

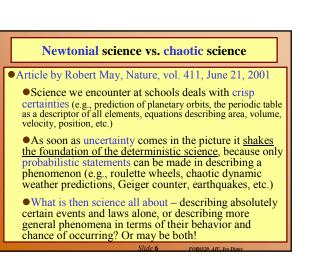
AIU FOR 6520

- Course Description
- Class homepage
- Online supplements, VOH's etc.
- Final Exam/Project Format

http://www.stat.ucla.edu/~dinov/courses_students.html

Review of Research & Design I – Fall'02 •Intro to stats, vocabulary & intro to SPSS

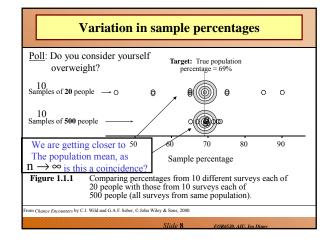
- Displaying data
- •Central tendency and variability
- •Normal z-scores, standardized distribution
- Probability, Samples & Sampling error
- Type I and Type II errors; Power of a test
- Intro to hypothesis testing
- •One sample tests & Two independent samples tests
- •Two sample tests dependent samples & Estimation
- •Correlation and regression techniques
- •Non-parametric statistical tests


Coverage of Research & Design II – Spring'03

- Applications of Central Limit Theorem, Law of Large Numbers.
- •Design of studies and experiments.
- •Fisher's F-Test & Analysis Of Variance
 - (ANOVA, 1- or 2-way).
- Principle Component Analysis (PCA).
- χ2 (Chi-Square) Goodness-of-fit test.
- Multiple linear regression
- •General Linear Model

DR 6520 ATU Lus Din

OR 6520 ALL Ivo Di


•Bootstrapping and Resampling

Introduction to statistics

Intro to stats, vocabulary & intro to SPSS

- Displaying data
- •Central tendency and variability
- •Normal z-scores, standardized distribution
- Probability, Samples & Sampling error
- Type I and Type II errors; Power of a test
- Intro to hypothesis testing
- •One sample tests & Two independent samples tests
- Two sample tests dependent samples & Estimation
- Correlation and regression techniques
- •Non-parametric statistical tests

Errors in Samples ...

- Selection bias: Sampled population is <u>not</u> a representative subgroup of the population really investigated.
- Non-response bias: If a particular subgroup of the population studied does not respond, the resulting responses may be skewed.
- Question effects: Survey questions may be slanted or loaded to influence the result of the sampling.
- Is quota sampling reliable? Each interviewer is assigned a fixed quota of subjects (subjects district, sex, age, income exactly specified, so investigator can select those people as they liked).
- Target population —entire group of individuals, objects, units we study.
- Study population a subset of the target population containing all "units" which could possibly be used in the study.
- Sampling protocol procedure used to select **the sample**
- Sample the subset of "units" about which we actually collect info.

More terminology ...

- Census attempt to sample the entire population
- Parameter numerical characteristic of the <u>population</u>, e.g., income, age, etc. Often we want to <u>estimate population</u> <u>parameters</u>.
- Statistic a numerical characteristic of the sample. (Sample) statistic is used to estimate a corresponding population parameter.
- Why do we sample at random? We draw "units" from the study population at random to <u>avoid bias</u>. Every subject in the study sample is equally likely to be selected. Also randomsampling allows us to <u>calculate the likely size of the error in</u> <u>our sample estimates</u>.

More definitions ...

- How could you implement the lottery method to randomly sample 10 students from a class of 2500² – list all <u>names</u>; assign numbers <u>1,2,3,...250</u> to all students; Use a <u>random-number generator</u> to choose (10-times) a number in range [0;250]; <u>Process</u> students drawn.
- Random or chance error is the difference between the <u>sample-value</u> and the <u>true population-value</u> (e.g., 49% vs. 69%, in the above bodyoverweight example).
- Non-sampling errors (e.g., non-response bias) in the census may be considerably larger than in a comparable survey, since <u>surveys are much</u> smaller operations and easier to control.
- Sampling errors—arising from a decision to use a sample rather than entire population
- Unbiased procedure/protocol: (e.g., using the proportion of left-handers from a random sample to estimate the corresponding proportion in the population).
- Cluster sampling- a cluster of individuals/units are used as a sampling unit, rather than individuals.

More terminology ...

- What are some of the non-sampling errors that plague surveys? (non-response bias, question effects, survey format effects, interviewer effects)
- If we take a random sample from one population, can we apply the results of our survey to other populations? (It depends on how similar, in the respect studied, the two populations are. In general- No! This can be a dangerous trend.)
- Are <u>sampling households</u> at random and <u>interviewing people</u> <u>at random on the street</u> valid ways of <u>sampling</u> people from an urban population? (No, since clusters (households) may not be urban in their majority.)
- Pilot surveys after prelim investigations and designing the trial survey Q's, we need to get a "small sample" checking clearness and ambiguity of the questions, and avoid possible sampling errors (e.g., bias).

Questions ... Give an example where non-representative information from a survey may be useful. Non-representative info from surveys may be used to estimate parameters of the actual sub-population which is represented by the sample. E.g., Only about 2% of disastified customers complain (most just avoid using the services), these are the most-vocal reps. So, we can not make valid conclusions about the stereotype of the disastified customer, but we can use this info to tract down changes in levels of complains over years. Why is it important to take a pilot survey? Give an example of an unsatisfactory question in a questionnaire. (In a telephone study: <u>What time is it?</u>)

Do we mean Eastern/Central/Mountain/Pacific?)

Questions ... • Random allocation – randomly assigning treatments to units, leads to representative sample only if we have large # experimental units. • Completely randomized design- the simplest experimental design, allows comparisons that are unbiased (not necessarily fair). Randomly allocate treatments to all experimental units. so that every treatment is applied to the same number of units. E.g., If we have 12 units and 3 treatments to 4 units exactly. • Blocking- grouping units into blocks of similar units for making treatment-effect comparisons only within individual groups. E.g., Study of human life expectancy perhaps income is clearly a factor, we can have high- and low-income blocks and compare, say, gender differences within these blocks separately.

Questions ...

- Why should we try to "blind" the investigator in an experiment?
- Why should we try to "blind" human experimental subjects?
- The basic rule of experimentor :
- "Block what you can and randomize what you cannot."

Experiments vs. observational studies for comparing the effects of treatments

• In an Experiment

- experimenter determines which units receive which treatments. (ideally using some form of random allocation)
- Observational study useful when can't design a controlled randomized study
 - compare units that happen to have received each of the treatments
 - Ideal for <u>describing relationships</u> between different characteristics in a population.
 often useful for identifying possible causes of effects, but
 - cannot reliably establish causation.
- Only properly designed and executed experiments can reliably demonstrate causation.

Questions ...

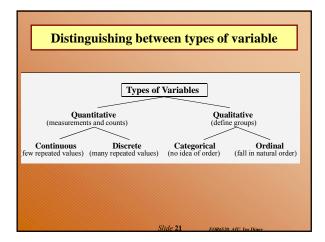
- What is the difference between a designed experiment and an observational study? (no control of the design in observational studies)
- Can you conclude causation from an observational study? Why or why not? (not in general!)
- How do we try to investigate causation questions using observational studies? In a smoking-lung-cancer study: try to divide all subjects, in the obs. study, into groups with equal, or very similar levels of all other factors (age, stress, income, etc.) – I.e. control for all outside factors. If rate of lung-cancer is still still higher in smokers we get a stronger evidence of causality.
- What is the idea of controlling for a variable, and why is it used? Effects of this variable in the treatment/control groups are similar.
- Epidemiology science of using statistical methods to find causes or risk factors for diseases.

The Subject of Statistics

Statistics is concerned with the process of finding out about the world and how it operates -

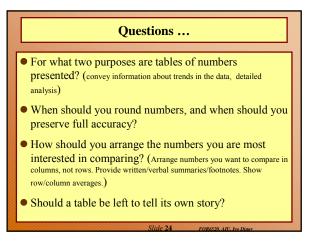
- in the face of variation and uncertainty
- by collecting and then making sense (interpreting) of data.

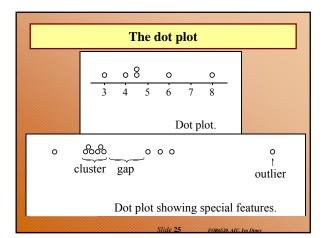
Displaying data

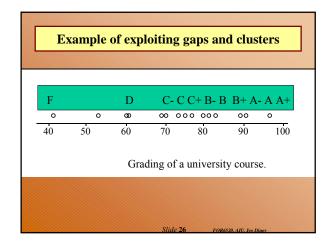

Intro to stats, vocabulary & intro to SPSS

Displaying data

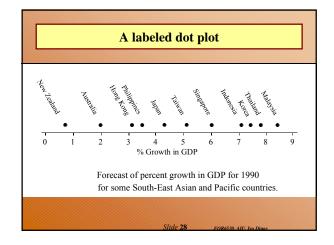

- •Central tendency and variability
- •Normal z-scores, standardized distribution
- Probability, Samples & Sampling error
- Type I and Type II errors; Power of a test
- Intro to hypothesis testing
- •One sample tests & Two independent samples tests
- •Two sample tests dependent samples & Estimation
- Correlation and regression techniques
- Non-parametric statistical tests

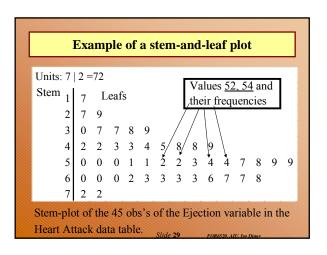

Types of variable

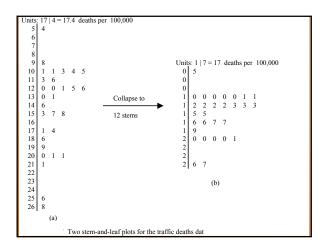

- *Quantitative* variables are *measurements* and counts
 - Variables with *few repeated values* are treated as *continuous*.
 - Variables with many repeated values are treated as discrete
- *Qualitative* variables (a.k.a. factors or classvariables) describe *group membership*

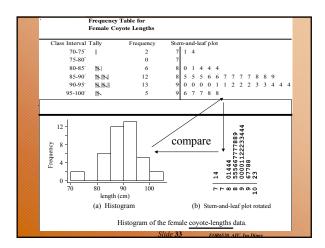


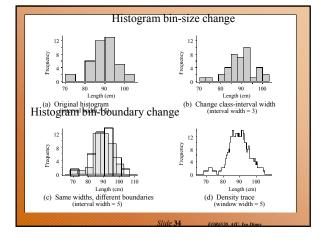
Questions ... • What is the difference between quantitative and qualitative variables? • What is the difference between a discrete variable and a continuous variable? • Name two ways in which observations on qualitative variables can be stored on a computer. (strings/indexes) • When would you treat a discrete random variable as though it were a continuous random variable? • Can you give an example? (\$34.45, bill)

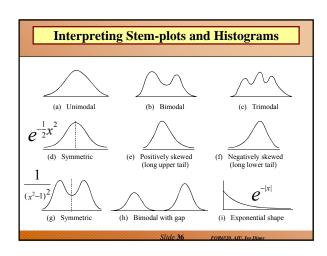




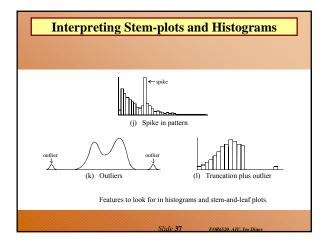


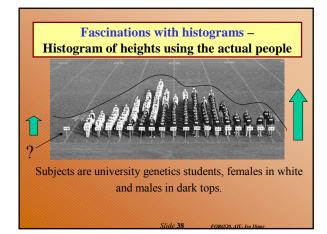


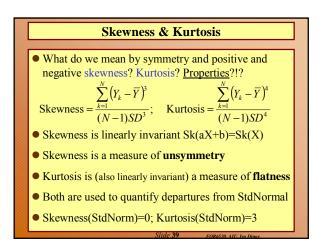



Traffi	c Death-Rates (per 100,0	000 Population) for 30	Countries	
17.4 Australia	20.1 Austria	19.9 Belgium	12.5 Bulgaria	15.8 Canada
10.1 Czechoslovakia	13.0 Denmark	11.6 Finland	20.0 France	12.0 E. Germany
3.1 W. Germany	21.1 Greece	5.4 Hong Kong	17.1 Hungary	15.3 Ireland
0.3 Israel	10.4 Japan	26.8 Kuwait	11.3 Netherlands	20.1 New Zealand
0.5 Norway	14.6 Poland	25.6 Portugal	12.6 Singapore	9.8 Sweden
5.7 Switzerland	18.6 United States	12.1 N. Ireland	12.0 Scotland	10.1England & Wales
ata for 1983, 1984 or 198 ource: Hutchinson [1987,	5 depending on the country (page 3].	prior to reunification of Ger	rmany)	

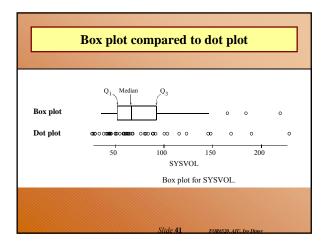
	Coy	ote Lengtl	hs Data (cm)																
Females																				
93.0	97.0	92.0	101.6	93.0	84.5	1	02.5		97	.8	9	1.0		- 98	8.0		93.	5		91.1
90.2	91.5	80.0	86.4	91.4	83.5		88.0)	71	0.	8	1.3		88	8.5		86.	5		90.0
84.0	89.5	84.0	85.0	87.0	88.0		86.5	;	96	0.	8	7.0		93	3.5		93.	5		90.0
85.0	97.0	86.0	73.7																	
Males																				
97.0	95.0	96.0	91.0	95.0	84.5		88.0)	96	0.	9	6.0		8	7.0		95.	0	1	00.0
101.0	96.0	93.0	92.5	95.0	98.5		88.0)	81	.3	- 9	1.4		88	8.9		86.	4	1	01.6
83.8	104.1	88.9	92.0	91.0	90.0		85.0)	93	.5	7	8.0		100	0.5	1	03.	0		91.0
105.0	86.0	95.5	86.5	90.5	80.0		80.0)												
Class Ir		Female C	-	requency		Ster	n_ar	d-le	Pafi	plot		-1	Ì		h					
	70-75	*		2		7	1	4	cui j	piot					η.	1	. 4	4	.	
	75-80			0		7	•	Ċ												
Body	80-85 ·	7		6		8	0	1	4	4	4									
length	85-90 ·	\times		12		8	5	5	5	6	6	7	7	7	7	8	8	9		
	90-95 ·	**		13		9	0	0	0	0	1	1	2	2	2	3	3	4	4	4
9	5-100 ·	*		5		9	6	7	7	8	8									
10	0-105			2		10	2	3												

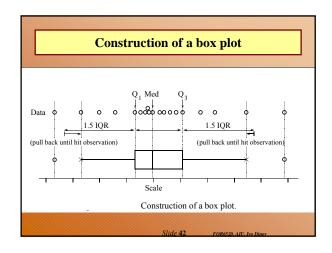


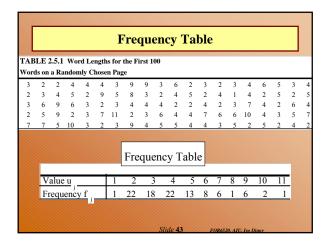


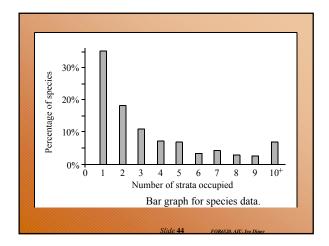


Questions ...

