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AIU  FOR 6520
Statistical Research Design & Methods in 

Forensic Psychology

�Instructor:   Ivo Dinov, 
Asst. Prof. of Statistics, Neurology, Psychology

AIU, UCLA,  Winter  2003
http://www.stat.ucla.edu/~dinov/courses_students.html
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AIU  FOR 6520

�Course Description 
�Class homepage
�Online supplements, VOH’s etc.
�Final Exam/Project Format

http://www.stat.ucla.edu/~dinov/courses_students.html
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AIU  FOR 6520

to just hear is to forget
to see is to remember
to do it yourself is to understand …
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Review of Research & Design I – Fall’02
�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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Coverage of Research & Design II – Spring’03

�Applications of Central Limit Theorem, 
Law of Large Numbers.

�Design of studies and experiments.
�Fisher's F-Test & Analysis Of Variance 

(ANOVA, 1- or 2-way).
�Principle Component Analysis (PCA).
�χ2 (Chi-Square) Goodness-of-fit test.
�Multiple linear regression
�General Linear Model
�Bootstrapping and Resampling
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Newtonial science vs. chaotic science

�Article by Robert May, Nature, vol. 411, June 21, 2001
�Science we encounter at schools deals with crisp 
certainties (e.g., prediction of planetary orbits, the periodic table 
as a descriptor of all elements, equations describing area, volume, 
velocity, position, etc.)

�As soon as uncertainty comes in the picture it shakes 
the foundation of the deterministic science, because only 
probabilistic statements can be made in describing a 
phenomenon (e.g., roulette wheels, chaotic dynamic 
weather predictions, Geiger counter, earthquakes, etc.)
�What is then science all about – describing absolutely 
certain events and laws alone, or describing more 
general phenomena in terms of their behavior and 
chance of occurring? Or may be both!
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Introduction to statistics
�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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50 60 70 80 90

Samples of 20 people

Samples of 500 people

Sample percentage

Target:  True population
percentage = 69%

Figure 1.1.1 Comparing percentages from 10 different surveys each of
20 people with those from 10 surveys each of
500 people (all surveys from same population).

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Variation in sample percentages

Poll: Do you consider yourself
overweight? 

10

10

We are getting closer to
The population mean, as

is this a coincidence?∞→n
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Errors in Samples …
� Selection bias:  Sampled population is not a representative subgroup of 

the population really investigated.

� Non-response bias: If a particular subgroup of the population studied 
does not respond, the resulting responses may be skewed.

� Question effects: Survey questions may be slanted or loaded to 
influence the result of the sampling.

� Is quota sampling reliable? Each interviewer is assigned a fixed quota
of subjects (subjects district, sex, age, income exactly specified, so 
investigator can select those people as they liked).

� Target population –entire group of individuals, objects, units we study.

� Study population –a subset of the target population containing 
all “units” which could possibly be used in the study.

� Sampling protocol – procedure used to select the sample
� Sample – the subset of “units” about which we actually collect info.
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More terminology …

�Census – attempt to sample the entire population

�Parameter – numerical characteristic of the population, 
e.g., income, age, etc. Often we want to estimate population 
parameters.

�Statistic – a numerical characteristic of the sample. 
(Sample) statistic is used to estimate a 
corresponding population parameter.

� Why do we sample at random? We draw “units” from 
the study population at random to avoid bias. Every subject in 
the study sample is equally likely to be selected. Also random-
sampling allows us to calculate the likely size of the error in 
our sample estimates.
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More definitions …
� How could you implement the lottery method to randomly sample 10 

students from a class of 250? – list all names; assign numbers 1,2,3,…,250 to 
all students; Use a random-number generator to choose (10-times) a number in 
range [0;250]; Process students drawn.

� Random or chance error is the difference between the sample-value and 
the true population-value (e.g., 49% vs. 69%, in the above body-
overweight example).

� Non-sampling errors (e.g., non-response bias) in the census may be 
considerably larger than in a comparable survey, since surveys are much 
smaller operations and easier to control.

� Sampling errors–arising from a decision to use a sample rather than entire population

� Unbiased procedure/protocol: (e.g., using the proportion of 
left-handers from a random sample to estimate the 
corresponding proportion in the population).

� Cluster sampling- a cluster of individuals/units are used as a sampling 
unit, rather than individuals.
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More terminology …

� What are some of the non-sampling errors that 
plague surveys? (non-response bias, question effects, survey format 
effects, interviewer effects)

� If we take a random sample from one population, can 
we apply the results of our survey to other 
populations? (It depends on how similar, in the respect studied, the 
two populations are. In general- No! This can be a dangerous trend.)

� Are sampling households at random and interviewing people 
at random on the street valid ways of sampling people from an 
urban population? (No, since clusters (households) may not be urban in 
their majority.)

� Pilot surveys – after prelim investigations and designing the trial survey 
Q’s, we need to get a “small sample” checking clearness and ambiguity of 
the questions, and avoid possible sampling errors (e.g., bias).
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Questions …

� Give an example where non-representative 
information from a survey may be useful. Non-
representative info from surveys may be used to estimate parameters of the actual 
sub-population which is represented by the sample. E.g., Only about 2% of 
dissatisfied customers complain (most just avoid using the services), these are the 
most-vocal reps. So, we can not make valid conclusions about the stereotype of the 
dissatisfied customer, but we can use this info to tract down changes in levels of 
complains over years.

� Why is it important to take a pilot survey?

� Give an example of an unsatisfactory question in a 
questionnaire. (In a telephone study: What time is it?

Do we mean Eastern/Central/Mountain/Pacific?)
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Questions …
� Random allocation – randomly assigning treatments to units, 

leads to representative sample only if we have large # experimental units.

� Completely randomized design- the simplest experimental 
design, allows comparisons that are unbiased (not necessarily 
fair). Randomly allocate treatments to all experimental units, 
so that every treatment is applied to the same number of units. 
E.g., If we have 12 units and 3 treatments, and we study treatment efficacy, 
we randomly assign each of the 3 treatments to 4 units exactly.

� Blocking- grouping units into blocks of similar units for 
making treatment-effect comparisons only within individual 
groups. E.g., Study of human life expectancy perhaps income 
is clearly a factor, we can have high- and low-income blocks 
and compare, say, gender differences within these blocks 
separately.
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Questions …

� Why should we try to “blind” the investigator in an 
experiment? 

� Why should we try to “blind” human experimental 
subjects?

� The basic rule of experimentor :

“Block what you can and randomize what you cannot.”
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Experiments vs. observational studies
for comparing the effects of treatments

� In an Experiment
� experimenter determines which units receive which 

treatments. (ideally using some form of random allocation)

� Observational study – useful when can’t design a 
controlled randomized study
� compare units that happen to have received each of the 

treatments
� Ideal for describing relationships between different 

characteristics in a population.
� often useful for identifying possible causes of effects, but 

cannot reliably establish causation.

� Only properly designed and executed experiments
can reliably demonstrate causation.
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Questions …

� What is the difference between a designed experiment and an 
observational study? (no control of the design in observational studies)

� Can you conclude causation from an observational study? 
Why or why not? (not in general!)

� How do we try to investigate causation questions using 
observational studies?  In a smoking-lung-cancer study: try to divide 
all subjects, in the obs. study, into groups with equal, or very similar levels 
of all other factors (age, stress, income, etc.) – I.e. control for all outside 
factors. If rate of lung-cancer is still still higher in smokers we get a 
stronger evidence of causality.

� What is the idea of controlling for a variable, and why is it 
used? Effects of this variable in the treatment/control groups are similar.

� Epidemiology – science of using statistical methods to find causes or 
risk factors for diseases.
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The Subject of Statistics

Statistics is concerned with the process of finding out 
about the world and how it operates -

� in the face of variation and uncertainty

� by collecting and then making sense (interpreting) of 
data.



4

FOR 6520, AIU, Ivo Dinov Slide 19

Displaying data
�Intro to stats, vocabulary & intro to SPSS

�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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�Quantitative variables are measurements and 
counts
�Variables with few repeated values are treated as 

continuous.

�Variables with many repeated values are treated 
as discrete 

�Qualitative variables (a.k.a. factors or class-
variables) describe group membership

Types of variable
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Types of Variables

Qualitative

Continuous Discrete Categorical Ordinal

Quantitative

(few repeated values) (many repeated values) (no idea of order) (fall in natural order)

(measurements and counts) (define groups)

Distinguishing between types of variable
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Questions …

� What is the difference between quantitative and 
qualitative variables?

� What is the difference between a discrete variable 
and a continuous variable?

