppose we wish to test the hypothesis that two
distributions have the same center.

® We select two independent random samples from each
population. Designate each of the observations from
population 1 as an “A” and each of the observations
from population 2 as a “B”.

® If Hj is true, and the two samples have been drawn
from the same population, when we rank the values in
both samples from small to large, the A’sand B’s
should be randomly mixed in the rankings.

What happens if H,, is not true?

The Wilcoxon Rank Sum Test

H,: the two population distributions are the same

H,: the two populations are in some way d

‘What happens when Hj; is true?

How to Implement Wilcoxon’s Rank Test

Wty v =T,

rements are tied,
each gets the average of the ranks
they would have gotten, if they
were not tied! (See x = 180)

the same
re in some way different

. The sample with the smaller sample
size is called sample 1.

. We rank the 10 observations from
smallest to largest, shown in
parentheses in the table.

46



=

ol

-9+10=34

The Bee Problem |
‘ de that the distributions

_fnce in
ke Fn, +1) =T,

6+1)-34=10

. The test statistic is T = 10.

. The critical value of T from
Table 7(b) for a two-tailed test

with 0/2 =.025is T = 12; H;, is
rejected if T < 12.

Large Sample Approximation:
Wilcoxon Rank Sum Test

Ty
z distribution with
_m(n +n, +1)
=L 1 =2 ‘g

nd o2
2 r 12

_mn,(n, +n, +1)

Hr

The Sign Test

kY
® The sign test is a fairly simple —_—
procedure that can be used to compare two
populations when the samples consist of paired
observations.

® It can be used
v when the assumptions required for the pair ed-difference
test of Chapter 10 are not valid or
v when the responses can only be ranked as “one better
than the other”, but cannot be quantified.

Minitab Output

Mann-Whitney Test and CI: Species1, Species2

Speciesl N= 4 Medi an = 207.50
Species2 N= 6 Medi an = 180.00
Point estimte for ETAL-ETA2 is 30.50
9 i

s (5.99,56.01)

Percent Cl for ETAL-ETA2
W= 34.0

Test of ETAl = ETA2 vs ETAL not = ETA2 is significant
at |0.0142
The test 1s significant at 0.0139 (adjusted for ties)

Minitab calls the procedure the Mann-Whitney U
Test, equivalent to the Wilcoxon Rank Sum Te:

The test statistic is W = T, = 34 and has p-value
=.0142. Do not reject H, for a = .05.

ome Notes

se the Wilcoxon Rank Sum
ample ¢ test for

The Sign Test I

vFor each pair, measure whether the first
response—say, A—exceeds the second
response—say, B.

vThe test statistic is X, the number of times that
A exceeds B in the n pairs of observations.

vOnly pairs without ties are included in the test.

vCritical values for the rejection region or exact
p-values can be found using the cumulative
binomial tables in Appendix I.
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The Sign Test

H,: the two populations are identical versus
H,: one or two-tailed alternative

is equivalent to

H,: p=P(A exceeds B) =.5 versus
Hi:p(# <, or>).5

Test statistic: X = number of plus signs
Rej ection region, p-values from Bin(n=size, p).

e Gourmet Chefs !

Meal 1 3 |4 [5 [6 |7 |8 i
Chef A 6 [4 |7 [8 [2 [4 [o |7
Chef B 8 [s [4 |7 [3 |7 [o |8
-t p-value =.454 is too large to

reject Hy. There is insufficient
evidence to indicate that one
chef tends to rate one meal
higher than the other.

Hyp=.5
H:p#.5 withn="7 (omi

Test Statistic: x = number o

UseTable lwithn=7andp=.5.
p-value = P(observe x = 2 or something equally as unlikely)
=P(x<2) +P(x>5)=2(.227) = .454

and evening shifts for n =
accidents per day for the

For a two tailed test, we reject H,

if [z| > 1.96 (5% level).

H, is rejected. There is evidence

of a difference between the day

o . g and night shifts.
H,: the distributions (# of j 20C ISRt ST

re different (p Z .5)

Large Sample Approximation: f
The Sign Test

1. Calculate x = number of plus signs.

x—.5n

2. The statistic z = has an approximate

z distribution.

Which test should you use? &

® We compare statistical tests using
Definition: Power =1-f
=P(reject H, when H, is true)

® The power of the test is the probability of rejecting the null
hypothesis when it is false and some specified alternative is true.

® The power is the probability that the test will do what it was
designed to do—that is, detect a departure from the null
hypothesis when a departure exists.
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Which test should you use?

® If all parametric assumptions have been met, the
parametric test will be the most powerful.

® If not, a nonparametric test may be more powerful.

® If you can reject H,, with a less powerful nonparametric
test, you will not have to worry about parametric
assumptions.

® If not, you might try
B more powerful nonparametric test or
M increasing the sample size to gain more power

igned-Rank Test E

vFor each pair, calculate the difference d = x,-x,.
Eliminate zero differences.

vRank the absolute values of the differences from 1 to 7.
Tied observations are assigned average of the ranks they
would have gotten if not tied.
=T* =rank sum for positive differences
=T-=rank sum for negative differences
vIf the two populations are the same, T* and T- should
be nearly equal. If either T* or T is unusually large, this
provides evidence against the null hypothesis.

Example

The Wilcoxon Signed-Rank Test

® The Wilcoxon Signed-Rank Test is a more powerful
nonparametric procedure that can be used to compare
two populations when the samples consist of paired

observations.

@ Tt uses the ranks of the differences, d = x,-x, that we
used in the paired-difference test.

The Wilcoxon Signed-Rank Test

H,: the two populations are identical versus

H,: one or two-tailed alternative
Test statistic: T=min (T*and T ")
Critical values for a one or two-tailed

rejection region can be found using
Wilcoxon Signed-Rank Test Table.