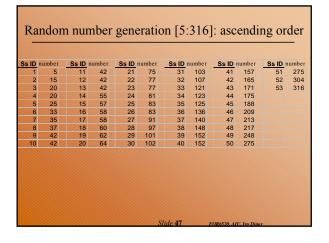

- What advantages does a stem-and-leaf plot have over a histogram? (S&L Plots return info on individual values, quick to produce by hand, provide data sorting mechanisms. But, histograms are more attractive and more understandable).
- The shape of a histogram can be quite drastically altered by choosing different class-interval boundaries. What type of plot does not have this problem? (density trace) What other factor affects the shape of a histogram? (bin-size)
- What was another reason given for plotting data on a variable, apart from interest in how the data on that variable behaves? (shows features, cluster/gaps, outliers; as well as trends)

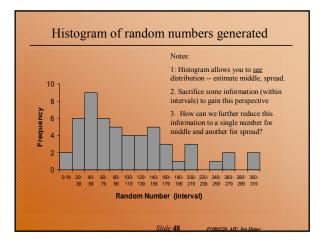






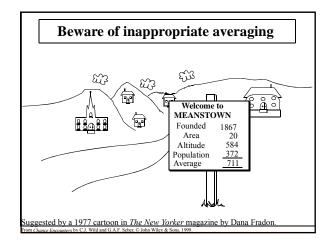
	րլ	ograms	like S			
		STATA	Output	Standa	rd deviatio	n
Descriptiv	e Statistic	s			1	
Variable	N	Mean	Median	TrMean	StDev	SE Mean
age	45	50.133	51.000	50.366	6.092	0.908
Variable	Minimum	Maximum	Q1	Q3		
age	36.000	59.000	46.500	56.000		
			Lower qu	artile Up	per quarti	le

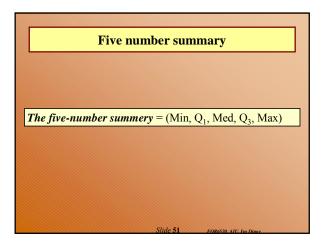


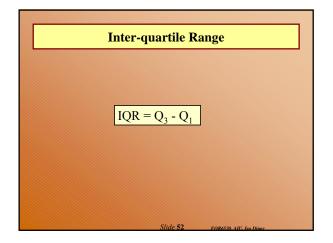

Central tendency and variability Intro to stats, vocabulary & intro to SPSS

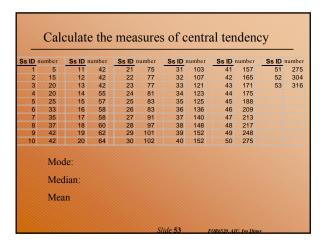
- Displaying data
- •Central tendency and variability
- •Normal z-scores, standardized distribution
- Probability, Samples & Sampling error
- Type I and Type II errors; Power of a test
- Intro to hypothesis testing
- •One sample tests & Two independent samples tests
- Two sample tests dependent samples & Estimation
- •Correlation and regression techniques
- Non-parametric statistical tests

Describing data with pictures and two numbers


- Random Number generation: frequency histogram
- Descriptive statistics
 - Central tendency (Mode, Median, Mean)
 - Variability (Variance, Standard deviation)






Central tendency: the middle in a single number

- Mode: The most frequent score in the distribution.
- Median: The centermost score if there are an odd number of scores or the average of the two centermost scores if there are an even number of scores.
- Mean: The sum of the scores divided by the number of scores.

Ss ID u		Ss ID u		Ss ID u		Ss ID u		Ss ID u		SsIDu	
1	5	11	42	21	75	31	103	41	157	51	27
2	15	12	42	22	77	32	107	42	165	52	304
3	20	13	42	23	77	33	121	43	171	53	31
4	20	14	55	24	81	34	123	44	175		
5	25	15	57	25	83	35	125	45	188		
6	33	16	58	26	83	36	136	46	209		
7	35	17	58	27	91	37	140	47	213		
8	37	18	60	28	97	38	148	48	217		
9	42	19	62	29	101	39	152	49	248		
10	42	20	64	30	102	40	152	50	275		
	Mode				102	10	102		213		

	$\sum_{i=1}^{N} \mathbf{X}_{i'}$	/N =s	ample	mea	n = X	(pron	ounce	i "Xb	ar'')		
	$\sum_{i=1}^{N} \mathbf{X}_{i'}$	/N ≠P	opula	tion n	nean =	μ (pr	onoun	ced "	mew")	
Ss ID	number	Ss ID	number	Ss ID	number	Ss ID			number	Ss ID	number
K ₁	5	X ₁₁	42	X ₂₁	75	X ₃₁		X ₄₁		X ₅₁	275
K ₂	15	X ₁₂	42	X ₂₂	77	X ₃₂		X ₄₂		X ₅₂	
K ₃	20	X ₁₃	42	X ₂₃	77	X ₃₃		X ₄₃		X ₅₃	316
K4 💦	20	X14	55	X ₂₄	81	X ₃₄	123	X44	175		
<5	25	X ₁₅	57	X ₂₅	83	X ₃₅	125	X45	188		
K ₆	33	X ₁₆	58	X ₂₆	83	X ₃₆	136	X46	209		
(7	35	X17	58	X ₂₇	91	X ₃₇	140	X47	213		
K ₈	37	X ₁₈	60	X ₂₈	97	X ₃₈	148	X ₄₈	217		
K 9	42	X ₁₉	62	X ₂₉	101	X ₃₉	152	X49	248		
K ₁₀	42	X ₂₀	64	X ₃₀	102	X ₄₀	152	X ₅₀	275		
										Σx =	5901

	N				n = X (nean =				ar") mew"))	
Ss ID	number	Ss ID	number	Ss ID	number	Ss ID	number	Ss ID	number	Ss ID	numbe
X1	5	X11	42	X ₂₁	75	X ₃₁	103	X41	157	X ₅₁	275
X ₂	15	X ₁₂	42	X22	77	X ₃₂	107	X42	165	X ₅₂	304
X3	20	X ₁₃	42	X23	77	X ₃₃	121	X43	171	X53	316
X4	20	X14	55	X24	81	X34	123	X44	175		
X ₅	25	X ₁₅	57	X25	83	X ₃₅	125	X45	188		
X ₆	33	X ₁₆	58	X26	83	X ₃₆	136	X46	209		
X7	35	X ₁₇	58	X27	91	X37	140	X47	213		
Xe	37	X ₁₈	60	X ₂₈	97	X ₃₈	148	X48	217		
X9	42	X ₁₉	62	X29	101	X ₃₉	152	X49	248		
X ₁₀	42	X ₂₀	64	X ₃₀	102	X40	152	X50	275		
	1000	11/10								ΣX =	5901

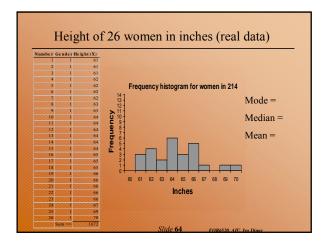
i= N S	x/N								"Xbai ed "m)
1=	number		number		number				number		number
X1	5	X11	42	X ₂₁	75	X ₃₁	103	X41	157	X51	27
X2	15	X12	42	X22	77	X32	107	X42	165	X52	30
X ₃	20	X ₁₃	42	X23	77	X33	121	X43	171	X53	1,000,000
X4	20	X ₁₄	55	X24	81	X ₃₄	123	X44	175		4
Xs	25	X15	57	X25	83	X35	125	X45	188		
X ₆	33	X ₁₆	58	X ₂₆	83	X36	136	X46	209		
X7	35	X17	58	X27	91	X37	140	X47	213	T	YPO!
Xa	37	X ₁₈	60	X ₂₈	97	X38	148	X48	217		1000
Xe	42	X ₁₉	62	X29	101	X39	152	X49	248		
X10	42	X ₂₀	64	X30	102	X40	152	X50	275		
										ΣX =	100558

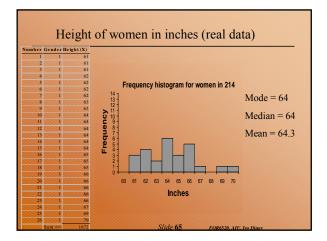
i= N	1						pron)
I=	number	Ss ID	number	Ss II	number						
X1	5	X11	47	X ₂₁	75	X ₃₁	103	X41	157	X51	275
X ₂	15	X ₁₂	50	X22	77	X ₃₂	107	X42	165	X ₅₂	304
X3	20	X ₁₃	52	X ₂₃	77	X ₃₃	121	X43	171	X ₅₃	1,000,000
K4	20	X ₁₄	55	X ₂₄	81	X ₃₄	123	X44	175		
K5	25	X15	57	X25	83	X35	125	X45	188		
K ₆	33	X ₁₆	58	X ₂₆	83	X ₃₆	136	X46	209		
K7	35	X17	58	X ₂₇	91	X ₃₇	140	X47	213		
X ₈	37	X ₁₈	60	X ₂₈	97	X ₃₈	148	X ₄₈	217		
X ₉	41	X ₁₉	62	X ₂₉	101	X ₃₉	152	X ₄₉	248		
X ₁₀	42	X ₂₀	64	X ₃₀	102	X40	152	X50	275		
1111										$\Sigma x =$	1005607

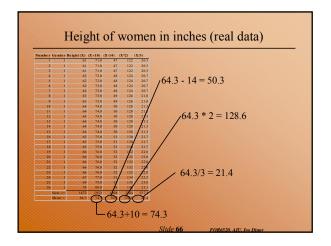
you add hange the from it.			tant to/fi g/subtra			
	Xi	X;+2	X _i +100	X _i -2	X _i -100	
X ₁	1	3	101	-1	-99	
X2	2	4	102	0	-98	
X3	3	5	103	1	-97	
	6	12	306	0	-294	
Sum=>						

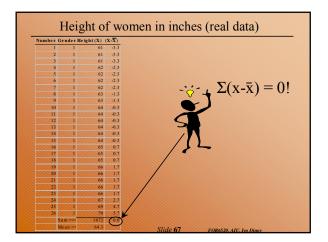
	hings abo	ut the	e mea	n			
cha	ou add/subtra nge the mean rom it.						
cha	ou multiply/d nge the mean					~	
con	stant.						
con	stant.	Xi	X;*2	X _i *100	X/2	X;/5	
con		X _i	X _i *2 2	X _i *100 100	X/2 0.5	X√5 0.2	
con							
con	Xi	1	2	100		0.2	
con	X ₁ X ₂	1	2	100 200	0.5	0.2	
con	X ₁ X ₂ X ₃	1 2 3	2 4 6	100 200 300	0.5 1 1.5	0.2 0.4 0.6	

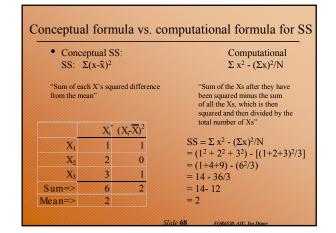
Neat things about the mean

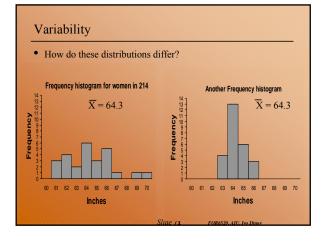

- If you add/subtract a constant to/from each score, you change the mean by adding/subtracting the constant to/from it.
- If you multiply/divide each score by a constant you change the mean by multiplying/dividing it by the constant.
- Summed deviations from the mean = 0, or $\Sigma(x_i-x) = 0$

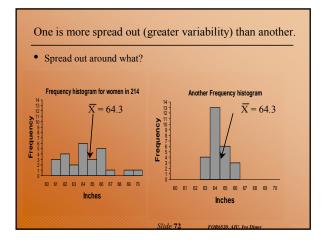

	Xi	X _i -X
X ₁	1	-1
X2	2	0
X3	3	1
Sum=>	6	0
Mean=>	2	0
	Slide	a () () (


Sum of squ minimized. $\Sigma(x-\bar{x})^2 = r$ $\Sigma x^2 - (\Sigma x)$	ninimum		n the mear	n (SS) is	
	Xi	$X_{\overline{i}}\overline{X}$	$(X_i - \overline{X})^2$	$(X_{i} 0)^2$	$(X_{i}-3)^{2}$
X ₁	1	-1	1	1	4
X ₂	2	0	0	4	1
X3	3	1	1	9	0
Sum=>	6	0	2	14	5
Mean=>	2	0			


Neat things about the mean


- If you add/subtract a constant to/from each score, you change the mean by adding/subtracting the constant to/from it.
- If you multiply/divide each score by a constant you change the mean by multiplying/dividing it by the constant.
- Summed deviations from the mean = 0, or $\Sigma(x_i, \bar{x}) = 0$
- Very sensitive to extreme scores (outliers).
- Sum of squared deviations from the mean (SS) is minimized.
 Σ(x₁-x
)² = minimum
 - $\Sigma x^2 (\Sigma x)^2/N = \text{minimum}_{Slice}$




Questions about measures of central tendency?

- Why is the mean our preferred measure of central tendency?
 - Adjusted for the number of scores.
 - Takes into account the numerical "weight" of each score.
 As scores of greater magnitude are added, the mean increases
 As scores of lesser magnitude are added, the mean decreases
 - Sum of squared deviations from the mean (SS) is minimized.
 SS is the square of the sum of each score's difference from the mean.
 Σ(x-x̄)²
 - $\Sigma x^2 (\Sigma x)^2 / N = minimum$

Variability

- Not only interested in a distribution's middle.
- Also interested in its spread (or variability).
- Define distributions by:
 Central tendency
 Variability
- How can we describe variability with a single number?