� Name two ways in which observations on qualitative 
variables can be stored on a computer. (strings/indexes)

� When would you treat a discrete random variable as 
though it were a continuous random variable?
�Can you give an example? ($34.45, bill)
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(a)  Bar graph (b)  Pie chart
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14%
U.S.

Different graphs of the same set of numbers –
percentages of the world’s gold production in 1991
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Questions …

� For what two purposes are tables of numbers 
presented? (convey information about trends in the data,  detailed 

analysis)

� When should you round numbers, and when should you 
preserve full accuracy?

� How should you arrange the numbers you are most 
interested in comparing? (Arrange numbers you want to compare in 
columns, not rows. Provide written/verbal summaries/footnotes. Show 
row/column averages.)

� Should a table be left to tell its own story?
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The dot plot

Atypical obs.

3 4 5 6 7 8

Figure 2.3.1 Dot plot.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

cluster gap outlier

Figure 2.3.2 Dot plot showing special features.
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B -AB A
+

D C AC
+ +

40 50 60 70 80 90 100

Figure 2.3.3 Grading of a university course.

Example of exploiting gaps and clusters

F                         D          C- C C+ B- B  B+ A- A A+
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Scale breaks

10 20 30 40 50 60

10 15 20 55 60

(a)   Unbroken scale

scale break

(b)   Broken scale

Figure 2.3.4 Dot plot with and without a scale break.
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A labeled dot plot

4 6 80 2 3 5 7 91
% Growth in GDP

Figure 2.3.5 Forecast of percent growth in GDP for 1990
for some South-East Asian and Pacific countries.
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Units: 7 | 2 =72

1 7
2 7 9
3 0 7 7 8 9
4 2 2 3 3 4 5 8 8 9
5 0 0 0 1 1 2 2 3 4 4 7 8 9 9
6 0 0 0 2 3 3 3 3 6 7 7 8
7 2 2

Example of a stem-and-leaf plot

Stem-plot of the 45 obs’s of the Ejection variable in the
Heart Attack data table.

Values 52, 54 and 
their frequencies

Stem Leafs
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Traffic death-rates data

TABLE 2.3.1   Traffic  Death-Rates (per 100,000  Population) for 30 Countries

17.4 Australia 20.1 Austria 19.9 Belgium 12.5 Bulgaria 15.8 Canada
10.1 Czechoslovakia 13.0 Denmark 11.6 Finland 20.0 France 12.0 E. Germany 
13.1 W. Germany 21.1 Greece   5.4 Hong Kong 17.1 Hungary 15.3 Ireland
10.3 Israel 10.4 Japan 26.8 Kuwait 11.3 Netherlands 20.1 New Zealand
10.5 Norway 14.6 Poland 25.6 Portugal 12.6 Singapore   9.8 Sweden 
15.7 Switzerland 18.6 United States 12.1 N. Ireland 12.0 Scotland 10.1England & Wales
Data for  1983, 1984 or 1985 depending on the country (prior to reunification of Germany)  
Source: Hutchinson [1987, page 3].
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Round-off

Units: 17 | 4 = 17.4  deaths per  100,000
5 4
6
7
8
9 8 Units: 1 | 7 = 17  deaths per  100,000

10 1 1 3 4 5 0 5
11 3 6 0
12 0 0 1 5 6 0
13 0 1 1 0 0 0 0 0 1 1
14 6 1 2 2 2 2 3 3 3
15 3 7 8 1 5 5
16 1 6 6 7 7
17 1 4 1 9
18 6 2 0 0 0 0 1
19 9 2
20 0 1 1 2
21 1 2 6 7
22
23
24
25 6
26 8

FIGURE 2.3.7  Two stem-and-leaf plots for the traffic deaths dat

Collapse to

12 stems

(a)

(b)
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TABLE 2.3.3 Frequency Table for
Female Coyote Lengths

Class Interval Tally Frequency Stem-and-leaf plot
70-75 - || 2 7 1 4
75-80 - 0 7
80-85 - |||| | 6 8 0 1 4 4 4
85-90 - |||| |||| || 12 8 5 5 5 6 6 7 7 7 7 8 8 9
90-95 - |||| |||| ||| 13 9 0 0 0 0 1 1 2 2 2 3 3 4 4 4

95-100 - |||| 5 9 6 7 7 8 8
100-105 - || 2 10 2 3

Total 40

Body
length

TABLE 2.3.2   Coyote Lengths Data (cm)

Females
93.0 97.0 92.0 101.6 93.0 84.5 102.5 97.8 91.0 98.0 93.5 91.7
90.2 91.5 80.0 86.4 91.4 83.5 88.0 71.0 81.3 88.5 86.5 90.0
84.0 89.5 84.0 85.0 87.0 88.0 86.5 96.0 87.0 93.5 93.5 90.0
85.0 97.0 86.0 73.7

Males
97.0 95.0 96.0 91.0 95.0 84.5 88.0 96.0 96.0 87.0 95.0 100.0

101.0 96.0 93.0 92.5 95.0 98.5 88.0 81.3 91.4 88.9 86.4 101.6
83.8 104.1 88.9 92.0 91.0 90.0 85.0 93.5 78.0 100.5 103.0 91.0

105.0 86.0 95.5 86.5 90.5 80.0 80.0

Coyotes captured in Nova Scotia, Canada.  Data courtesy of Dr Vera Eastwood.
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TABLE 2.3.3 Frequency Table for
Female Coyote Lengths

Class Interval Tally Frequency Stem-and-leaf plot
70-75- || 2 7 1 4
75-80- 0 7
80-85- |||| | 6 8 0 1 4 4 4
85-90- |||| |||| || 12 8 5 5 5 6 6 7 7 7 7 8 8 9
90-95- |||| |||| ||| 13 9 0 0 0 0 1 1 2 2 2 3 3 4 4 4

95-100- |||| 5 9 6 7 7 8 8
100-105- || 2 10 2 3

Total 40

70 80 90 100
length (cm)

(b)  Stem-and-leaf plot rotated(a)  Histogram

0

4

8

12

Figure 2.3.8 Histogram of the female coyote-lengths data.

compare
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(a)  Original histogram
           (interval width = 5)

(c)  Same widths, different boundaries
                  (interval width = 5)

(b)  Change class-interval width
               (interval width = 3)

(d)  Density trace
      (window width = 5)

70 80 90 100
Length (cm)

70 80 90 100
Length (cm)

70 80 90 100
Length (cm)

110 70 80 90 100
Length (cm)

0

4

8

12

0

4

8

12

0

4

8

12

0

4

8

12

Histogram bin-size change

Histogram bin-boundary change
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Questions …

� What advantages does a stem-and-leaf plot have over 
a histogram? (S&L Plots return info on individual values, quick to 
produce by hand, provide data sorting mechanisms. But, histograms are 
more attractive and more understandable). 

� The shape of a histogram can be quite drastically 
altered by choosing different class-interval 
boundaries.  What type of plot does not have this 
problem? (density trace) What other factor affects the 
shape of a histogram? (bin-size)

� What was another reason given for plotting data on a 
variable, apart from interest in how the data on that 
variable behaves? (shows features, cluster/gaps, outliers; as well as 
trends)
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(e)   Positively skewed

(a)   Unimodal (b)   Bimodal (c)   Trimodal

(d)   Symmetric
(long upper tail)

(f)   Negatively skewed
(long lower tail)

(g)   Symmetric (h)   Bimodal with gap (i)   Exponential shape

Interpreting Stem-plots and Histograms

e x||−

e x2
2
1−

)1( 22

1
−x
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Interpreting Stem-plots and Histograms

(j)   Spike in pattern

(k)   Outliers (l)   Truncation plus outlier

outlieroutlier

spike

Figure 2.3.10 Features to look for in histograms and stem-and-leaf plots.
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Fascinations with histograms –
Histogram of heights using the actual people

Subjects are university genetics students, females in white
and males in dark tops.

?
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Skewness & Kurtosis

� What do we mean by symmetry and positive and 
negative skewness? Kurtosis? Properties?!?