3 Do not reject Hy,. There is

098 | insufficient evidence to indicate
.12 | that there is a difference in

_o14 | densities for the two cake mixes.

O O O

Calculate: 75 =2 and T~ = 5+4+3+1+6 = 19.

The test statistic is 7=min (77, T )=2.
Rejection region: Use Table 8. For a two-tailed test with
o= 05 reiect H if T< 1

— LY w2 TR
= e 2 p=m . z :
S s Tema, i 1

e e 1 ] '




Large Sample Approximation: ﬂ
The Signed-Rank Test - Sl

al approximation can be
e critical values in Table 8.

1.Calculate7T" and 7~.Let7 = min(7",7").

.. T-u .
2. The statisticz = . hasan approximae
0’/
z distribution with

+1) n(n+1)(2n +1)

4

ando; =

The Kruskal-Wallis — H Test ' ﬁ

vRank the total measurements in all k£ samples

from 1 to n. Tied observations are assigned average of the
ranks they would have gotten if not tied.

vCalculate

-T; =rank sum for theith sample i=1,2,...k
N =NgHNyt. .+,
v And the test statistic H is (analog to: ' = MSST/MSSE)

12 T2

H=

nts were randomly

7ith four different
ement test scores
ons of test

The Kruskal-Wallis — H Test

® The Kruskal-WallisH Test is a nonparametric
procedure that can be used to compare more than
two populations in a completely randomized
design.

® Non-parametric equivalent to ANOVA F-test!

® All n = n,+n,+...+n, measurements are jointly
ranked.

® We use the sums of the ranks of the £ samples to

compare the distributions.

The Kruskal-Wallis H Test J ﬁ

H,: the k distributions are identical versus
H,: at least one distribution is different
Test statistic: Kruskal-WallisH

When Hq istrue, thetest statistic H has an
approximate 2 distribution with df = k-1.

Use a right-tailed rejection region or p-value
based on the Chi-square distribution.

Teaching Methods

1 2 3 4

65 )75 @[5 |4 6
87 (13)[60 (5)[78 ®)[89 (15)
73 (©]83 12|67 @][80 (10

79 (981 (11)[62 (2)|88 (14)

15

the same

12

.. T’
Teststatistic: H = Y——=3(n+1)
n(n+1) n

12 (312 +35% +15% +55°

= -3(17)=8.9
16(17)
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Teststatistic: H = >
n(n+1)

12 (312+352+15°
16(17) 4

]—3(17):8.96

Rejection region: Use Table 5.
For a right-tailed chi-square test
with o = .05 and df = 4-1 =3,
reject Hyif H >7.81.

Reject Hy,. There is sufficient
evidence to indicate that there
is a difference in test scores for
the four teaching techniques.

The Friedman F, Test

vRank the k£ measurements, within each block, from
from 1 to k. Tied observations are assigned average of
the ranks they would have gotten if not tied.
vCalculate

«T; =rank sum for theithtreatment i =1, 2,...,k

vand the test statistic

k
ZTZ —3xbx(k+1)

Fb=—————
kaX(k+1)

1 the student reacts
students are used in

S

The Friedman F, Test

® The Friedman F, Test is the nonparametric equivalent
of the randomized block design with & treatments
and b blocks.

® All £ measurements within a block are ranked from 1
to b.

® We use the sums of the ranks of the & treatment
observations to compare the k treatment distributions.

o Model: X;, = U + Q.+ B+
1<=i<=K (treatment effects), 1<—j< n (block)

The Friedman F, Test

H,: the k treatments are identical versus

H,: at least one distribution is different

Test statistic: Friedman F,

When H, istrue, thetest statistic F, hasan
approximate x? distribution with df = k-1.

Use a right-tailed rejection region or p-value
based on the Chi-square distribution.

Reaction Times | 3N
Stimuli —
Subject |1 2 3
1 6 (@9 3s @
2 7 @5 |11 @7 @9
3 9 (113 () BRI E)]
4 5

!
12 723k +1)
/7/\(/\+1)

1 to 3, an
calculate
rank sums S (4.5 +112 +8.5%) - 3(4)(4) =5.375
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Reaction Times

H,: the d utions of reaction times are the
same
H,: the distributions differ in location

12

ST -3b(k +1)

Teststatistic: F, = ————2.
bk(k +1)

5
= 1:1("4) (4.5° +11° +8.5%) —3(4)(4) =5.375

Do not reject H. There is
insufficient evidence to
indicate that there is a
difference in reaction times for
the three stimuli.

Rejection region: Use Table 5.
For a right-tailed chi-square test
with o =.05 and df = 3-1 =2,

reject Hy if H 25.99.

Rank Correlation Coefficient

whered = x — y.

Teacher

Judge’s Rank

Exam score

‘ i )
Rank Correlation Coefficient | &%’

® The rank correlation coefficient, Spearman Iy is the
nonparametric equivalent of the Pearson correlation

coefficient I'.
® The two variables are each ranked from smallest to
largest and the ranks are denoted asx and y.
® We are interested in the strength of the relationship
(correlation) between the two variables.

Rank Correlation Coefficient

H,: no association between the rank pairs
H,: one or two-tailed alternative
Test statistic: I'g

Critical values for a one or two-tailed
rejection region can be found using

Example ‘ IE ‘-%ﬂ

Teacher 2 3 4 5

Judge’s Rank 2 3 1 5

Exam score 93 80

—| For a one-tailed test with o = .05
and n =5, reject Hy if r; 2.900.
> - 2 We do not reject H,. Not enough
féidence to indicate a negative

- association.




Key Concepts

Key Concepts

Key Concepts

Key Concepts
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