Describe variability around the mean with one number.

• Want to adjust for the number of scores.

- Take into account the numerical "weight" of each score.
 As scores are farther from the mean, the index of variability should increase
 - As scores are closer to the mean, the index of variability should decrease
- Suppose we measured each score's distance from its mean, and then used the average distance as our measure?
 - Using the <u>average</u> distance will adjust for the number of scores
 - Measuring the distance from the mean should tell us how spread out each score is relative to the mean.

Slide **73** FC

Try measure of variability with some simple number

- X (a population) = $\{2,4,6\}$
- $\mu = 4$
- What is the average distance from the mean?
 - How far is X_1 away from the mean (2 4 = ??)
- How far is X_2 away from the mean (4 4) = ??
- How far is X_3 away from the mean? (6 4) = ??)
- What is the sum of the distance from the mean? $[\Sigma(x-\mu) = ??]$

Ť

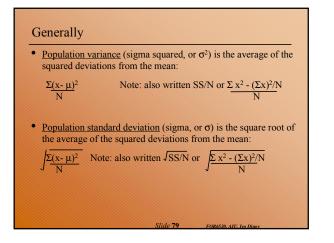
• How can we use the distance from the mean as a measure of variability?

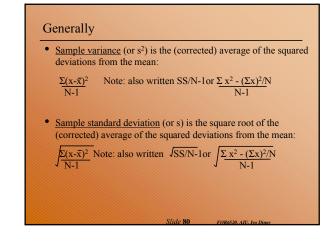
Average of the squared distances from the mean!

- Find the distance (deviation) of each score from its mean (x-µ).
 -2, 0, 2
 - -2, 0, 2
 - Why? Measure how spread out each score is from the mean.
- Square the deviation of each score from its mean (x- μ)²
 - $-2^2 = 4, 0^2 = 0, 2^2 = 4$
 - Why? So the values won't always sum to zero.
- Sum the squared deviations: $\Sigma(x-\mu)^2$ (or SS)
 - -4+0+4=8
 - Question: can SS be negative?
- Divide by N
 - 8/3 = 2.7
 - Why? To get the <u>average</u> squared deviation from the mean.
 - Congratulations, you've just calculated the population variance, σ^2

Is 2.7 the average distance each score is from its mean?

• $X = \{2,4,6\}$

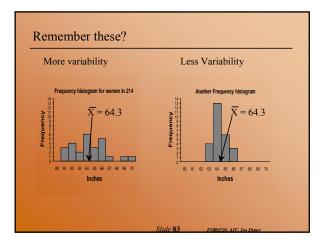

- In absolute terms:
 - X_1 is 2 away from the mean
 - X₂ is 0 away from the mean
 - X₃ is 2 away from the mean
- Shouldn't average distance be about 4/3 or 1.33?
- Why is the variance (σ²) as a measure of the average distance of each score from its mean so much bigger than our intuition (that is, why is the σ² = 2.7 when the average distance from the mean is obviously closer to 1.3?

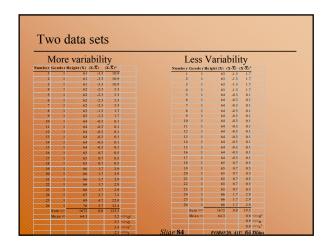

Is 2.7 the average distance each score is from its mean?

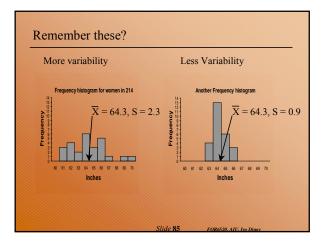
- $X = \{2, 4, 6\}$
- In absolute terms:
- X₁ is 2 away from the mean
- X_2 is 0 away from the mean
- X_3 is 2 away from the mean
- Shouldn't average distance be about 4/3 or 1.33?
- Why is the variance (σ²) as a measure of the average distance of each score from its mean so much bigger than our intuition?
- BECAUSE WE SQUARED ALL THE DEVIATIONS:
- How can we "unsquare" our answer?

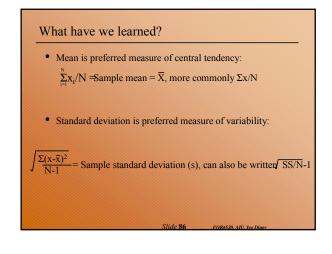
How do we "unsquare" the variance?

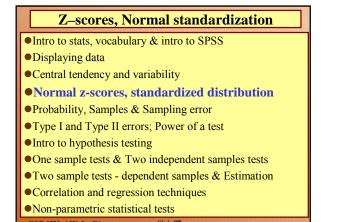
- Unsquare the variance (σ²) by taking the square root of it:
 - $\sqrt{\sigma^2} = |\sigma| = \sqrt{\Sigma(x-\mu)^2/N}$ = standard deviation
 - Why? To get back to the original scale of X.
 - $\sqrt{2.7} = 1.63$, much closer to our intuitively derived 1.3

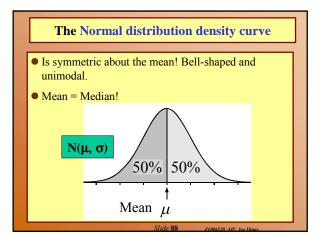

Questions?

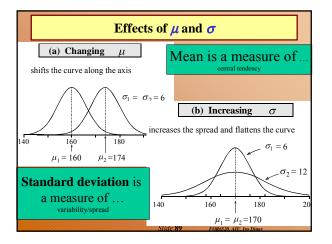

- We know what happens to the mean when we add or subtract a constant to/from all the scores, but what happens to the variance and standard deviation?
- We know what happens to the mean when we multiply or divide all the scores by a constant, but what happens to the variance and standard deviation?

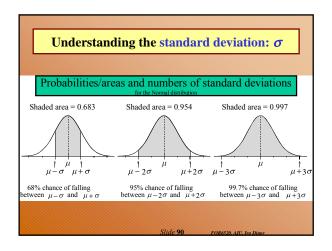

Questions?

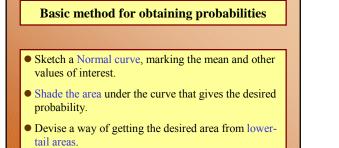

- We know what happens to the mean when we add/subtract a constant to/from all the scores, but what happens to s² and s?
- We know what happens to the mean when we multiply or divide all the scores by a constant, but what happens to s² and s?

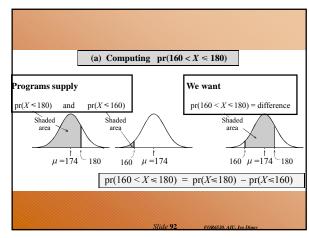

	X	X+2	X-2	X*2	X/2
X _l	1	3	-1	2	0.5
X2	2	4	0	4	1.0
X3	3	5	1	6	1.5
Mean=>	2	4	0	4	1

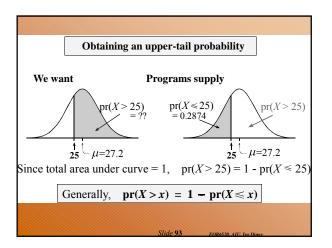


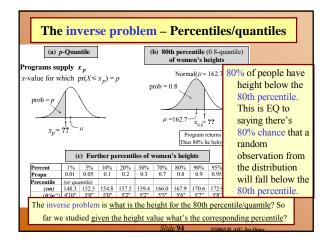


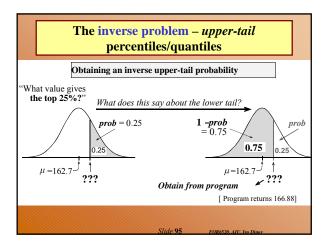


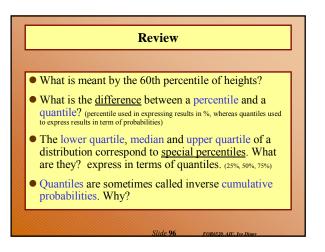


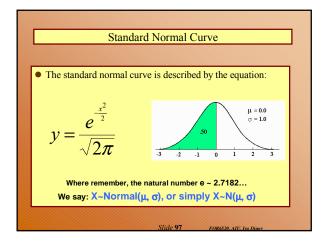


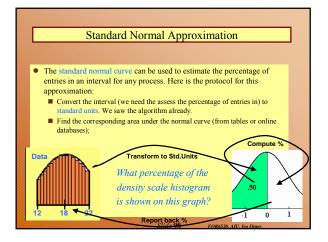


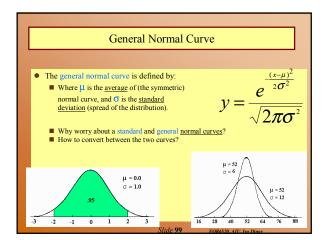


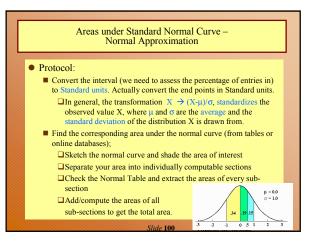

• Obtain component lower-tail probabilities from a computer program

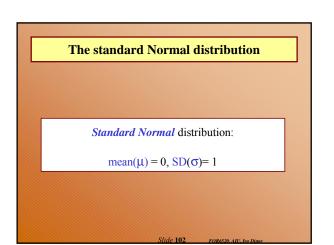

Slide 91

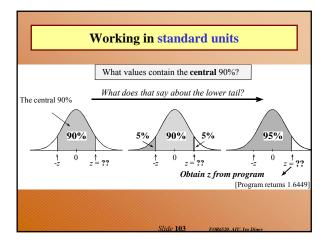


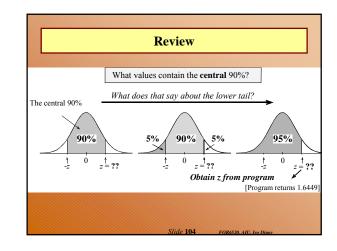


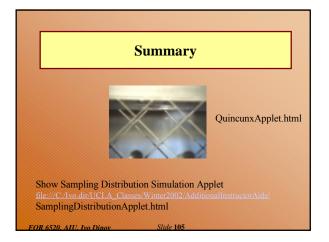












	The z-scol	re		
• The <i>z</i> -score of <i>x</i> is the number of standard deviations <i>x</i> is from the mean. (Body-Mass-Index, BMI) TABLE 6.3.1 Examples of <i>z</i> -Scores				
X	z -score = $(x - \mu)/\sigma$	Interpretation		
Male BMI	values (kg/m ²)			
25	(25-27.3)/4.1 = -0.56	25 kg/m ² is 0.56 sd's below the mean		
35	(35-27.3)/4.1 = 1.88	35 kg/m ² is 1.88 sd's above the mean		
Female heig	hts (cm)			
155	(155-162.7)/6.2 = -1.24	155cm is 1.24 sd's below the mean		
180	(180-162.7)/6.2 = 2.79	180cm is 2.79 sd's above the mean		
		,		
180 Male BMI-values: μ		5.2		

Continuous Variables and Density Curves

- There are no gaps between the values a continuous random variable can take.
- Random observations arise in two main ways: (i) by sampling populations; and (ii) by observing processes.

The density curve

- The probability distribution of a continuous variable is represented by a density curve.
 - Probabilities are represented by areas under the curve,
 the probability that a random observation falls between a and b equal to the area under the density curve between a and b.
 - The total area under the curve equals 1.
 - The population (or distribution) mean $\mu_X = E(X)$, is where the density curve balances.
 - When we calculate probabilities for a continuous random variable, it does not matter whether interval endpoints are included or excluded.

For any random variable X

• E(aX+b) = a E(X) + b and SD(aX+b) = |a| SD(X)

The Normal distribution

$X \sim \text{Normal}(\mu_x = \mu, \sigma_x = \sigma)$

Features of the Normal density curve:

- The curve is a symmetric bell-shape centered at μ .
- The standard deviation σ governs the spread.
 - 68.3% of the probability lies within 1 standard deviation of the mean

Slide 109

- 95.4% within 2 standard deviations
- 99.7% within 3 standard deviations

Probabilities

- Computer programs provide lower-tail (or cumulative) probabilities of the form $pr(X \le x)$
 - We give the program the x-value; it gives us the probability.
- Computer programs also provide inverse lower-tail probabilities (or quantiles)
 - We give the program the probability; it gives us the *x*-value.
- When calculating probabilities, we shade the desired area under the curve and then devise a way of obtaining it via lower-tail probabilities.

Slide 110

Standard Units

The z-score of a value a is

- the number of standard deviations *a* is away from the mean
- positive if *a* is above the mean and negative if *a* is below the mean.
- The *standard Normal* distribution has $\mu = 0$ and $\sigma = 0$.
- We usually use *Z* to represent a random variable with a standard Normal distribution.

Ranges, extremes and z-scores

Central ranges:

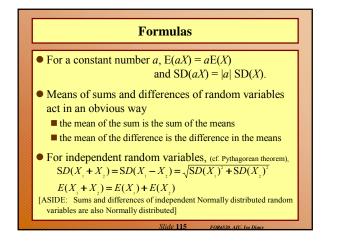
■ $P(-z \le Z \le z)$ is the same as the probability that a random observation from an arbitrary Normal distribution falls within *z* SD's either side of the mean.

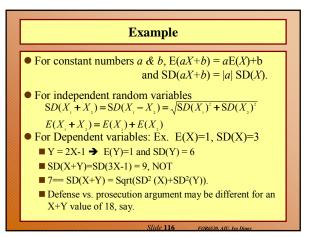
Extremes:

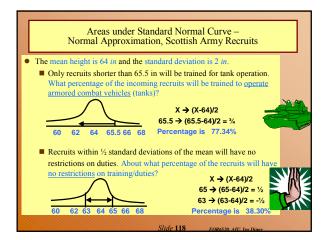
- $P(Z \ge z)$ is the same as the probability that a random observation from an arbitrary Normal distribution falls more than *z* standard deviations above the mean.
- $P(Z \le -z)$ is the same as the probability that a random observation from an arbitrary Normal distribution falls more than *z* standard deviations below the mean.