� Skewness is linearly invariant Sk(aX+b)=Sk(X)

� Skewness is a measure of unsymmetry

� Kurtosis is (also linearly invariant) a measure of flatness

� Both are used to quantify departures from StdNormal

� Skewness(StdNorm)=0; Kurtosis(StdNorm)=3

( ) ( )
4

1

4

3
1

3

)1(
Kurtosis     ;

)1(
Skewness

SDN

YY

SDN

YY
N

k
k

N

k
k

−

−
=

−

−
=

��
==
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Descriptive Statistics
Variable N Mean Median TrMean StDev SE Mean
age 45 50.133 51.000 50.366 6.092 0.908

Variable Minimum Maximum Q1 Q3
age 36.000 59.000 46.500 56.000

Standard deviation

Lower quartile Upper quartile

Minitab output

Descriptive statistics from computer 
programs like STATA

STATA Output
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Box plot compared to dot plot

SYSVOL
50 100 150 200

MedianQ1 Q3

Box plot

Dot plot

Figure 2.4.3 Box plot for SYSVOL.
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Construction of a box plot

Data
1.5 IQR

Med

1.5 IQR

Scale

Q1 Q3

(pull back until hit observation) (pull back until hit observation)

Figure 2.4.4 Construction of a box plot.
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TABLE 2.5.1  Word Lengths for the First 100 
Words on a Randomly Chosen Page

3 2 2 4 4 4 3 9 9 3 6 2 3 2 3 4 6 5 3 4
2 3 4 5 2 9 5 8 3 2 4 5 2 4 1 4 2 5 2 5
3 6 9 6 3 2 3 4 4 4 2 2 4 2 3 7 4 2 6 4
2 5 9 2 3 7 11 2 3 6 4 4 7 6 6 10 4 3 5 7
7 7 5 10 3 2 3 9 4 5 5 4 4 3 5 2 5 2 4 2

Value u 1 2 3 4 5 6 7 8 9 10 11
Frequency f 1 22 18 22 13 8 6 1 6 2 1

j

j

Frequency Table

Frequency Table
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30%

10%

20%

0 1 2 3 4 5 6 7 8 9 10+

Number of strata occupied

0%

Figure 2.5.1 Bar graph for species data.
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Central tendency and variability
�Intro to stats, vocabulary & intro to SPSS
�Displaying data

�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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Describing data with pictures and two numbers

• Random Number generation: frequency histogram

• Descriptive statistics
- Central tendency (Mode, Median, Mean)
- Variability (Variance, Standard deviation)
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Random number generation [5:316]: ascending order

Ss ID number  Ss ID number  Ss ID number  Ss ID number  Ss ID number  Ss ID number 
1 5 11 42 21 75 31 103 41 157 51 275
2 15 12 42 22 77 32 107 42 165 52 304
3 20 13 42 23 77 33 121 43 171 53 316
4 20 14 55 24 81 34 123 44 175
5 25 15 57 25 83 35 125 45 188
6 33 16 58 26 83 36 136 46 209
7 35 17 58 27 91 37 140 47 213
8 37 18 60 28 97 38 148 48 217
9 42 19 62 29 101 39 152 49 248

10 42 20 64 30 102 40 152 50 275
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Histogram of random numbers generated
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0-19 20-
39
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F
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q
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Notes:

1: Histogram allows you to see
distribution -- estimate middle, spread.

2. Sacrifice some information (within 
intervals) to gain this perspective 

3.  How can we further reduce this 
information to a single number for 
middle and another for spread?
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Central tendency: the middle in a single number 

• Mode: The most frequent score in the distribution.

• Median: The centermost score if there are an odd 
number of scores or the average of the two centermost 
scores if there are an even number of scores.

• Mean: The sum of the scores divided by the number of 
scores.
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Founded
Area

Altitude
Population

Welcome to
MEANSTOWN

1867
20

584
372
711Average

Suggested by a 1977 cartoon in The New Yorker magazine by Dana Fradon.

Beware of inappropriate averaging

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.
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The five-number summery = (Min, Q1, Med, Q3, Max)

Five number summary
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IQR = Q3 - Q1

Inter-quartile Range
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Mode: 

Median: 

Mean

Calculate the measures of central tendency

Ss ID number  Ss ID number  Ss ID number  Ss ID number  Ss ID number  Ss ID number 
1 5 11 42 21 75 31 103 41 157 51 275
2 15 12 42 22 77 32 107 42 165 52 304
3 20 13 42 23 77 33 121 43 171 53 316
4 20 14 55 24 81 34 123 44 175
5 25 15 57 25 83 35 125 45 188
6 33 16 58 26 83 36 136 46 209
7 35 17 58 27 91 37 140 47 213
8 37 18 60 28 97 38 148 48 217
9 42 19 62 29 101 39 152 49 248

10 42 20 64 30 102 40 152 50 275
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Number of licks: sorted from few to many

Mode: 42

Median = 91

Ss ID umber Ss ID umber Ss ID umber Ss ID umber Ss ID umber Ss ID umber
1 5 11 42 21 75 31 103 41 157 51 275
2 15 12 42 22 77 32 107 42 165 52 304
3 20 13 42 23 77 33 121 43 171 53 316
4 20 14 55 24 81 34 123 44 175
5 25 15 57 25 83 35 125 45 188
6 33 16 58 26 83 36 136 46 209
7 35 17 58 27 91 37 140 47 213
8 37 18 60 28 97 38 148 48 217
9 42 19 62 29 101 39 152 49 248

10 42 20 64 30 102 40 152 50 275
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Sample mean = X (pronounced “Xbar”)

Population mean = µ (pronounced “mew”)

Arithmetic mean

Ss ID number Ss ID number Ss ID number Ss ID number Ss ID number Ss ID numbe r
X1 5 X11 42 X21 75 X31 103 X41 157 X51 275
X2 15 X12 42 X22 77 X32 107 X42 165 X52 304
X3 20 X13 42 X23 77 X33 121 X43 171 X53 316
X4 20 X14 55 X24 81 X34 123 X44 175
X5 25 X15 57 X25 83 X35 125 X45 188
X6 33 X16 58 X26 83 X36 136 X46 209
X7 35 X17 58 X27 91 X37 140 X47 213
X8 37 X18 60 X28 97 X38 148 X48 217
X9 42 X19 62 X29 101 X39 152 X49 248
X10 42 X20 64 X30 102 X40 152 X50 275

Σx = 5901

Σxi/N =
i=1

N

Σxi/N =
i=1

N

Median = 91; Mean =
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Sample mean = X (pronounced “Xbar”)

Population mean = µ (pronounced “mew”)

Arithmetic mean

Ss ID number Ss ID number Ss ID number Ss ID number Ss ID number Ss ID numbe r
X1 5 X11 42 X21 75 X31 103 X41 157 X51 275
X2 15 X12 42 X22 77 X32 107 X42 165 X52 304
X3 20 X13 42 X23 77 X33 121 X43 171 X53 316
X4 20 X14 55 X24 81 X34 123 X44 175
X5 25 X15 57 X25 83 X35 125 X45 188
X6 33 X16 58 X26 83 X36 136 X46 209
X7 35 X17 58 X27 91 X37 140 X47 213
X8 37 X18 60 X28 97 X38 148 X48 217
X9 42 X19 62 X29 101 X39 152 X49 248
X10 42 X20 64 X30 102 X40 152 X50 275

Σx = 5901

Σxi/N =
i=1

N

Σxi/N =
i=1

N

Median = 91; Mean = 111.8
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Sample mean = X (pronounced “Xbar”)

Population mean = µ (pronounced “mew”)

Arithmetic mean

Ss ID numbe r Ss ID numbe r Ss ID number Ss ID numbe r Ss ID number Ss ID number
X1 5 X11 42 X21 75 X31 103 X41 157 X51 275
X2 15 X12 42 X22 77 X32 107 X42 165 X52 304
X3 20 X13 42 X23 77 X33 121 X43 171 X53 1,000,000
X4 20 X14 55 X24 81 X34 123 X44 175
X5 25 X15 57 X25 83 X35 125 X45 188
X6 33 X16 58 X26 83 X36 136 X46 209
X7 35 X17 58 X27 91 X37 140 X47 213
X8 37 X18 60 X28 97 X38 148 X48 217
X9 42 X19 62 X29 101 X39 152 X49 248
X10 42 X20 64 X30 102 X40 152 X50 275

Σx = 1005585

Σx/N =
i=1

N

Σx/N =
i=1

N

Median =        ;      Mean =

TYPO!