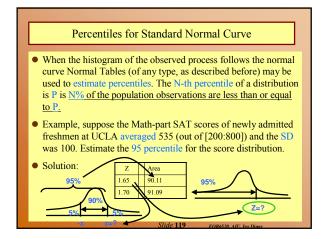
Slide 112

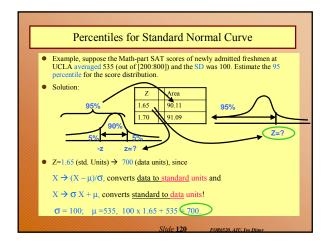
Combining Random Quantities

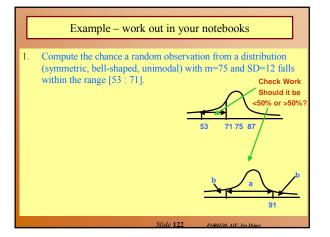

Variation and independence:

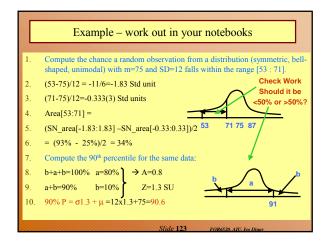

- No two animals, organisms, natural or man-made objects are ever identical.
- There is always variation. The only question is whether it is large enough to have a practical impact on what you are trying to achieve.
- Variation in component parts leads to even greater variation in the whole.

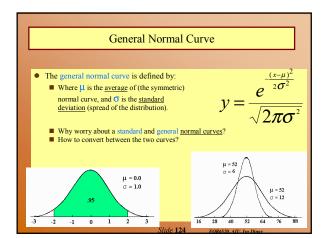

Independence

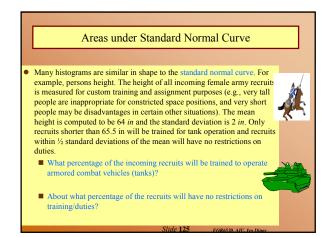

We model variables as being independent

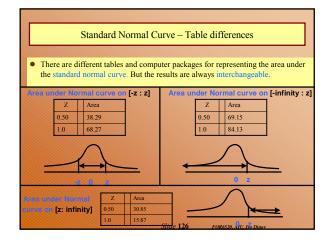

- if we think they relate to physically independent processes
- and if we have no data that suggests they are related.
- Both sums and differences of independent random variables are more variable than any of the component random variables

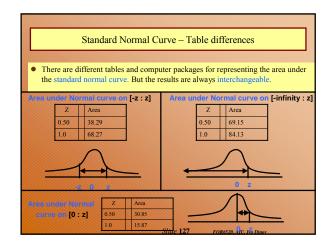


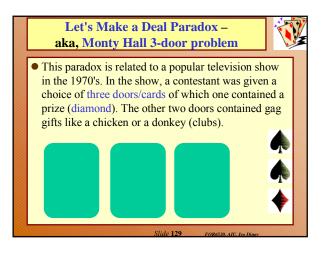


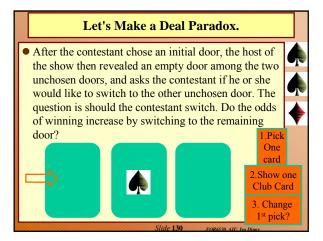





Summary
1. The Standard Normal curve is symmetric w.r.t. the origin (0,0) and the total area under the curve is 100% (1 unit)
2. Std units indicate how many SD's is a value below (-)/above (+) the mean
 Many histograms have roughly the shape of the normal curve (bell- shape)
4. If a list of numbers follows the normal curve the percentage of entries falling within each interval is estimated by: 1. Converting the interval to StdUnits and, 2. Computing the corresponding area under the normal curve (Normal approximation)
 A histogram which follows the normal curve may be reconstructed just from (μ,σ²), mean and variance=std_dev²
6. Any histogram can be summarized using percentiles
 E(aX+b)=aE(X)+b, Var(aX+b)=a²Var(X), where E(Y) the the mean of Y and Var(Y) is the square of the StdDev(Y),
Slide 121 EOR6520 AIU Iva Dinar



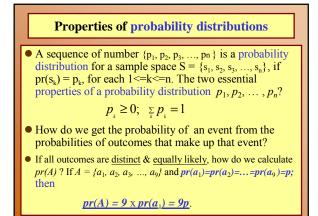


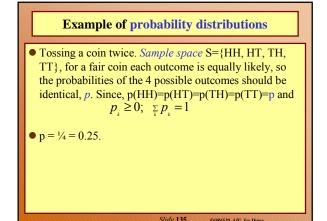


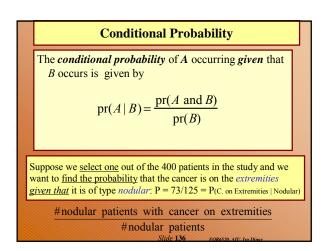
Probability, Samples & Sampling error

- Intro to stats, vocabulary & intro to SPSS
- Displaying data
- •Central tendency and variability
- •Normal z-scores, standardized distribution
- •Probability, Samples & Sampling error
- Type I and Type II errors; Power of a test
- •Intro to hypothesis testing
- •One sample tests & Two independent samples tests
- Two sample tests dependent samples & Estimation
- Correlation and regression techniques
- Non-parametric statistical tests
 EOR 6520 AUL Iva Dinav
 Slide 1

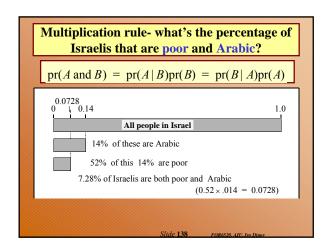
Let's Make a Deal Paradox.

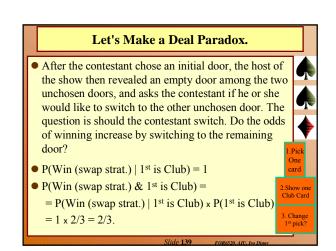

- The *intuition* of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a 50-50 chance of winning with either selection? This, however, is **not the case**.
- The probability of winning by using the switching technique is 2/3, while the odds of winning by not switching is 1/3. The easiest way to explain this is as follows:

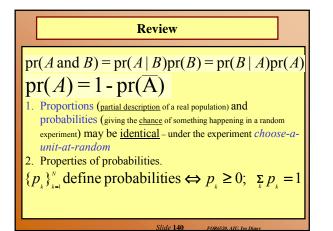

Let's Make a Deal Paradox.

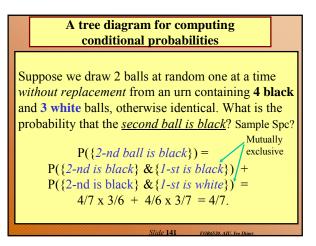

- The probability of picking the wrong door in the initial stage of the game is 2/3.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly 2/3.

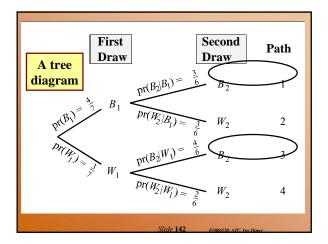
Let's Make a Deal Paradox.

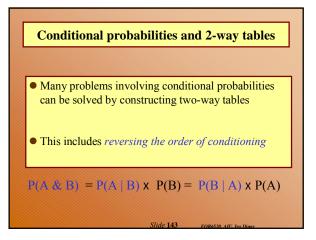

- Demo: Applets.dir/StatGames.exe
 - Uncertainty \rightarrow Pick a door

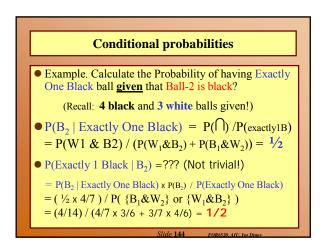


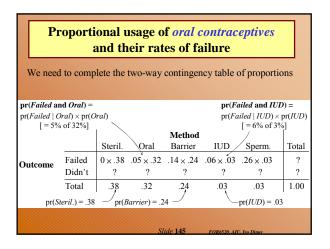


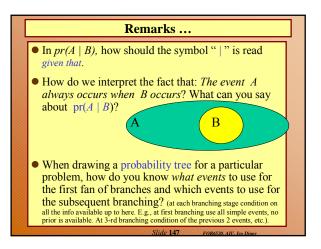



Melanoma – type of skin cancer – an example of laws of conditional probabilities TABLE 4.6.1: 400 Melanoma Patients by Type and Site						
	Head and			Row		
Туре	Neck	Trunk	Extremities	Totals		
Hutchinson's						
melanomic freckle	22	2	10	34		
Superficial	16	54	115	185		
Nodular	19	33	73	125		
Indeterminant	11	17	28	56		
Column Totals	68	106	226	400		
Contingency table b	ased on Mel	anoma <u>histo</u> Slide 137	blogical type and in	ts <u>location</u>		

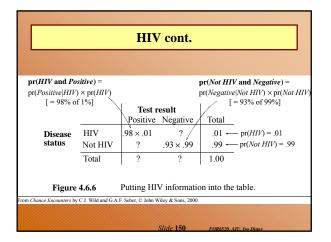


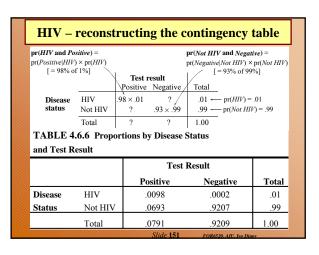




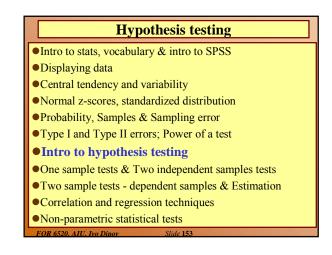


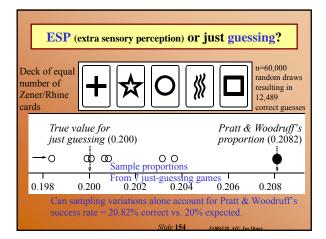
	(Oral co	ontrac	eptives	s cont.		
pr(<i>Failed</i> pr(<i>Failed</i> [= 5		(Oral)	<.	Method	• •	<i>uiled</i> and <i>IUI</i> <i>iled</i> <i>IUD</i>) × [= 6% of 3%	pr(IUD)
		Steril.	Oral	Barrier	IUD /	Sperm.	Total
Outcome	Failed Didn't		.05×.32 ?	.14×.24 ?	.06 × .03 ?	.26×.03	? ?
	Total	.38	.32	.24	.03	.03	1.00
	$pr(Steril.) = .38 \qquad pr(Barrier) = .24 \qquad (Dreft) = .03$ TABLE 4.6.4 Table Constructed from the Data in Example 4.6.8					3	
THELE	0.4 1 10	ie constitue	acu iroin ai		Autopic 4.0		1
				Method			
		Steril.	Oral	Barrier	IUD	Sperm.	Total
Outcome	Failed Didn't	0 .3800	.0160 .3040	.0336 .2064	.0018 .0282	.0078 .0222	.0592 .9408
	Total	.3800	.3200	.2400	.0300	.0300	1.0000
			S	lide 146	FOR6520.	AIU. Ivo Dinov	

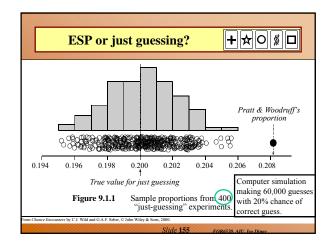


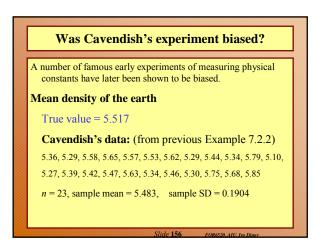

Type I & Type II errors – Power of a test
 Intro to stats, vocabulary & intro to SPSS
 Displaying data
 Central tendency and variability
 Normal z-scores, standardized distribution
 Probability, Samples & Sampling error

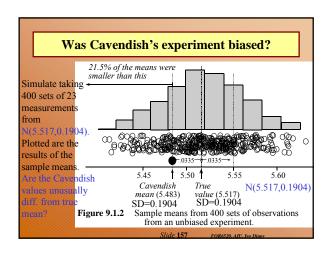
-

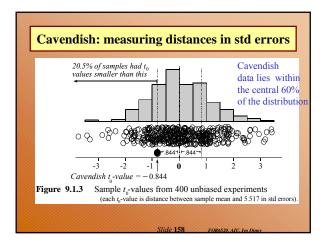

- •Type I and Type II errors; Power of a test
- Intro to hypothesis testing
- •One sample tests & Two independent samples tests
- Two sample tests dependent samples & Estimation
- Correlation and regression techniques
- •Non-parametric statistical tests

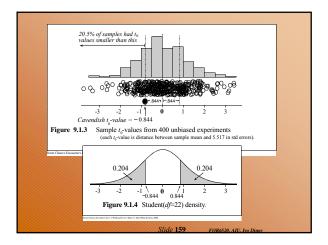

8	en Mean Absorbance ELISA for HIV Anti	
MAR	Healthy Donor	HIV patients
<2	$202 \} 275$	0 > 2 Fals
2 - 2.99		est cut-off ² ^{S 2} Neg
3 - 3.99	15	(FN 7
3 - 3.99 4 - 4.99	2	, ['] Power
5 - 5.99		lse- ¹ a test
6 -11.99	$\frac{2}{2}$ pos	sitives ¹⁵ 1-P(FN 36 1-P(Neg
12+	$\begin{bmatrix} 2\\ 0 \end{bmatrix}$	21 ~ 0.97
Total	297	88

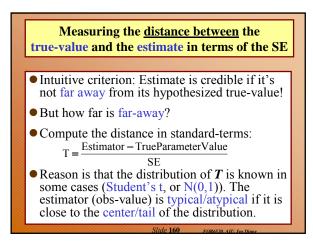


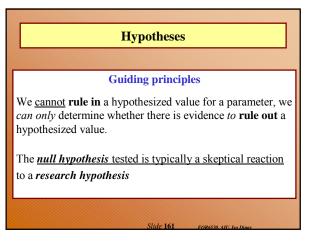


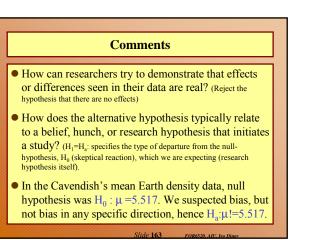

TABLE 4.6.7	Proportions In	fected with HIV		
Country	No. AIDS Cases	Population (millions)	pr(HIV)	Having Test pr(HIV Positive)
United States	218,301	252.7	0.00864	0.109
Canada	6,116	26.7	0.00229	0.031
Australia	3,238	16.8	0.00193	0.026
New Zealand	323	3.4	0.00095	0.013
United Kingdom	5,451	57.3	0.00095	0.013
freland	142	3.6	0.00039	0.005

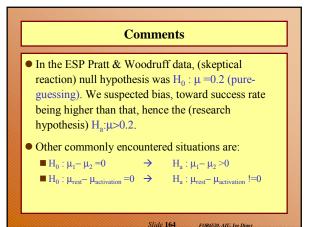






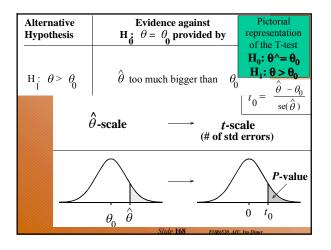


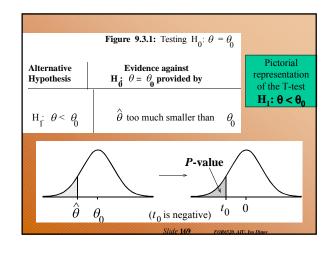




Comments

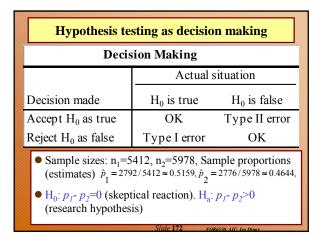
- Why can't we (rule-in) prove that a hypothesized value of a parameter is exactly true? (Because when constructing estimates based on data, there's always sampling and may be non-sampling errors, which are normal, and will effect the resulting estimate. Even if we do 60,000 ESP tests, as we saw earlier, repeatedly we are likely to get estimates like 0.2 and 0.20001, and 0.199999, etc. non of which may be exactly the theoretically correct, 0.2.)
- Why use the rule-out principle? (Since, we can't use the rule-in method, we try to find compelling evidence against the observed/dataconstructed estimate – to reject it.)
- Why is the null hypothesis & significance testing typically used? (H_o: skeptical reaction to a research hypothesis; ST is used to check if differences or effects seen in the data can be explained simply in terms of sampling variation!)

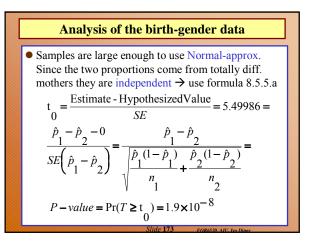


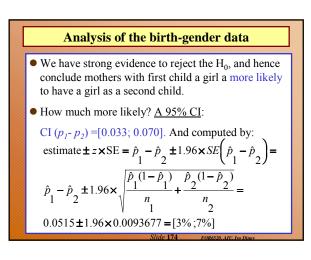


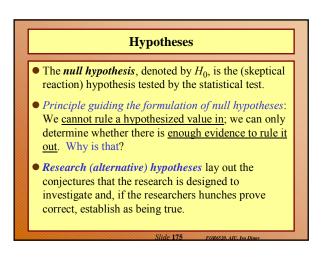
The t-test				
U STEP 1	Using $\hat{\theta}$ to test H_0 : $\theta = \theta_0$ versus some alternative H_1 . Calculate the <i>test statistic</i> ,			
	$t_0 = \frac{\hat{\theta} - \theta_0}{s \epsilon(\hat{\theta})} = \frac{\text{estimate - hypothesized value}}{\text{standard error}}$			
	[This tells us how many standard errors the estimate is above the hypothesized value (t_0 positive) or below the hypothesized value (t_0 negative).]			
STEP 2	Calculate the P-value using the following table.			
STEP 3	Interpret the P-value in the context of the data.			

The t-test				
Alternative hypothesis	Evidence against H ₀ : θ > θ ₀ provided by	<i>P</i> -value		
$H_1: \theta > \theta_0$	$\hat{\theta}$ too much bigger than θ_0	$P = \operatorname{pr}(T \ge t_0)$		
11 1. 0 × 0 0	(i.e., $\hat{\theta} - \theta_0$ too large)	$p_1(1 \ge t_0)$		
$H_1: \boldsymbol{\theta} < \boldsymbol{\theta}_0$	$\hat{\boldsymbol{\theta}}$ too much smaller than θ_0 (i.e., $\hat{\boldsymbol{\theta}} - \theta_0$ too negative)	$P = \operatorname{pr}(T \leq t_0)$		
$H_1: \theta \neq \theta_0$	$\hat{\boldsymbol{\theta}}$ too far from $\boldsymbol{\theta}_0$ (i.e., $ \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 $ too large)	$P = 2 \operatorname{pr}(I \ge t_0)$		
		where $T \sim \text{Student}(df)$		


Interpretation of the p-value			
TABLE 9.3.2 Interpreting the Size of a <i>P</i> -Value			
Approximate size of <i>P</i> -Value	Translation		
> 0.12 (12%)	No evidence against H_0		
0.10 (10%)	Weak evidence against H_0		
0.05 (5%)	Some evidence against H_0		
0.01 (1%)	Strong evidence against H_0		
0.001 (0.1%)	Very Strong evidence against H ₀		
	Slide 167 FOR6520 AIU Ivo Dinov		



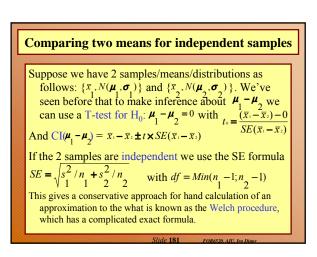


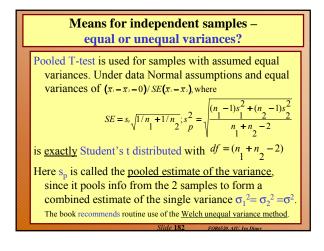

(S)		Second Child		
AT ~		Male	Female	Tota
First Child	Male	3,202	2,776	5,978
	Female	2,620	2,792	5,412
	Total	5,822	5,568	11,390
 Research hyp before collect will be used t a girl are mor compared to r 	ing/lookin o address e likely to	ig/interpretin it. Mothers v have a girl,	ng the data th whose 1 st chil as a second o	at ld is

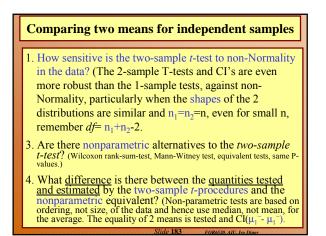
Analysis of the birth-gender data – data summary							
	Seco	nd Child					
Group	Number of births	Number of girls					
l (Previous child was girl)	Previous child was girl) 5412 2792 (approx. 51.0						
2 (Previous child was boy)	5978	2776 (approx. 46.4%)					
first child, p_2 =tru boy as first child.	ortion of girls in mo e proportion of girl <u>Parameter of inter</u> ptical reaction). H _a : esis)	s in mothers with $\underline{est is } p_1 - p_2.$					

Example: Is there racial profiling or are there confounding explanatory effects?!?

• The book by Best (*Danned Lies and Statistics: Untangling Numbers from the Media, Politicians and Activists*, Joel Best) shows how we can test for racial bias in police arrests. Suppose we find that among 100 white and 100 black youths, 10 and 17, respectively, have experienced arrest. This may **look plainly discriminatory**. But suppose we then find that of the 80 middle-class white youths 4 have been arrested, and of the 50 middle-class black youths 2 arrested, whereas the corresponding numbers of lower-class white and black youths arrested are, respectively, 6 of 20 and 15 of 50. These arrest rates correspond to 5 per 100 for white and 4 per 100 for black <u>lower-class</u> youths. Now, better analyzed, the <u>data suggest</u> effects of social class, not race as such.

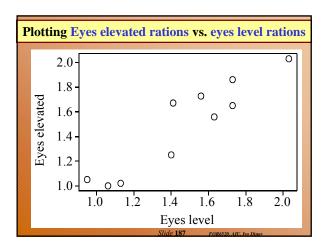

One sample tests & Two independent samples tests Intro to stats, vocabulary & intro to SPSS Displaying data Central tendency and variability Normal z-scores, standardized distribution Probability, Samples & Sampling error Type I and Type II errors; Power of a test Intro to hypothesis testing One sample tests & Two independent samples tests Two sample tests - dependent samples & Estimation Correlation and regression techniques Non-parametric statistical tests


	An	aly	sis o	f <u>tw</u>	<u>o in</u>	dep	end	ent	san	ple	<u>s</u>		
	Urinary and between Hormona independ CI (µ _{Het} -	horn al lev lent	nonal vels ar	level: e low	s and er for d Re	hómo r hom sults	osêxu losex P-va	ality, uals. lue o	Marg Samp f t-tes	golese les ai	e, 197 e 14 wit	'0. th a	
		Uriı	nary A	ndros	terone	e Leve	ls(mg	/24 hr)				
I	Iomosexual:	2.5,	1.6,	3.9,	3.4,	2.3,	1.6,	2.5,	3.4,	1.6,	4.3,	2.0,	,
I	Heterosexual:	1.8, 3.9,	2.2, 4.0,	3.1, 3.8,	1.3 3.9,	2.9,	3.2,	4.6,	4.3,	3.1,	2.7,	2.3	
	Homosexuals		0 8	• • •	00	8		8		с	0		
	Heterosexuals				0	0	0 0	0	00	30	o c		
		1		2	2		3			4			5
					Ar	ndroste	rone (mg/24	hrs)				
11		11111		11111	11111	Slide 17	78	FORG	520. AIU.	Ivo Dinov	1111	1111	

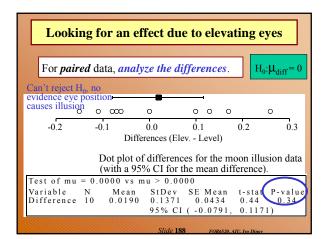

	Urinary androsterone levels cont.
Two Sa	ample T-Test and Confidence Interval
Two sau	umple T for androsterone
hetero homose	
	for mu (hetero) - mu (homose): (0.35, 1.69) mu (hetero) = mu (homose) (vs not=):
	T=3.16 P=0.0044 DF=2 t t-test statistic P-value
	Minitab 2-sample <i>t</i> -output for the androstenone data
	Slide 179 FOR6530 AIU Ion Dinov

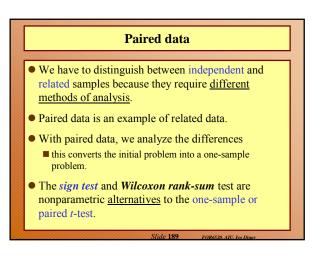
Important points

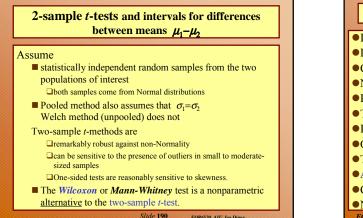
- 1. The distinction between a randomized experiment and an observational study is made at <u>the time of</u> <u>result interpretation</u>. The very same statistical analysis is carried for the two situations.
- We've already stressed the importance of plotting data prior to stat-analysis. Plots have many important roles – prevent dangerous misconceptions from arising (data overlaps, clusters, outliers, skewness, trends in the data, etc.)



Two sample tests - dependent samples & **Estimation**


- Intro to stats, vocabulary & intro to SPSS
- Displaying data
- Central tendency and variability
- •Normal z-scores, standardized distribution
- Probability, Samples & Sampling error
- •Type I and Type II errors; Power of a test
- Intro to hypothesis testing
- •One sample tests & Two independent samples tests
- •Two sample tests dependent samples & Estimation
- Correlation and regression techniques
- Non-parametric statistical tests


Paired Comparisons						
Sometimes we have two data sets, which are not independent, but rather observations matched in pairs.						
Back to the Kaufman & Rock study of the Moon size illusion. Does the moon size appear different with eyes level and with eyes raised? Does eye position make a difference? Eyes elevated refers to raising the eye from horizontal to zenith position. 10 Subjects are tested under eye- level (control) condition, by physically moving the subject's body from level to zenith position with fixed eye direction – horizontal. Ratios of the Moon size in level and zenith positions, for the two paradigms are given below.						


Moon illusion Data						
The Moon Illusion						
Subject	Eyes Elevated	Eyes Level	Difference (Elevated - Level)			
1	2.03	2.03	0.00			
2	1.65	1.73	-0.08			
3	1.00	1.06	-0.06			
4	1.25	1.40	-0.15			
5	1.05	0.95	0.10			
6	1.02	1.13	-0.11			
7	1.67	1.41	0.26			
8	1.86	1.73	0.13			
9	1.56	1.63	-0.07			
10	1.73	1.56	0.17			

31

Intro to stats, vocabulary & intro to SPSS

- Displaying data
- •Central tendency and variability
- •Normal z-scores, standardized distribution
- Probability, Samples & Sampling error
- Type I and Type II errors; Power of a test
- Intro to hypothesis testing
- •One sample tests & Two independent samples tests
- Two sample tests dependent samples & Estimation
- •ANOVA
- •Correlation and regression techniques
- •Non-parametric statistical tests

We know how to analyze 1 & 2 sample data. How about if we have than 2 samples – One-way ANOVA, *F*-test

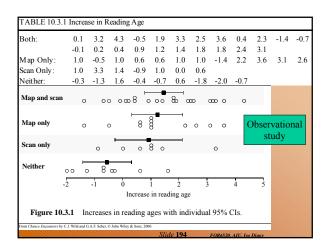
One-way ANOVA refers to the situation of having one factor (or categorical variable) which defines group membership – e.g., comparing 4 reading methods, effects of different reading methods on reading comprehension, data: 50 – 13/14 y/o students tested.

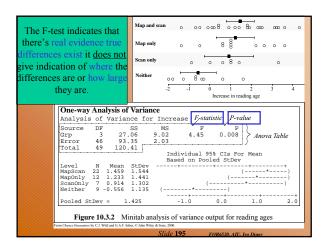
Hypotheses for the one-way analysis-of-variance F-test

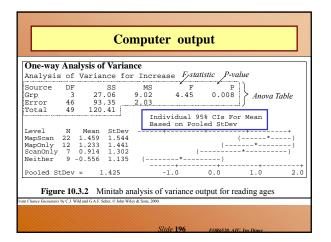
<u>Null hypothesis</u>: All of the underlying true means are identical. <u>Alternative</u>: Differences exist between some of the true means.

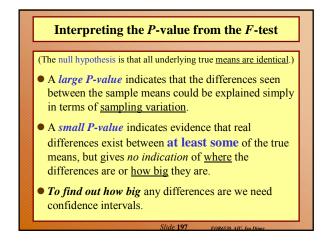
Comparing 4 reading methods

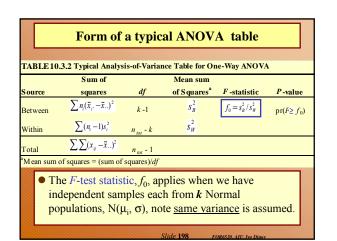
Comparing 4 reading methods, effects of different reading methods on reading comprehension, data: 50 - 13/14 y/o students tested.