FOR6520, AIU, Ivo DinovSlide 58

Sample mean = X (pronounced “Xbar”)

Population mean = µ (pronounced “mew”)

Arithmetic mean

Ss ID numbe r Ss ID number Ss ID numbe r Ss ID number Ss ID number Ss ID number
X1 5 X11 47 X21 75 X31 103 X41 157 X51 275
X2 15 X12 50 X22 77 X32 107 X42 165 X52 304
X3 20 X13 52 X23 77 X33 121 X43 171 X53 1,000,000
X4 20 X14 55 X24 81 X34 123 X44 175
X5 25 X15 57 X25 83 X35 125 X45 188
X6 33 X16 58 X26 83 X36 136 X46 209
X7 35 X17 58 X27 91 X37 140 X47 213
X8 37 X18 60 X28 97 X38 148 X48 217
X9 41 X19 62 X29 101 X39 152 X49 248
X10 42 X20 64 X30 102 X40 152 X50 275

Σx = 1005607

Σx/N =
i=1

N

Σx/N =
i=1

N

Median = 91; Mean = 18,973.7
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Neat things about the mean

• If you add/subtract a constant to/from each score, you 
change the mean by adding/subtracting the constant 
to/from it.

Xi Xi+2 Xi+100 Xi-2 Xi-100
X1 1 3 101 -1 -99
X2 2 4 102 0 -98
X3 3 5 103 1 -97

Sum=> 6 12 306 0 -294
Mean=> 2 4 102 0 -98
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Neat things about the mean

• If you add/subtract a constant to/from each score, you 
change the mean by adding/subtracting the constant 
to/from it.

• If you multiply/divide each score by a constant you 
change the mean by multiplying/dividing it by the 
constant.

Xi Xi*2 Xi*100 Xi/2 Xi/5
X1 1 2 100 0.5 0.2
X2 2 4 200 1 0.4
X3 3 6 300 1.5 0.6

Sum=> 6 12 600 3 1.2
Mean=> 2 4 200 1 0.4
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Neat things about the mean

• If you add/subtract a constant to/from each score, you change 
the mean by adding/subtracting the constant to/from it.

• If you multiply/divide each score by a constant you change the 
mean by multiplying/dividing it by the constant.

• Summed deviations from the mean = 0, or Σ(xi-x) = 0
Xi Xi-X

X1 1 -1
X2 2 0
X3 3 1

Sum=> 6 0
Mea n=> 2 0
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Neat things about the mean

• Sum of squared deviations from the mean (SS) is 
minimized.
Σ(x-x)2 = minimum
Σ x2 - (Σx)2/N = minimum

Xi Xi-X (Xi-X)2 (Xi-0)2 (Xi-3)2

X1 1 -1 1 1 4
X2 2 0 0 4 1
X3 3 1 1 9 0

Sum=> 6 0 2 14 5
Mean=> 2 0
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Neat things about the mean

• If you add/subtract a constant to/from each score, you 
change the mean by adding/subtracting the constant 
to/from it.

• If you multiply/divide each score by a constant you 
change the mean by multiplying/dividing it by the 
constant.

• Summed deviations from the mean = 0, or Σ(xi-x) = 0

• Very sensitive to extreme scores (outliers).

• Sum of squared deviations from the mean (SS) is 
minimized.
Σ(xi-x)2 = minimum
Σx2 - (Σx)2/N = minimum
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Height of 26 women in inches (real data)
Numbe r Ge nde r He ig ht (X)

1 1 61
2 1 61
3 1 61
4 1 62
5 1 62
6 1 62
7 1 62
8 1 63
9 1 63

10 1 64
11 1 64
12 1 64
13 1 64
14 1 64
15 1 64
16 1 65
17 1 65
18 1 65
19 1 66
20 1 66
21 1 66
22 1 66
23 1 66
24 1 67
25 1 69
26 1 70

Sum  ==> 1672

Mode =

Median =

Mean =

Frequency histogram for women in 214
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Height of women in inches (real data)
Numbe r Ge nde r He ig ht (X)

1 1 61
2 1 61
3 1 61
4 1 62
5 1 62
6 1 62
7 1 62
8 1 63
9 1 63

10 1 64
11 1 64
12 1 64
13 1 64
14 1 64
15 1 64
16 1 65
17 1 65
18 1 65
19 1 66
20 1 66
21 1 66
22 1 66
23 1 66
24 1 67
25 1 69
26 1 70

Su m ==> 1672

Mode = 64

Median = 64

Mean = 64.3

Frequency histogram for women in 214
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Height of women in inches (real data)
Nu mbe r Ge nd e r He ig h t (X) (X+10 ) (X-14 ) (X*2) (X/3 )

1 1 61 71.0 47 122 20.3
2 1 61 71.0 47 122 20.3
3 1 61 71.0 47 122 20.3
4 1 62 72.0 48 124 20.7
5 1 62 72.0 48 124 20.7
6 1 62 72.0 48 124 20.7
7 1 62 72.0 48 124 20.7
8 1 63 73.0 49 126 21.0
9 1 63 73.0 49 126 21.0

10 1 64 74.0 50 128 21.3
11 1 64 74.0 50 128 21.3
12 1 64 74.0 50 128 21.3
13 1 64 74.0 50 128 21.3
14 1 64 74.0 50 128 21.3
15 1 64 74.0 50 128 21.3
16 1 65 75.0 51 130 21.7
17 1 65 75.0 51 130 21.7
18 1 65 75.0 51 130 21.7
19 1 66 76.0 52 132 22.0
20 1 66 76.0 52 132 22.0
21 1 66 76.0 52 132 22.0
22 1 66 76.0 52 132 22.0
23 1 66 76.0 52 132 22.0
24 1 67 77.0 53 134 22.3
25 1 69 79.0 55 138 23.0
26 1 70 80.0 56 140 23.3

Su m ==> 1672 1932 1308 3344 557.3
Me an == 64.3 74.3 50.3 128.6 21.4

64.3+10 = 74.3

64.3 - 14 = 50.3

64.3 * 2 = 128.6

64.3/3 = 21.4
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Height of women in inches (real data)
Num be r Ge nde r He ig ht (X) (X-X)

1 1 61 -3.3
2 1 61 -3.3
3 1 61 -3.3
4 1 62 -2.3
5 1 62 -2.3
6 1 62 -2.3
7 1 62 -2.3
8 1 63 -1.3
9 1 63 -1.3

10 1 64 -0.3
11 1 64 -0.3
12 1 64 -0.3
13 1 64 -0.3
14 1 64 -0.3
15 1 64 -0.3
16 1 65 0.7
17 1 65 0.7
18 1 65 0.7
19 1 66 1.7
20 1 66 1.7
21 1 66 1.7
22 1 66 1.7
23 1 66 1.7
24 1 67 2.7
25 1 69 4.7
26 1 70 5.7

Su m ==> 1672 0.0
Me an == 64.3

Σ(x-x) = 0!
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Conceptual formula vs. computational formula for SS

• Conceptual SS: Computational 
SS: Σ(x-x)2 Σ x2 - (Σx)2/N

“Sum of each X’s squared difference     “Sum of the Xs after they have
from the mean” been squared minus the sum 

of all the Xs, which is then 
squared and then divided by the 
total number of Xs”

Xi (Xi-X)2

X1 1 1
X2 2 0
X3 3 1

Sum=> 6 2
Mea n=> 2

SS = Σ x2 - (Σx)2/N
= (12 + 22 + 32) - [(1+2+3)2/3]
= (1+4+9) - (62/3)
= 14 - 36/3
= 14- 12
= 2
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Questions about measures of central tendency?

• Why is the mean our preferred measure of central tendency?

- Adjusted for the number of scores.

- Takes into account the numerical “weight” of each score.
As scores of greater magnitude are added, the mean increases
As scores of lesser magnitude are added, the mean decreases

- Sum of squared deviations from the mean (SS) is minimized. 
SS is the square of the sum of each score’s difference from the 
mean.
Σ(x-x)2

Σx2 - (Σx)2/N = minimum
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Variability

• Not only interested in a distribution’s middle.

• Also interested in its spread (or variability). 

• Define distributions by:
- Central tendency
- Variability

• How can we describe variability with a single number?
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Another Frequency histogram
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Variability

• How do these distributions differ?

Frequency histogram for women in 214
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X = 64.3X = 64.3
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Another Frequency histogram
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One is more spread out (greater variability) than another.

• Spread out around what?

Frequency histogram for women in 214
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• Want to adjust for the number of scores.

• Take into account the numerical “weight” of each score.
- As scores are farther from the mean, the index of variability 

should increase
- As scores are closer to the mean, the index of variability 

should decrease

• Suppose we measured each score’s distance from its mean, and 
then used the average distance as our measure?

- Using the average distance will adjust for the number of 
scores.

- Measuring the distance from the mean should tell us how 
spread out each score is relative to the mean.

Describe variability around the mean with one number.
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Try measure of variability with some simple number

• X (a population) = {2,4,6}

• µ = 4

• What is the average distance from the mean?
- How far is X1 away from the mean (2 - 4 = ??)
- How far is X2 away from the mean (4 - 4) = ??)
- How far is X3 away from the mean? (6 - 4) = ??)