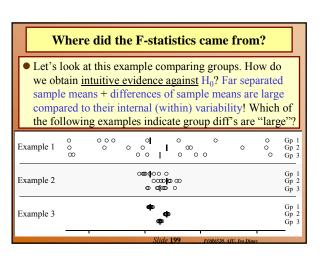

- -Mapping: using diagrams to relate main points in text;
- -Scanning: reading the intro and skimming for an overview before reading details;

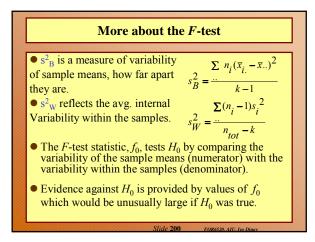

-Mapping and Scanning;

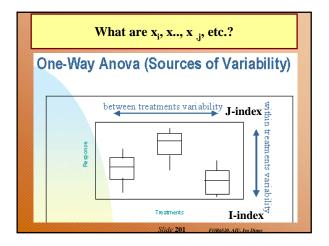

-Neither.

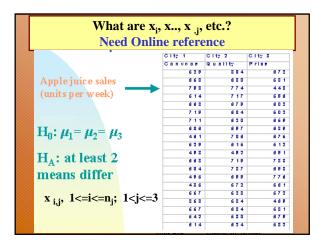

Table below shows increases in test scores, of 4 groups of students taking similar exams twice, w/& w/o using a reading technique.

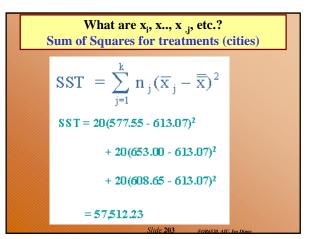

Research question: Are the results better for students using mapping, scanning or both?

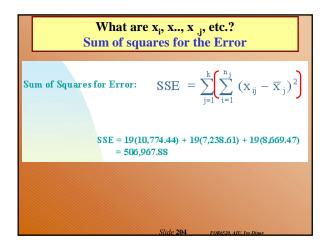


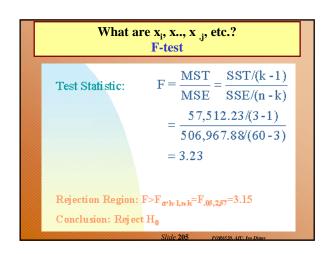


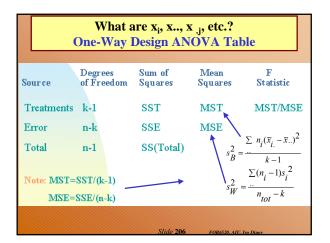


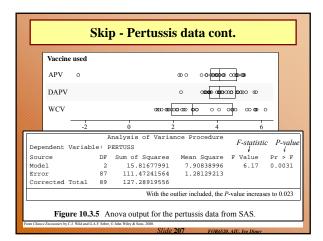


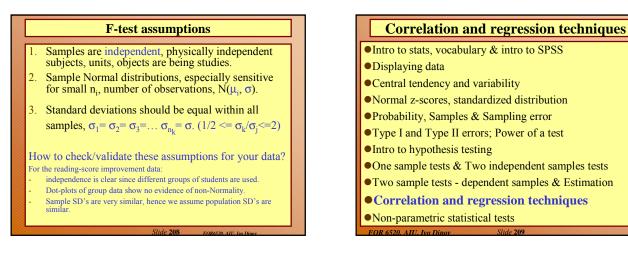


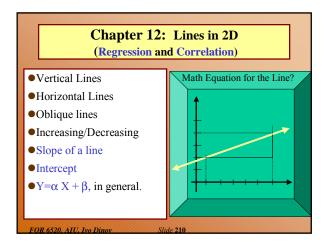


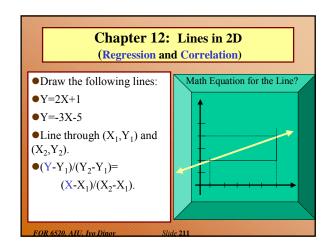




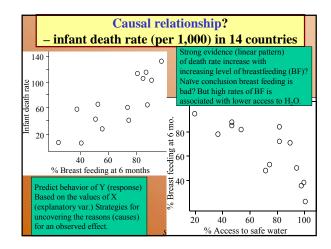


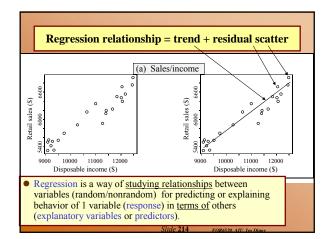


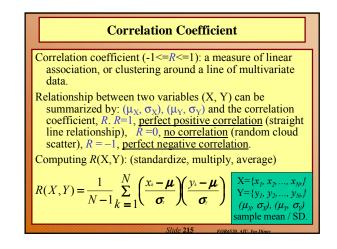




Approaches for modeling data relationships Regression and Correlation

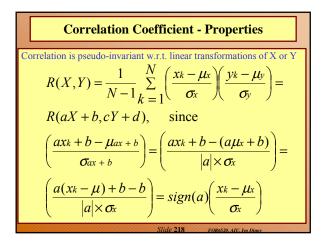

• There are random and nonrandom variables

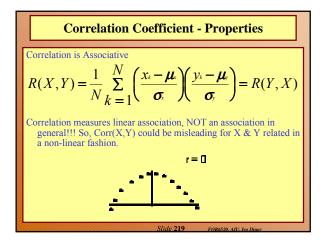

•Correlation applies if <u>both variables (X/Y) are</u> <u>random</u> (e.g., We saw a previous example, systolic vs. diastolic blood pressure SISVOL/DIAVOL) and are <u>treated symmetrically</u>.

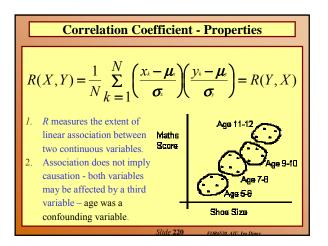

•Regression applies in the case when you want to single out one of the variables (response variable, Y) and use the other variable as predictor (explanatory variable, X), which explains the behavior of the response variable, Y.

Slide 212

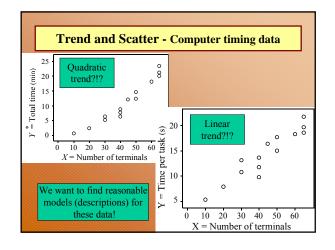
FOR 6520, AIU. Ivo Dine

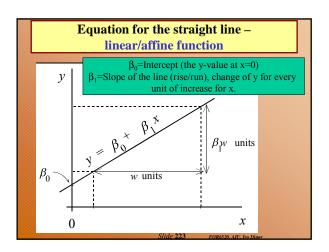


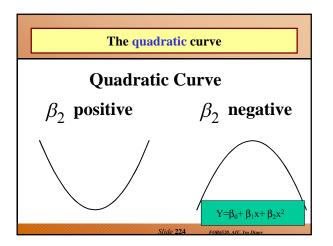


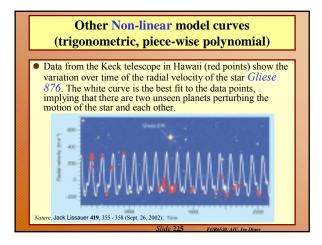


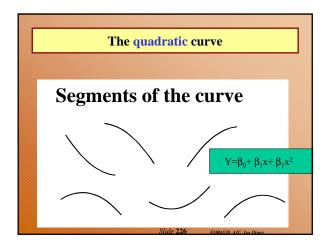
			Co	rrela	ation	Coeff	icient	
E	xample	e: R(2	(X,Y)	= - Λ	$\frac{1}{V-1}k^{\frac{1}{2}}$	$\sum_{n=1}^{V} \left(\frac{x}{n}\right)$	$\left(\frac{1}{\sigma_{x}}-\mu\right)\left(\frac{y}{\sigma_{x}}\right)$	$\left(\frac{\partial_k - \mu}{\sigma_y}\right)$ $(x_i - \overline{x})(y_i - \overline{y})$
	Student	Height '	Weight	$\mathbf{X}_j = \overline{\mathbf{X}}_j$	Yi-Y	 (×i-₹) ²	^L (y _i -y) ²	(x ₁ - x)(y ₁ - y)
	1	×,	Ŷ					
	1	167	60	6	4.67	36	21.8089	28.02
	2	170	64	9	8.67	81	75 .1689	78.03
	з	160	57	-1	1.67	1	2,7889	-1.67
	4	152	46	-8	-8.33	61	87.0489	63.97
	5	157	55	-4	-0.33	16	0.1089	1.32
	6	160	50	-1	-6.33	1	28.4089	5.3 3
	Tatel	966	332	a	=0	216	215.3334	195.0
					Slid	216	FOR6520, AIU. 1	vo Dinov

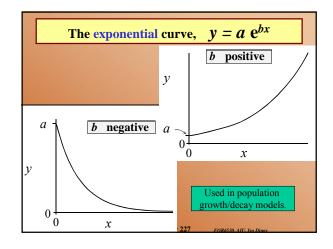


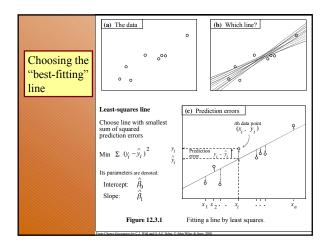


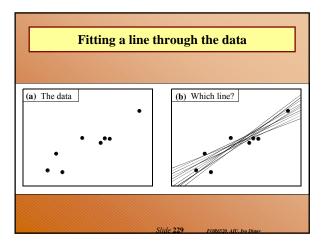


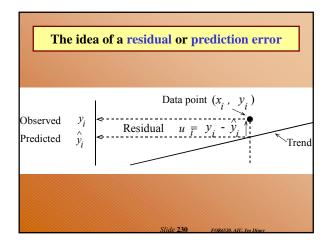


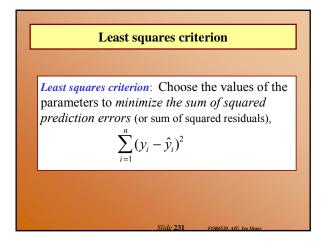

							11111			
		Trend and Second	catter	- Co	ompu	ter ti	ming	data	ı	
									0000	
	• The major components of a regression relationship are trend and scatter around the trend.									
	• To investigate a trend – fit a math function to data, or smooth the data.									
	• Computer timing data: a mainframe computer has X users, each running jobs taking Y min time. The main CPU swaps									
		between all tasks. Y Y and Y* increase							oth	
	111			[[[[]]]	111111	111111	111111	11111	1111	
Х	=	Number of terminals:	40	50	60	45	40	10	30	20
Y*	=	Total Time (mins):	6.6	14.9	18.4	12.4	7.9	0.9	5.5	2.7
Υ	=	Time Per Task (secs):	9.9	17.8	18.4	16.5	11.9	5.5	11	8.1
х	=	Number of terminals:	50	30	65	40	65	65		
Y*	=	Total Time (mins):	12.6	6.7	23.6	9.2	20.2	21.4		
Υ	=	Time Per Task (secs):	15.1	13.3	21.8	13.8	18.6	19.8		
000				Slide 2	21	FOR652	D. AIU. Ivo	Dinov		100

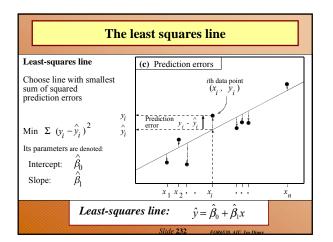




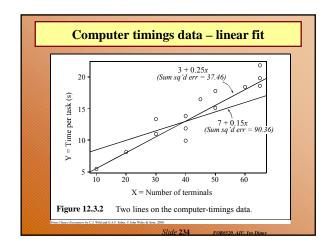


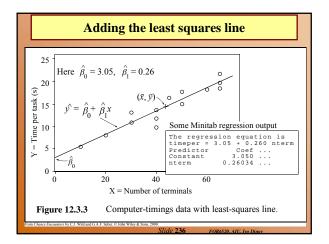












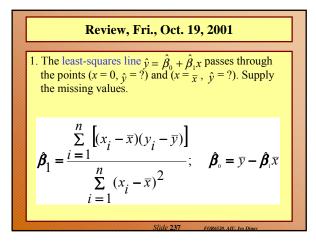
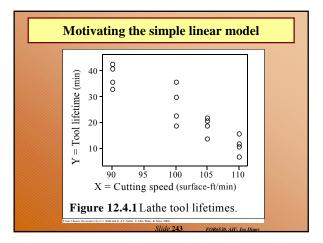


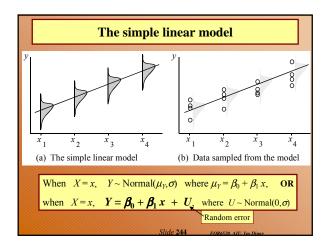
TABLE 1	2.3.1 Predic	tion Errors	Compu	ter timing	s data
		3 + 0.2	5 <i>x</i>	7 + 0.15x	
x	у	ŷ	$y - \hat{y}$	ŷ	$y - \hat{y}$
40	9.90	13.00	-3.10	13.00	-3.10
50	17.80	15.50	2.30	14.50	3.30
60	18.40	18.00	0.40	16.00	2.40
45	16.50	14.25	2.25	13.75	2.75
40	11.90	13.00	-1.10	13.00	-1.10
10	5.50	5.50	0.00	8.50	-3.00
30	11.00	10.50	0.50	11.50	-0.50
20	8.10	8.00	0.10	10.00	-1.90
50	15.10	15.50	-0.40	14.50	0.60
30	13.30	10.50	2.80	11.50	1.80
65	21.80	19.25	2.55	16.75	5.05
40	13.80	13.00	0.80	13.00	0.80
65	18.60	19.25	-0.65	16.75	1.85
65	19.80	19.25	0.55	16.75	3.05
S	um of squared	errors	37.46		90.36
11111	<u>, , , , , , , , , , , , , , , , , , , </u>		Slide 235	FOR6520, AIU. Ivo D	inov

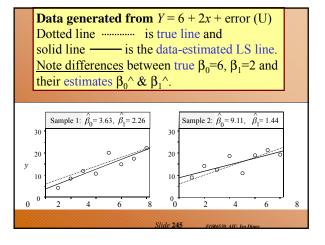
		ł	Hands	s – on	work	sheet	: !					
1	1. $X = \{-1, 2, 3, 4\}, Y = \{0, -1, 1, 2\},$											
	Х	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y-\overline{y})^2$	$\begin{array}{c} (x-\overline{x}) \times \\ (y-\overline{y}) \end{array}$					
	-1	0										
	2	-1										
	3	1			n		·					
	4	2			$\hat{\boldsymbol{\beta}}_1 = \frac{i=1}{2}$	$\frac{(x_i - \overline{x})(y_i)}{\sum_{j=1}^{n} (x_i - \overline{x})}$	(\overline{y})	β̂₀ = ȳ − 	B , X			
					i lide 238	=1)- 520. AIU. Ivo					

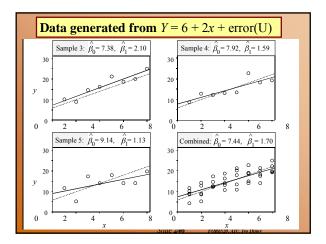
		H	lands	s – on	work	sheet	:!	
1.	X={-1	, 2, 3,	4}, Y	={0, -	1, 1, 2)	$\overline{x} =$	2, j	7 = 0.5
	х	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y-\overline{y})^2$	$\begin{array}{c} (x-\overline{x}) \times \\ (y-\overline{y}) \end{array}$	
	-1	0	-3	-0.5	9	0.25	1.5	
	2	-1	0	-1.5	0	2.25	0	
	3	1	1	0.5	1	0.25	0.5	
	4	2	2	1.5	4	2.25	3	$\beta_1 = 5/14$ $\beta_0 = y^-\beta_1 * x$
	2	0.5		S	14	5	5	$\beta_0 = 0.5$ -10/1

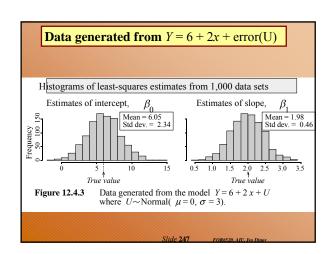
Course Material Review

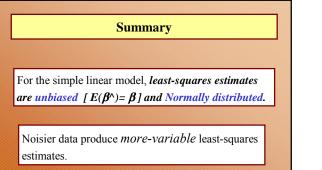

- 1. =====Part I=====
- 2. Data collection, surveys.
- 3. Experimental vs. observational studies
- 4. Numerical Summaries (5-#-summary)
- 5. Binomial distribution (prob's, mean, variance)
- 6. Probabilities & proportions, independence of events and conditional probabilities
- 7. Normal Distribution and normal approximation

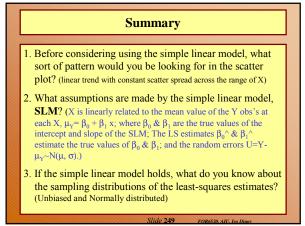

Course Material Review – cont.

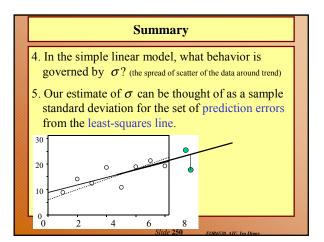

- 1. =====Part II==
- 2. Central Limit Theorem sampling distribution of \overline{X}
- 3. Confidence intervals and parameter estimation
- 4. Hypothesis testing
- 5. Paired vs. Independent samples
- 6. Analysis Of Variance (1-way-ANOVA, one categorical var.)
- 7. Correlation and regression
- 8. Best-linear-fit, least squares method

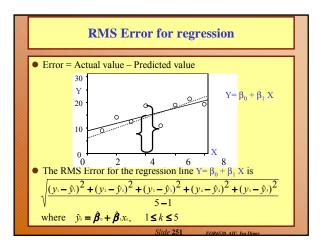

Review

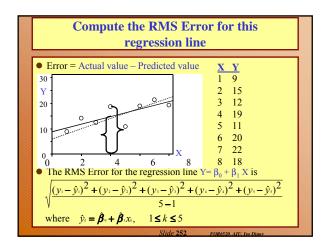

- 1. What are the quantities that specify a particular line?
- 2. Explain the idea of a prediction error in the context of fitting a line to a scatter plot. To what visual feature on the plot does a prediction error correspond? (scatter-size)
- 3. What property is satisfied by the line that fits the data best in the least-squares sense?
- 4. The least-squares line $\hat{y} = \beta_0 + \beta_1 x$ passes through the points (x = 0, $\hat{y} = ?$) and ($x = \overline{x}$, $\hat{y} = ?$). Supply the missing values.

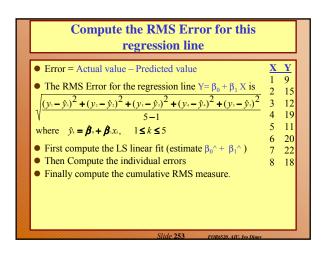


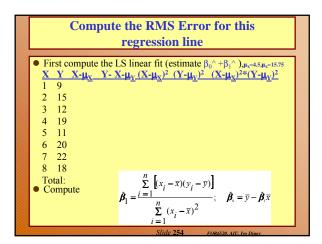


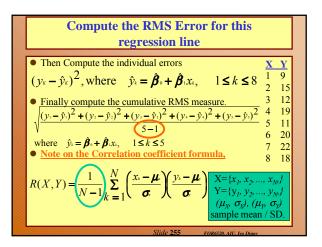


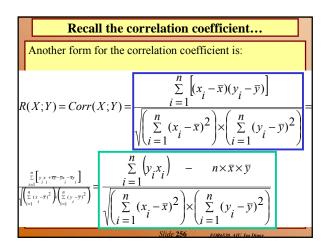


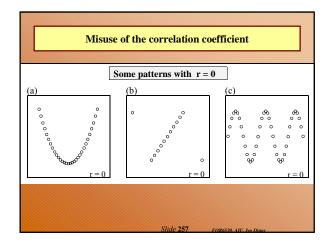


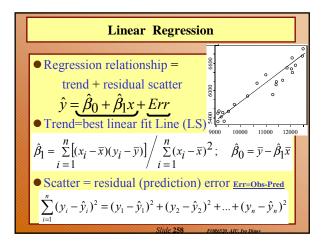


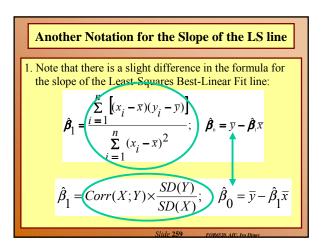












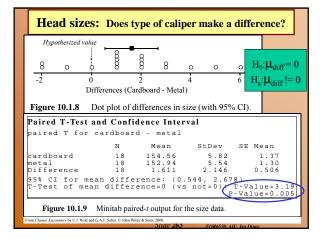
Non-parametric statistical tests

• Intro to stats, vocabulary & intro to SPSS

Displaying data

OR 6520 ALL Ivo Din

- Central tendency and variability
- •Normal z-scores, standardized distribution
- Probability, Samples & Sampling error
- Type I and Type II errors; Power of a test
- Intro to hypothesis testing
- •One sample tests & Two independent samples tests
- Two sample tests dependent samples & Estimation
- Correlation and regression techniques
- Non-parametric statistical tests


Flying helmet sizes for NZ Air Force

Measure the head-size of all air force recruits. Using cheaper cardboard or more expensive metal calipers. Are there systematic differences in the two measuring methods? A gain _ point comparisons

methods? Again, paired comparisons.

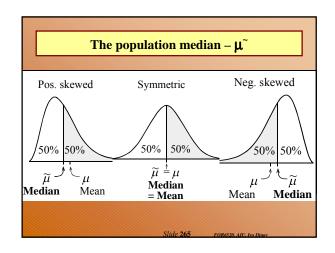

TABLE 10.1.2	Air For	ce Head Sizes Data		
Recruit	Cardboard (mm)	Metal (mm)	Difference (Card-metal)	Sign of difference
1	146	145	1	+
2	151	153	-2	-
3	163	161	2	+
4	152	151	1	+
5	151	145	6	+
6	151	150	1	+
		Slide 261	FOR6520, AIU. Ivo Dinov	

TABLE 10.1.2 Air Force Head Sizes Data								
Recruit	Cardboard (mm)	Metal (mm)	Difference (Card-metal)	Sign of difference				
1	146	145	1	+				
2	151	153	-2	-				
3	163	161	2	+				
4	152	151	1	+				
5	151	145	6	+				
6	151	150	1	+				
7	149	150	-1	-				
8	166	163	3	+				
9	149	147	2	+				
10	155	154	1	+				
11	155	150	5	+				
12	156	156	0	0				
13	162	161	1	+				
14	150	152	-2	-				
15	156	154	2	+				
16	158	154	4	+				
17	149	147	2	+				
18	163	160	3	+				

Review 1. What is a paired-comparison experiment? (obs'd data are matched in pairs).

- In a paired-comparison experiment, why is it wrong to treat the two sets of measurements as independent data sets? (data are usually taken from the same unit under diff. Treatments, so obs's should be related).
- 3. How do you analyze the data from a pairedcomparison experiment? (analyze the difference).
- What situations is appropriate to use the pairedcomparison method to analyze the data? (pre- and postmetrifonate study using FDG PET imaging).

Definition of the population median

- 1. The population median is defined as the number in the middle of the distribution of the RV, i.e., 50% of the data lies below and 50% above the median.
- Under what circumstances is the <u>population median</u> the same as the <u>population mean</u>? (symmetry of the distribution.)
- Why do we use the <u>population median</u> rather than the <u>population mean</u> in the sign test? (for a skewed distribution, mean may not be representative, or may be outlier heavily influenced.)
- 4. Why is the <u>model for the sign test</u> like tossing a fair coin? (In the sign-test we test H_0 : $\mu^{\sim}=0$, under H_0 a random observation is as likely to be $< \mu^{\sim}$ as to be $> \mu^{\sim}$. So observation has + or - sign withthe same probability, hence the coin-toss model, distribution-free, nonparametric approach. Testing H_0 is just like testing biased/unbiased coin).

SE1- 200

Helmet paired head measurements

- From the cardboard vs. metal caliper tests, we see 14 + and 3 signs, implying larger overall measurements using the cardboard calipers. It's like tossing a coin 17 times and getting 14 heads. How likely is that?
- If Y~Binomial(17, 0.5), number of successes (heads) in 17 fair coin tosses, then P(Y>=14)=0.00636, hence if we test p=0.5, vs. p!=0.5, two-tailed test, the chance is 2P(Y>=14)=0.0127.

Comments

- 5. What <u>independence assumption</u> must hold before the sign test is applicable? How important is it that this assumption is true? (requires that obs's are independent (one-sample test) and different pairs are independent (paired data), very sensitive.)
- 6. What advantages and disadvantages does the sign test have in comparison with the *t*-test? (Main advantage – test is distribution-free and insensitive to outliers. Disadvantage – when hypothesis for T-test, or a parametric test are met the CI are shorter and the parametric tests are more likely to detect departure from normality.)

Review

- 7. Why is the <u>sign test</u> called a <u>distribution-free test</u>? Does this mean that distributions are not used in performing the test? (no assumptions on the data underlying distribution, but distributions are actually used, e.g., Binomial).
- 8. In applying the sign test to paired data, how do you handle situations where both observations are tied (indistinguishable)? (ignore them)

Why Use Nonparametric Statistics?

- Parametric tests are based upon assumptions that may include the following:
 - The data have the same variance, regardless of the treatments or conditions in the experiment.
 - The data are normally distributed for each of the treatments or conditions in the experiment.
- What happens when we are not sure that these assumptions have been satisfied?

How Do Nonparametric Tests Compare with the Usual *z*, *t*, and *F* Tests?

- Studies have shown that when the usual assumptions are satisfied, nonparametric tests are about 95% efficient when compared to their parametric equivalents.
- When normality and common variance are not satisfied, the nonparametric procedures can be much more efficient than their parametric equivalents.

The Wilcoxon Rank Sum Test

• Suppose we wish to test the hypothesis that two distributions have the same center.

- We select two independent random samples from each population. Designate each of the observations from population 1 as an "A" and each of the observations from population 2 as a "B".
- If H₀ is true, and the two samples have been drawn from the same population, when we rank the values in both samples from small to large, the A's and B's should be randomly mixed in the rankings.

What happens when H_0 is true?

•Suppose we had 5 measurements from population 1 and 6 measurements from population 2.

•If they were drawn from the same population, the rankings might be like this. ABABBABABABA

•In this case if we summed the ranks of the A measurements and the ranks of the B measurements, the sums would be similar.

What happens if H_0 is not true?

 If the observations come from two different populations, perhaps with <u>population 1 lying</u> to the left of population 2, the ranking of the observations might take the following ordering.

AAABABABBB

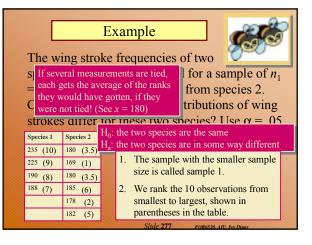
In this case the sum of the ranks of the B observations would be larger than that for the A observations.

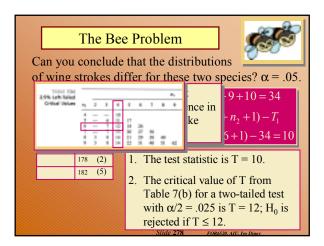
How to Implement Wilcoxon's Rank Test

•Rank the combined sample from smallest to largest.

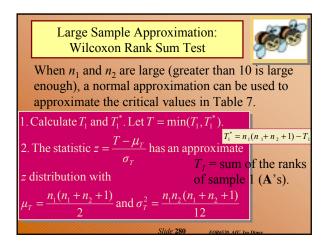
•Let T_1 represent the sum of the ranks of the first sample (**A**'s).

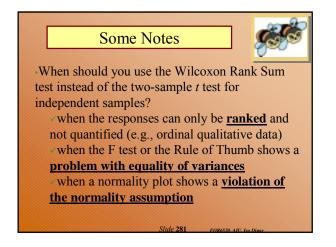
•Then, T_1^* defined below, is the sum of the ranks that the A's would have had if the observations were ranked from *large to small*.

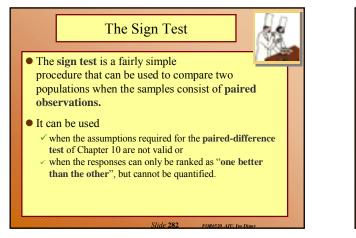

 $T_1^* = n_1(n_1 + n_2 + 1) - T_1$

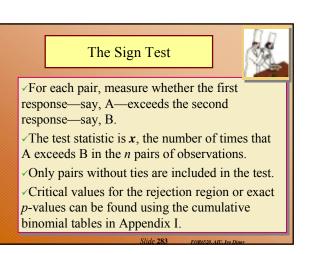

The Wilcoxon Rank Sum Test

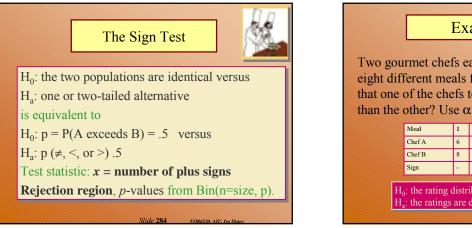
H₀: the two population distributions are the same

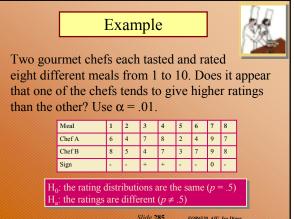

H_a: the two populations are in some way different

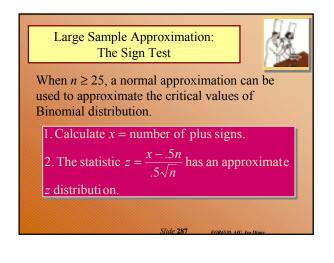

- The **test statistic** is the smaller of T_1 and T_1^* .
- Reject H₀ if the test statistic is less than the **critical value** found in Table 7(a).
- Table 7(a) is indexed by letting population 1 be the one associated with the smaller sample size n_1 , and population 2 as the one associated with n_2 , the larger sample size.