• What is the sum of the distance from the mean? [Σ(x- µ) = ??]

• How can we use the distance from the mean as a measure of 
variability?
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Average of the squared distances from the mean!
• Find the distance (deviation) of each score from its mean (x-µ).

- -2, 0, 2 
- Why? Measure how spread out each score is from the mean.

• Square the deviation of each score from its mean (x- µ)2

- -22 = 4, 02 = 0, 22 = 4
- Why? So the values won’t always sum to zero.

• Sum the squared deviations: Σ(x- µ)2 (or SS)
- 4 + 0 + 4 = 8
- Question: can SS be negative?

• Divide by N 
- 8/3 = 2.7
- Why? To get the average squared deviation from the mean.
- Congratulations, you’ve just calculated the population 

variance, σ2
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Is 2.7 the average distance each score is from its mean?

• X = {2,4,6}

• In absolute terms:
• X1 is 2 away from the mean
• X2 is 0 away from the mean
• X3 is 2 away from the mean

• Shouldn’t average distance be about 4/3 or 1.33?

• Why is the variance (σ2) as a measure of the average 
distance of each score from its mean so much bigger than 
our intuition (that is, why is the σ2 = 2.7 when the average 
distance from the mean is obviously closer to 1.3?
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Is 2.7 the average distance each score is from its mean?

• X = {2,4,6}

• In absolute terms:
• X1 is 2 away from the mean
• X2 is 0 away from the mean
• X3 is 2 away from the mean

• Shouldn’t average distance be about 4/3 or 1.33?

• Why is the variance (σ2) as a measure of the average 
distance of each score from its mean so much bigger than 
our intuition?

• BECAUSE WE SQUARED ALL THE DEVIATIONS!

• How can we “unsquare” our answer?

FOR6520, AIU, Ivo DinovSlide 78

How do we “unsquare” the variance?

• Unsquare the variance (σ2) by taking the square root of it:

σ2 = |σ| =   Σ(x-µ)2/N = standard deviation

Why?  To get back to the original scale of X.

2.7 = 1.63, much closer to our intuitively derived 1.3
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Generally
• Population variance (sigma squared, or σ2) is the average of the 

squared deviations from the mean:

Σ(x- µ)2 Note: also written SS/N or Σ x2 - (Σx)2/N 
N N

• Population standard deviation (sigma, or σ) is the square root of 
the average of the squared deviations from the mean:

Σ(x- µ)2 Note: also written   SS/N or    Σ x2 - (Σx)2/N 
N N
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Generally
• Sample variance (or s2) is the (corrected) average of the squared 

deviations from the mean:

Σ(x-x)2 Note: also written SS/N-1or Σ x2 - (Σx)2/N 
N-1 N-1

• Sample standard deviation (or s) is the square root of the 
(corrected) average of the squared deviations from the mean:

Σ(x-x)2 Note: also written    SS/N-1or    Σ x2 - (Σx)2/N 
N-1 N-1
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Questions?

• We know what happens to the mean when we add or 
subtract a constant to/from all the scores, but what happens 
to the variance and standard deviation?

• We know what happens to the mean when we multiply or 
divide all the scores by a constant, but what happens to the 
variance and standard deviation?
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Questions?

• We know what happens to the mean when we add/subtract 
a constant to/from all the scores, but what happens to s2 and 
s?

• We know what happens to the mean when we multiply or 
divide all the scores by a constant, but what happens to s2

and s?
X X+2 X-2 X*2 X/2

X1 1 3 -1 2 0.5
X2 2 4 0 4 1.0
X3 3 5 1 6 1.5

Mean=> 2 4 0 4 1
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Another Frequency histogram
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Remember these?

More variability Less Variability

Frequency histogram for women in 214
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Two data sets
More variability Less Variability

Num be r Ge nde r He ig ht (X) (X-X) (X-X) 2

1 1 61 -3.3 10.9
2 1 61 -3.3 10.9
3 1 61 -3.3 10.9
4 1 62 -2.3 5.3
5 1 62 -2.3 5.3
6 1 62 -2.3 5.3
7 1 62 -2.3 5.3
8 1 63 -1.3 1.7
9 1 63 -1.3 1.7

10 1 64 -0.3 0.1
11 1 64 -0.3 0.1
12 1 64 -0.3 0.1
13 1 64 -0.3 0.1
14 1 64 -0.3 0.1
15 1 64 -0.3 0.1
16 1 65 0.7 0.5
17 1 65 0.7 0.5
18 1 65 0.7 0.5
19 1 66 1.7 2.9
20 1 66 1.7 2.9
21 1 66 1.7 2.9
22 1 66 1.7 2.9
23 1 66 1.7 2.9
24 1 67 2.7 7.2
25 1 69 4.7 22.0
26 1 70 5.7 32.4

Sum ==> 1672 0.0 135.5
Me a n  == 64.3 5.2 <==σ2

2.3 <==σ
5.4 <==s2

2.3 <==s

Numb e r Ge nde r He ig ht (X) (X-X) (X-X) 2

1 1 63 -1.3 1.7
2 1 63 -1.3 1.7
3 1 63 -1.3 1.7
4 1 63 -1.3 1.7
5 1 64 -0.3 0.1
6 1 64 -0.3 0.1
7 1 64 -0.3 0.1
8 1 64 -0.3 0.1
9 1 64 -0.3 0.1

10 1 64 -0.3 0.1
11 1 64 -0.3 0.1
12 1 64 -0.3 0.1
13 1 64 -0.3 0.1
14 1 64 -0.3 0.1
15 1 64 -0.3 0.1
16 1 64 -0.3 0.1
17 1 64 -0.3 0.1
18 1 65 0.7 0.5
19 1 65 0.7 0.5
20 1 65 0.7 0.5
21 1 65 0.7 0.5
22 1 65 0.7 0.5
23 1 65 0.7 0.5
24 1 66 1.7 2.9
25 1 66 1.7 2.9
26 1 66 1.7 2.9

Sum ==> 1672 0.0 19.5
Me a n  == 64.3 0.8 <==σ2

0.9 <==σ
0.8 <==s2

0.9 <==s
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Another Frequency histogram
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Remember these?

More variability Less Variability

Frequency histogram for women in 214
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What have we learned?

• Mean is preferred measure of central tendency:

• Standard deviation is preferred measure of variability:

Sample mean = X, more commonly Σx/NΣxi/N =
i=1

N

Σ(x-x)2 

N-1 = Sample standard deviation (s), can also be written  SS/N-1
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Z–scores, Normal standardization
�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests

FOR6520, AIU, Ivo DinovSlide 88

� Is symmetric about the mean! Bell-shaped and 
unimodal.

� Mean = Median!

50% 50%

Mean

2.2

The Normal distribution density curve

N(µ, σµ, σµ, σµ, σ)
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Effects of µµµµ and σσσσ

140 160 180

shifts the curve along the axis

200

2 =174

2 = 61 =

(a)  Changing

1 = 160

160 180 200140

1 = 6

2 = 12

2 =1701 =

increases the spread and flattens the curve

(b)  Increasing

Mean is a measure of …
central tendency

Standard deviation is 
a measure of …

variability/spread
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Understanding the standard deviation: σσσσ

(c)  Probabilities and numbers of standard deviations

Shaded area = 0.683 Shaded area = 0.954 Shaded area = 0.997

    68% chance of falling
between             and

− +

+
     95% chance of falling
between              and

+2

+2

3+

     99.7% chance of falling
between              and 3+

− 2 − 3

−3− −2

Probabilities/areas and numbers of standard deviations
for the Normal distribution
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Basic method for obtaining probabilities

� Sketch a Normal curve, marking the mean and other 
values of interest.

� Shade the area under the curve that gives the desired 
probability.

� Devise a way of getting the desired area from lower-
tail areas.

� Obtain component lower-tail probabilities from a 
computer program
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180160 =174160 =174180=174

pr(X    180) pr(X    160) pr(160 < X    180) = difference

Shaded
area

(a)  Computing   pr(160 < X     180)

Shaded
area

Shaded
area

Programs supply We want

and

pr(160 < X    180)  =  pr(X   180)     pr(X   160)
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Programs supply

pr(X    25)

25 =27.2

We want

pr(X > 25)

25 =27.2

= 0.2874= ??

Since total area under curve = 1,    pr(X > 25) = 1 - pr(X     25)

Obtaining an upper-tail probability

pr(X > 25)

Generally,    pr(X > x)  =  1  -  pr(X     x)

FOR6520, AIU, Ivo DinovSlide 94

Percent 1% 5% 10% 20% 30% 70% 80% 90% 95% 99%
Propn 0.01 0.05 0.1 0.2 0.3 0.7 0.8 0.9 0.95 0.99
Percentile

(cm) 148.3 152.5 154.8 157.5 159.4 166.0 167.9 170.6 172.9 177.1
(ft'in") 4'10" 5'0" 5'0" 5'2" 5'2" 5'5" 5'6" 5'7" 5'8” 5'9"

 (+ frac) 3/8" 7/8" 3/4" 3/8" 1/8" 1/8" 1/8" 3/4"

(c)  Further percentiles of women’s heights

prob = 0.8

=162.7

prob = p

(a)  p-Quantile

x  = ??p

(b)  80th percentile (0.8-quantile)
of women’s heights

Programs supply  x p

Program returns 167.9.
Thus 80% lie below 167.9.

Normal(   = 162.7,    = 6.2)

(or quantile)

x   = ??0.8

x-value for which  pr(X    x  ) = pp

The inverse problem – Percentiles/quantiles

80% of people have 
height below the 
80th percentile. 
This is EQ to 
saying there’s 
80% chance that a 
random 
observation from 
the distribution 
will fall below the 
80th percentile.

The inverse problem is what is the height for the 80th percentile/quantile? So 
far we studied given the height value what’s the corresponding percentile?
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???

What does this say about the lower tail?
“What value gives

the top 25%?”

Obtain from program

0.75

prob

0.25

prob = 0.25

0.25

???

Obtaining an inverse upper-tail probability

[ Program returns 166.88]

=162.7=162.7

1   prob
  = 0.75

The inverse problem – upper-tail
percentiles/quantiles
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Review

� What is meant by the 60th percentile of heights? 

� What is the difference between a percentile and a 
quantile? (percentile used in expressing results in %, whereas quantiles used 
to express results in term of probabilities)

� The lower quartile, median and upper quartile of a 
distribution correspond to special percentiles. What 
are they?  express in terms of quantiles. (25%, 50%, 75%)

� Quantiles are sometimes called inverse cumulative 
probabilities. Why?
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Standard Normal Curve 

� The standard normal curve is described by the equation:

π2

2

2x

ey
−

=

Where remember, the natural number e ~ 2.7182…
We say: X~Normal(µ, σµ, σµ, σµ, σ), or simply X~N(µ, σµ, σµ, σµ, σ)
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Standard Normal Approximation 

� The standard normal curve can be used to estimate the percentage of 
entries in an interval for any process. Here is the protocol for this 
approximation:
� Convert the interval (we need the assess the percentage of entries in) to 

standard units. We saw the algorithm already.
� Find the corresponding area under the normal curve (from tables or online 

databases);

12         18        22

Data

What percentage of the 
density scale histogram
is shown on this graph?

Transform to Std.Units

Compute %

Report back %
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General Normal Curve 

� The general normal curve is defined by:
� Where µ is the average of (the symmetric) 

normal curve, and σ is the standard
deviation (spread of the distribution).

� Why worry about a standard and general normal curves?
� How to convert between the two curves? 

2

22

2)(

2πσ

σ
µ−−

=

x

ey
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Areas under Standard Normal Curve –
Normal Approximation

� Protocol: 
� Convert the interval (we need to assess the percentage of entries in) 

to Standard units. Actually convert the end points in Standard units.
�In general, the transformation  X  � (X-µ)/σ, standardizes the 

observed value X, where µ and σ are the average and the 
standard deviation of the distribution X is drawn from.

� Find the corresponding area under the normal curve (from tables or 
online databases);
�Sketch the normal curve and shade the area of interest
�Separate your area into individually computable sections
�Check the Normal Table and extract the areas of every sub-

section
�Add/compute the areas of all 

sub-sections to get the total area.
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� The z-score of x is the number of standard deviations x
is from the mean. (Body-Mass-Index, BMI)

The z-score

TABLE 6.3.1  Examples of z -Scores

X Interpretation 
        Male BMI values (kg/m 2)

25 (25-27.3)/4.1 = -0.56 25 kg/m 2 is 0.56 sd's below the mean 
35 (35-27.3)/4.1 = 1.88 35 kg/m 2 is 1.88 sd's above the mean

       Female heights  (cm)
155 (155-162.7)/6.2 = -1.24 155cm is 1.24 sd's below the mean   
180 (180-162.7)/6.2 = 2.79 180cm is 2.79 sd's above the mean   

Male BMI-values: µ =27.3, σ =4.1       Females heights: µ=162.7, σ=6.2

z -score = (x  - µµµµ )/σ σ σ σ 

� Which ones of these are unusually large/small/away from the mean?
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Standard Normal distribution:    

mean(µ) = 0, SD(σ)= 1

The standard Normal distribution
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z = ??-z
0

z = ??-z
0

90% 90%5% 5%

z = ??-z
0

95%

What does that say about the lower tail?

Obtain z from program

What values contain the central 90%?

The central 90%

[Program returns 1.6449]

Working in standard units
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z = ??-z
0

z = ??-z
0

90% 90%5% 5%

z = ??-z
0

95%

What does that say about the lower tail?

Obtain z from program

What values contain the central 90%?

The central 90%

[Program returns 1.6449]

Review
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Summary 

Show Sampling Distribution Simulation Applet
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/
SamplingDistributionApplet.html

QuincunxApplet.html
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Continuous Variables and Density Curves

� There are no gaps between the values a continuous 
random variable can take.

� Random observations arise in two main ways: (i) by 
sampling populations; and (ii) by observing 
processes.
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The density curve

� The probability distribution of a continuous variable 
is represented by a density curve.
�Probabilities are represented by areas under the curve, 

�the probability that a random observation falls between a and b
equal to the area under the density curve between a and b.

�The total area under the curve equals 1.
�The population (or distribution) mean µX = E(X), is where 

the density curve balances.
�When we calculate probabilities for a continuous random 

variable, it does not matter whether interval endpoints are 
included or excluded.
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For any random variable X

� E(aX +b) = a E(X) +b and   SD(aX +b) = | a | SD(X)
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The Normal distribution

X ~ Normal(µx = µ, σx = σ)

Features of the Normal density curve:

� The curve is a symmetric bell-shape centered at µ.

� The standard deviation σ governs the spread.
� 68.3% of the probability lies within 1 standard deviation of 

the mean
� 95.4% within 2 standard deviations
� 99.7% within 3 standard deviations
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Probabilities

� Computer programs provide lower-tail (or 
cumulative) probabilities of the form pr(X ≤ x)
�We give the program the x-value; it gives us the 

probability.

� Computer programs also provide inverse lower-tail 
probabilities (or quantiles)
�We give the program the probability; it gives us the x-

value.

� When calculating probabilities, we shade the desired 
area under the curve and then devise a way of 
obtaining it via lower-tail probabilities.
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Standard Units

The z-score of a value a is ….

� the number of standard deviations a is away from the 
mean

� positive if a is above the mean and negative if a is 
below the mean.

The standard Normal distribution has µ = 0 and σ = 0.

� We usually use Z to represent a random variable with 
a standard Normal distribution.
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Ranges, extremes and z-scores

Central ranges:
� P(-z ≤ Z ≤ z) is the same as the probability that  a random 

observation from an arbitrary Normal distribution falls 
within z SD's either side of the mean.

Extremes:
� P(Z ≥ z) is the same as the probability that a random 

observation from an arbitrary Normal distribution falls 
more than z standard deviations above the mean.

� P(Z ≤ -z) is the same as the probability that a random 
observation from an arbitrary Normal distribution falls 
more than z standard deviations below the mean.
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Combining Random Quantities

Variation and independence:

� No two animals, organisms, natural or man-made 
objects are ever identical.

� There is always variation. The only question is 
whether it is large enough to have a practical impact 
on what you are trying to achieve.

� Variation in component parts leads to even greater 
variation in the whole.
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Independence

We model variables as being independent ….

� if we think they relate to physically independent 
processes

� and if we have no data that suggests they are related.

Both sums and differences of independent random 
variables are more variable than any of the 
component random variables
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Formulas

� For a constant number a, E(aX) = aE(X)
and SD(aX) = |a| SD(X).

� Means of sums and differences of random variables 
act in an obvious way
� the mean of the sum is the sum of the means
� the mean of the difference is the difference in the means 

� For independent random variables, (cf. Pythagorean theorem),

[ASIDE: Sums and differences of independent Normally distributed random 
variables are also Normally distributed]
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Example

� For constant numbers a & b, E(aX+b) = aE(X)+b
and SD(aX+b) = |a| SD(X).