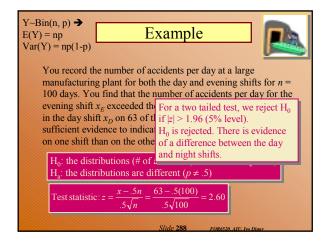


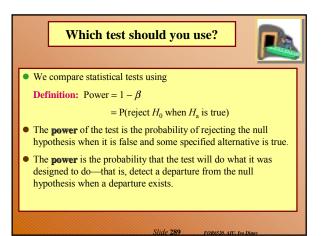


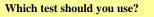

Minitab Output	20
Recall $T_1 = 34; T_1^* = 10.$	9
Mann-Whitney Test and CI: Species1, Species2	
$ Species1 N = 4 Median = 207.50 \\ Species2 N = 6 Median = 180.00 \\ Point estimate for ETAL=ETA2 is 30.50 \\ 95.7 Percent CI for ETAL=ETA2 is (5.99,56.01) \\ w = 34.0 \\ Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0142 \\ The test Is significant at 0.0139 (adjusted for ties) $	
Minitab calls the procedure the Mann-Whitney U Test, equivalent to the Wilcoxon Rank Sum Test.	
The test statistic is $W = T_1 = 34$ and has <i>p</i> -value = .0142. Do not reject H_0 for $\alpha = .05$.	
Slide 279 FOR6520, AIU, Ivo Dinov	











Th	e G	our	met	: C	hef	ŝ]	
Meal	1	2	3	4	5	6	7	8	1 1000
Chef A	6	4	7	8	2	4	9	7	
Chef B	8	5	4	7	3	7	9	8	
Sign	-	-	+	p-	valu	e =.	454	is to	oo large to
H ₀ : $p = .5$ H _a : $p \neq .5$ with $n = 7$ (omi Test Statistic: $x =$ number o higher than the other.									one meal
i est statist	Use Table 1 with $n = 7$ and $p = .5$. p-value = P(observe $x = 2$ or something equally as unlikely) = P($x \le 2$) + P($x \ge 5$) = 2(.227) = .454								
se Table 1 -value = P(c	<i>with n</i> observ	e x =	= 2 or	son	nethi	<u> </u>	equa	ally :	as unlikely)
se Table 1 value = P(c	<i>with n</i> observ	e x =	= 2 or	son	ethi .454	<u> </u>	equa	ally : 7	as unlikely)
the Table 1 walue = $P(c P(x \le 2) + 1$	with r_{0} observ $P(x \ge 1$	ye = x = 5) = 2	= 2 or 2(.22	son 7) = 4	ethi .454	4	Î	ally : 7	

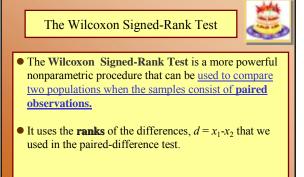
- If all parametric assumptions have been met, the parametric test will be the most powerful.
- If not, a nonparametric test may be more powerful.
- If you can reject H₀ with a less powerful nonparametric test, you will not have to worry about parametric assumptions.

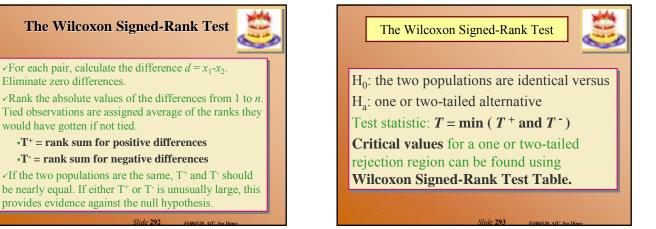
• If not, you might try

Eliminate zero differences.

would have gotten if not tied.

- more powerful nonparametric test or
- increasing the sample size to gain more power

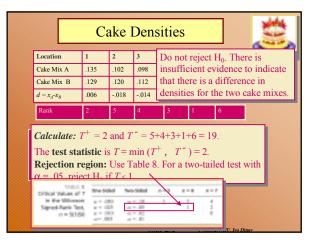

The Wilcoxon Signed-Rank Test

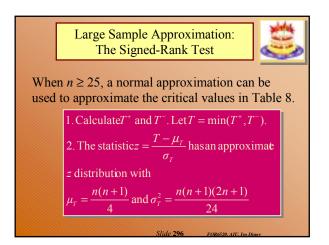

 \checkmark For each pair, calculate the difference $d = x_1 - x_2$.

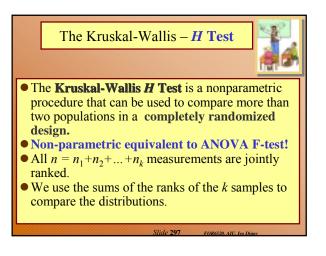
•T⁺ = rank sum for positive differences

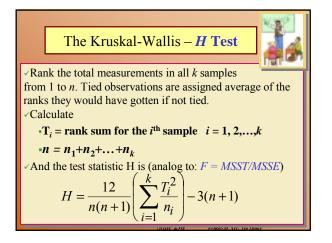
-T⁻ = rank sum for negative differences

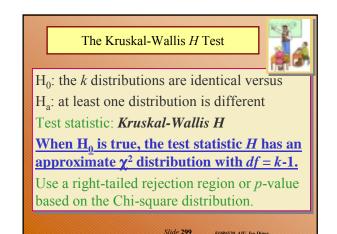
provides evidence against the null hypothesis.

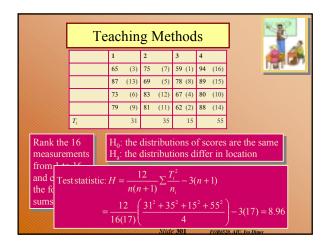


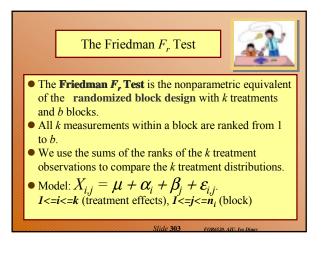


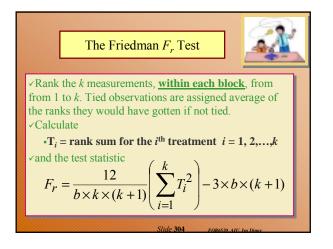

To compare the densities of cakes using mixes A and B, six pairs of pans (A and B) were baked side-by-side in six different oven locations. Is there evidence of a difference in density for the two cake mixes?

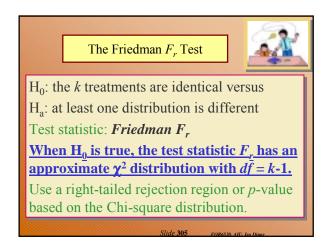

Location	1	2	3	4	5	6	
Cake Mix A	.135	.102	.098	.141	.131	.144	
Cake Mix B	.129	.120	.112	.152	.135	.163	
$d = x_A - x_B$.006	018	014	011	004	019	
(11) harrison	111111	111111	111111	111111	111111		


: the density distributions are the same H_a: the density distributions are different

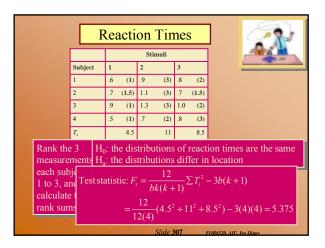


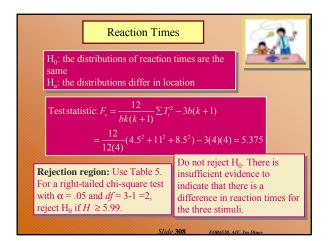


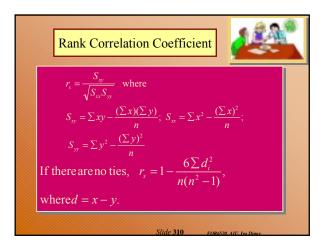

Four groups of students were randomly assigned to be taught with four different techniques, and their achievement test scores were recorded. Are the distributions of test scores the same, or do they differ in location?


1	2	3	4
65	75	59	94
87	69	78	89
73	83	67	80
79	81	62	88
			(1111)

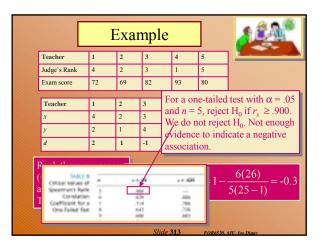
Teaching Me	thods					
H_0 : the distributions of scores are the same H_a : the distributions differ in location						
Test statistic: $H = \frac{12}{n(n+1)} \sum \frac{T_i^2}{n_i}$	3(n+1)					
	$\frac{(+15^2+55^2)}{4} - 3(17) = 8.96$					
Rejection region: Use Table 5. For a right-tailed chi-square test with $\alpha = .05$ and $df = 4.1 = 3$, reject H ₀ if $H \ge 7.81$.	Reject H_0 . There is sufficient evidence to indicate that there is a difference in test scores for the four teaching techniques.					
Slide	302 FOR6520. AIU. Ivo Dinov					






A student is subjected to a stimulus and we measure the time until the student reacts by pressing a button. Four students are used in the experiment, each is subjected to three stimuli, and their reaction times are measured. Do the distributions of reaction times differ for the three stimuli?

		Stimuli						
Subject	1	2	3					
1	.6	.9	.8					
2	.7	1.1	.7					
3	.9	1.3	1.0					
4	.5	.7	.8					
Slide 306	FOR652	AIL Ivo Dinov						



Example

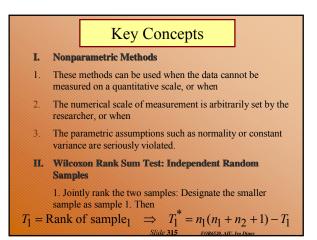
Five elementary school science teachers have been ranked by a judge according to their teaching ability. They have also taken a national "teacher's exam". Is there agreement between the judge's rank and the exam score?

Teacher	1	2	3	4	5
Judge's Rank	4	2	3	1	5
Exam score	72	69	82	93	80

If the judge's rank is low (best teacher), we might expect the teacher's score to be high. We look for a negative association between the ranked measurements

Summary

The nonparametric analogues of the parametric procedures presented in Chapters 10–14 are straightforward and fairly simple to implement.

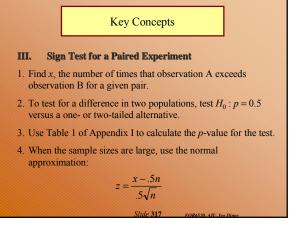

The **Wilcoxon rank sum test** is the nonparametric analogue of the two-sample *t* test.

The **sign test** and the **Wilcoxon signed-rank test** are the nonparametric analogues of the paired-sample *t* test.

The **Kruskal-Wallis** *H* test is the rank equivalent of the oneway analysis of variance *F* test.

The **Friedman** F, test is the rank equivalent of the randomized block design two-way analysis of variance F test.

Spearman's rank correlation r_s is the rank equivalent of Pearson's correlation coefficient.



Key Concepts

2. Use T_1 to test for population 1 to the left of population 2

- Use T_i^* to test for population to the right of population 2. Use the smaller of T_i and T_i^* to test for a difference in the locations of the two populations.
- 3. Table 7 of Appendix I has critical values for the rejection of H_0 .
- 4. When the sample sizes are large, use the normal approximation: $z = \frac{T - \mu_T}{T}$

$$\mu_T = \frac{n_1(n_1 + n_2 + 1)}{2} \text{ and } \sigma_T^2 = \frac{n_1 n_2(n_1 + n_2 + 1)}{12}$$

Key Concepts

IV. Wilcoxon Signed-Rank Test: Paired Experiment

- 1. Calculate the differences in the paired observations. Rank the absolute values of the differences. Calculate the rank sums T^- and T^+ for the positive and negative differences, respectively. The test statistic *T* is the smaller of the two rank sums.
- 2. Table 8 of Appendix I has critical values for the rejection of for both one- and two-tailed tests.
- 3. When the sampling sizes are large, use the normal approximation: T - [n(n+1)/4]

$$=\frac{1}{\sqrt{[n(n+1)/4]}}$$

Key Concepts

V. Kruskal-Wallis H Test: Completely Randomized Design

- 1. Jointly rank the *n* observations in the *k* samples. Calculate the rank sums, T_i = rank sum of sample *i*, and the test statistic $H = \frac{12}{n(n+1)} \sum \frac{T_i^2}{n_i} 3(n+1)$
- 2. If the null hypothesis of equality of distributions is false, H
- will be unusually large, resulting in a one-tailed test.
- 3. For sample sizes of five or greater, the rejection region for *H* is based on the chi-square distribution with (k 1) degrees of freedom.

Key Concepts

VI. The Friedman F, Test: Randomized Block Design

1. Rank the responses within each block from 1 to k. Calculate the rank sums $T_1, T_2, ..., T_{k_2}$ and the test statistic

$$\vec{T}_r = \frac{12}{bk(k+1)} \sum T_i^2 - 3b(k+1)$$

- 2. If the null hypothesis of equality of treatment distributions is false, F_r will be unusually large, resulting in a one-tailed test.
- 3. For block sizes of five or greater, the rejection region for F_r is based on the chi-square distribution with (k 1) degrees of freedom.

Slide 320

Key Concepts

VII. Spearman's Rank Correlation Coefficient

- 1. Rank the responses for the two variables from smallest to largest.
- 2. Calculate the correlation coefficient for the ranked observations:

$$= \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \quad \text{or } r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)} \quad \text{if there are no ties}$$

- 3. Table 9 in Appendix I gives critical values for rank correlations significantly different from 0.
- 4. The rank correlation coefficient detects not only significant linear correlation but also any other monotonic relationship between the two variables.

Slide 321

• What

	Title	
•What		
FOR 6520. AIU. Ivo I	Dinov Slide 323	