� For independent random variables

� For Dependent variables: Ex.  E(X)=1, SD(X)=3
�Y = 2X-1 � E(Y)=1 and SD(Y) = 6
� SD(X+Y)=SD(3X-1) = 9, NOT 
� 7== SD(X+Y) = Sqrt(SD2 (X)+SD2(Y)).
�Defense vs. prosecution argument may be different for an 

X+Y value of 18, say.
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Areas under Standard Normal Curve –
Normal Approximation, Scottish Army Recruits

� The mean height is 64 in and the standard deviation is 2 in. 
� Only recruits shorter than 65.5 in will be trained for tank operation.

What percentage of the incoming recruits will be trained to operate 
armored combat vehicles (tanks)?

� Recruits within ½ standard deviations of the mean will have no 
restrictions on duties. About what percentage of the recruits will have 
no restrictions on training/duties?

60     62     64    65.5 66   68

X ���� (X-64)/2
65 ���� (65-64)/2 = ½
63 ���� (63-64)/2 = -½

Percentage is   38.30%60     62  63   64  65  66   68

X ���� (X-64)/2
65.5 ���� (65.5-64)/2 = ¾
Percentage is   77.34%
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Percentiles for Standard Normal Curve 

� When the histogram of the observed process follows the normal 
curve Normal Tables (of any type, as described before) may be 
used to estimate percentiles. The N-th percentile of a distribution 
is P is N% of the population observations are less than or equal 
to P.

� Example, suppose the Math-part SAT scores of newly admitted 
freshmen at UCLA averaged 535 (out of [200:800]) and the SD
was 100. Estimate the 95 percentile for the score distribution.

� Solution:
95%

Z=?

-z          z=?

90%
5%5%

95%
91.091.70

90.111.65

AreaZ
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Percentiles for Standard Normal Curve 

� Example, suppose the Math-part SAT scores of newly admitted freshmen at 
UCLA averaged 535 (out of [200:800]) and the SD was 100. Estimate the 95 
percentile for the score distribution.

� Solution: 

� Z=1.65 (std. Units) � 700 (data units), since

X � (X – µ)/σ, converts data to standard units and

X � σ X + µ, converts standard to data units!

σ = 100;    µ =535,  100 x 1.65 + 535 = 700.

95%

Z=?

-z          z=?

90%
5%5%

95%
91.091.70

90.111.65

AreaZ
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Summary 

1. The Standard Normal curve is symmetric w.r.t. the origin (0,0) and 
the total area under the curve is 100% (1 unit)

2. Std units indicate how many SD’s is  a value below (-)/above (+) the 
mean

3. Many histograms have roughly the shape of the normal curve (bell-
shape)

4. If a list of numbers follows the normal curve the percentage of 
entries falling within each interval is estimated by: 1. Converting 
the interval to StdUnits and, 2. Computing the corresponding area 
under the normal curve (Normal approximation)

5. A histogram which follows the normal curve may be reconstructed 
just from (µ,σ2), mean and variance=std_dev2

6. Any histogram can be summarized using percentiles
7. E(aX+b)=aE(X)+b,        Var(aX+b)=a2Var(X), where E(Y) the the 

mean of Y and Var(Y) is the square of the StdDev(Y),
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Example – work out in your notebooks 

1. Compute the chance a random observation from a distribution 
(symmetric, bell-shaped, unimodal) with m=75 and SD=12 falls 
within the range [53 : 71].

53        71 75  87

91

ab b

Check Work
Should it be

<50% or >50%?
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Example – work out in your notebooks 

1. Compute the chance a random observation from a distribution (symmetric, bell-
shaped, unimodal) with m=75 and SD=12 falls within the range [53 : 71].

2. (53-75)/12 = -11/6=-1.83 Std unit

3. (71-75)/12=-0.333(3) Std units

4. Area[53:71] = 

5. (SN_area[-1.83:1.83] –SN_area[-0.33:0.33])/2

6. =  (93%  - 25%)/2  = 34%

7. Compute the 90th percentile for the same data:

8. b+a+b=100%   a=80%      � A=0.8

9. a+b=90%         b=10%           Z=1.3 SU

10. 90% P = σ1.3 + µ =12x1.3+75=90.6

53        71 75  87

91

ab b

Check Work
Should it be

<50% or >50%?
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General Normal Curve 

� The general normal curve is defined by:
� Where µ is the average of (the symmetric) 

normal curve, and σ is the standard
deviation (spread of the distribution).

� Why worry about a standard and general normal curves?
� How to convert between the two curves? 

2
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Areas under Standard Normal Curve 

� Many histograms are similar in shape to the standard normal curve. For 
example, persons height. The height of all incoming female army recruits 
is measured for custom training and assignment purposes (e.g., very tall 
people are inappropriate for constricted space positions, and very short 
people may be disadvantages in certain other situations). The mean 
height is computed to be 64 in and the standard deviation is 2 in. Only 
recruits shorter than 65.5 in will be trained for tank operation and recruits 
within ½ standard deviations of the mean will have no restrictions on 
duties.
� What percentage of the incoming recruits will be trained to operate 

armored combat vehicles (tanks)?

� About what percentage of the recruits will have no restrictions on 
training/duties?
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Standard Normal Curve – Table differences

� There are different tables and computer packages for representing the area under 
the standard normal curve. But the results are always interchangeable.

68.271.0

38.290.50

AreaZ

Area under Normal curve on [-z : z]

-z    0      z

84.131.0

69.150.50

AreaZ

Area under Normal curve on [-infinity : z]

0    z

15.871.0

30.850.50

AreaZArea under Normal 
curve on [z: infinity]

0    z FOR6520, AIU, Ivo DinovSlide 127

Standard Normal Curve – Table differences

� There are different tables and computer packages for representing the area under 
the standard normal curve. But the results are always interchangeable.

68.271.0

38.290.50

AreaZ

Area under Normal curve on [-z : z]

-z    0      z

84.131.0

69.150.50

AreaZ

Area under Normal curve on [-infinity : z]

0    z

15.871.0

30.850.50

AreaZArea under Normal 
curve on [0 : z]

0    z
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Probability, Samples & Sampling error
�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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Let's Make a Deal Paradox –
aka, Monty Hall 3-door problem

� This paradox is related to a popular television show 
in the 1970's. In the show, a contestant was given a 
choice of three doors/cards of which one contained a 
prize (diamond). The other two doors contained gag 
gifts like a chicken or a donkey (clubs). 
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Let's Make a Deal Paradox.

� After the contestant chose an initial door, the host of 
the show then revealed an empty door among the two 
unchosen doors, and asks the contestant if he or she 
would like to switch to the other unchosen door. The 
question is should the contestant switch. Do the odds 
of winning increase by switching to the remaining 
door? 1.Pick

One
card

2.Show one
Club Card

3. Change 
1st pick?
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Let's Make a Deal Paradox.

� The intuition of most people tells them that each of 
the doors, the chosen door and the unchosen door, are 
equally likely to contain the prize so that there is a 
50-50 chance of winning with either selection? This, 
however, is not the case. 

� The probability of winning by using the switching 
technique is 2/3, while the odds of winning by not 
switching is 1/3. The easiest way to explain this is as 
follows:
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Let's Make a Deal Paradox.

� The probability of picking the wrong door in the 
initial stage of the game is 2/3. 

� If the contestant picks the wrong door initially, the 
host must reveal the remaining empty door in the 
second stage of the game. Thus, if the contestant 
switches after picking the wrong door initially, the 
contestant will win the prize. 

� The probability of winning by switching then reduces 
to the probability of picking the wrong door in the 
initial stage which is clearly 2/3. 
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Let's Make a Deal Paradox.

� Demo: Applets.dir/StatGames.exe

�Uncertainty�Pick a door
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Properties of probability distributions

� A sequence of number {p1, p2, p3, …, pn } is a probability 
distribution for a sample space S = {s1, s2, s3, …, sn}, if  
pr(sk) = pk, for each 1<=k<=n. The two essential 
properties of a probability distribution p1, p2, … , pn? 

� How do we get the probability of  an event from the 
probabilities of outcomes that make up that event?

� If all outcomes are distinct & equally likely, how do we calculate 
pr(A) ? If A = {a1, a2, a3, …, a9} and pr(a1)=pr(a2)=…=pr(a9 )=p;
then

pr(A) = 9 x pr(a1) = 9p.

1   ;0 =≥ �
k kk

pp
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Example of probability distributions

� Tossing a coin twice. Sample space S={HH, HT, TH, 
TT}, for a fair coin each outcome is equally likely, so 
the probabilities of the 4 possible outcomes should be 
identical, p. Since, p(HH)=p(HT)=p(TH)=p(TT)=p and

� p = ¼ = 0.25.

1  ;0 =≥ �
k kk

pp
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The conditional probability of A occurring given that 
B occurs is  given by

pr(A | B) =
pr(A and B)

pr(B)
 

Conditional Probability

Suppose we select one out of the 400 patients in the study and we 
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

patientsnodular  #
sextremitieon  cancer    with  patientsnodular  #
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Melanoma – type of skin cancer –
an example of laws of conditional probabilities

TABLE 4.6.1:  400 Melanoma Patients by Type and Site

Head and Row
Type Neck Trunk Extremities Totals
Hutchinson's 
melanomic freckle 22 2 10 34
Superficial 16 54 115 185
Nodular 19 33 73 125
Indeterminant 11 17 28 56
Column Totals 68 106 226 400

 Site

Contingency table based on Melanoma histological type and its location
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pr(A and B) =  pr(A | B)pr(B) =  pr(B | A)pr(A)

Multiplication rule- what’s the percentage of 
Israelis that are poor and Arabic?

0
0.0728

0.14 1.0

 All people in Israel

14%  of these are Arabic

52%  of this  14%  are poor

7.28% of Israelis are both poor and  Arabic
(0.52  .014  =  0.0728)
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Let's Make a Deal Paradox.

� After the contestant chose an initial door, the host of 
the show then revealed an empty door among the two 
unchosen doors, and asks the contestant if he or she 
would like to switch to the other unchosen door. The 
question is should the contestant switch. Do the odds 
of winning increase by switching to the remaining 
door? 

� P(Win (swap strat.) | 1st is Club) = 1
� P(Win (swap strat.) & 1st is Club) = 

= P(Win (swap strat.) | 1st is Club) x P(1st is Club) 
= 1 x 2/3 = 2/3.

1.Pick
One
card

2.Show one
Club Card

3. Change 
1st pick?



24

FOR6520, AIU, Ivo DinovSlide 140

Review

1. Proportions (partial description of a real population) and 
probabilities (giving the chance of something happening in a random 

experiment) may be identical – under the experiment choose-a-
unit-at-random

2. Properties of probabilities.

))pr(|pr( = ))pr(|pr( = ) and pr( AABBBABA
 )Apr(-1= )pr(A

1   ;0iesprobabilit define}{
1

====≥≥≥≥⇔⇔⇔⇔ ����
==== k kk

N

kk
ppp
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A tree diagram for computing 
conditional probabilities

Suppose we draw 2 balls at random one at a time 
without replacement from an urn containing 4 black
and 3 white balls, otherwise identical. What is the 
probability that the second ball is black? Sample Spc?

P({2-nd ball is black}) = 
P({2-nd is black} &{1-st is black})  + 
P({2-nd is black} &{1-st is white})  = 

4/7 x 3/6  +  4/6 x 3/7  = 4/7.

Mutually
exclusive
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B1

W1

B2

W2

First
Draw

Second
Draw Path

1

2

B2

W2

3

4

A tree 
diagram
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Conditional probabilities and 2-way tables

� Many problems involving conditional probabilities 
can be solved by constructing two-way tables

� This includes reversing the order of conditioning

P(A & B) = P(A | B) x P(B) =  P(B | A) x P(A)
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Conditional probabilities

� Example. Calculate the Probability of having Exactly 
One Black ball given that Ball-2 is black? 

(Recall:  4 black and 3 white balls given!)

�P(B2 | Exactly One Black) =  P(   ) /P(exactly1B) 
= P(W1 & B2) / (P(W1&B2) + P(B1&W2)) =  ½

� P(Exactly 1 Black | B2) =??? (Not trivial!)

= P(B2 | Exactly One Black) x P(B2)  /  P(Exactly One Black)
= ( ½ x 4/7 ) / P( {B1&W2} or {W1&B2} )
= (4/14) / (4/7 x 3/6 + 3/7 x 4/6) = 1/2

�
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Method

Outcome Failed
Steril. IUD Total

Didn’t
Total .38 .03 1.00

? ? ?
0  .38 ?.06  .03

pr(Steril.) = .38 pr(IUD) = .03

pr(Failed and Oral) =
pr(Failed | Oral)  pr(Oral)

[ = 5% of 32%]

Oral

.32
?

.05  .32
Barrier

.24
?

.14  .24
Sperm.

.03
?

.26  .03

pr(Barrier) = .24

pr(Failed and IUD) =
pr(Failed | IUD)  pr(IUD)

[ = 6% of 3%]

Proportional usage of oral contraceptives
and their rates of failure

We need to complete the two-way contingency table of proportions
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Method

Outcome Failed
Steril. IUD Total

Didn’t
Total .38 .03 1.00

? ? ?
0  .38 ?.06  .03

pr(Steril.) = .38 pr(IUD) = .03

pr(Failed and Oral) =
pr(Failed | Oral)  pr(Oral)

[ = 5% of 32%]

Oral

.32
?

.05  .32
Barrier

.24
?

.14  .24
Sperm.

.03
?

.26  .03

pr(Barrier) = .24

pr(Failed and IUD) =
pr(Failed | IUD)  pr(IUD)

[ = 6% of 3%]

Oral contraceptives cont.

TABLE 4.6.4   Table Constructed from the Data in Example 4.6.8

Steril.  Oral Barrier IUD Sperm. Total
Outcome Failed 0 .0160 .0336 .0018 .0078 .0592

Didn't .3800 .3040 .2064 .0282 .0222 .9408

Total .3800 .3200 .2400 .0300 .0300 1.0000

 Method
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� In pr(A | B), how should the symbol “ | ” is read 
given that.   

� How do we interpret the fact that: The event  A  
always occurs when  B occurs? What can you say 
about  pr(A | B)?

� When drawing a probability tree for a particular 
problem, how do you know what events to use for 
the first fan of branches and which events to use for 
the subsequent branching? (at each branching stage condition on 
all the info available up to here. E.g., at first branching use all simple events, no 
prior is available. At 3-rd branching condition of the previous 2 events, etc.).

Remarks …

A B
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Type I & Type II errors – Power of a test
�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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TABLE 4.6.5    Number of Individuals
Having a Given Mean Absorbance Ratio 
(MAR) in the ELISA for HIV Antibodies

 MAR Healthy Donor HIV patients 
<2 202 0

2  -  2.99 73 2

3  -  3.99 15 7
4  -  4.99 3 7
5  -  5.99 2 15
6  -11.99 2 36

12+ 0 21
Total 297 88

Adapted from Weiss et al.[1985]

} }275 2

False-
positives

False-
Negatives
(FNE)

Test cut-off

Power of
a test is:
1-P(FNE)=
1-P(Neg|HIV)

~ 0.976
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Test result

Disease
status

HIV
Positive Negative Total

Not HIV
Total ? ? 1.00

? .93    .99 .99
.98    .01 .01? pr(HIV) = .01

pr(HIV and Positive) =
pr(Positive|HIV)    pr(HIV)

[ = 98% of 1%]

pr(Not HIV and Negative) =
pr(Negative|Not HIV)    pr(Not HIV)

[ = 93% of 99%]

pr(Not HIV) = .99

Figure 4.6.6 Putting HIV information into the table.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

HIV cont.
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Test result

Disease
status

HIV
Positive Negative Total

Not HIV
Total ? ? 1.00

? .93    .99 .99
.98    .01 .01? pr(HIV) = .01

pr(HIV and Positive) =
pr(Positive|HIV)    pr(HIV)

[ = 98% of 1%]

pr(Not HIV and Negative) =
pr(Negative|Not HIV)    pr(Not HIV)

[ = 93% of 99%]

pr(Not HIV) = .99

HIV – reconstructing the contingency table

TABLE 4.6.6  Proportions by Disease Status 
and Test Result

Positive Negative Total
Disease HIV .0098 .0002 .01  
Status Not HIV .0693 .9207 .99  

Total .0791 .9209 1.00

Test Result
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Proportions of HIV infections by country

TABLE 4.6.7     Proportions Infected with HIV

No. AIDS  Population 
Country Cases (millions) pr(HIV) pr(HIV | Positive)
United States 218,301 252.7 0.00864 0.109
Canada 6,116 26.7 0.00229 0.031
Australia 3,238 16.8 0.00193 0.026
New Zealand 323 3.4 0.00095 0.013
United Kingdom 5,451 57.3 0.00095 0.013
Ireland 142 3.6 0.00039 0.005

Having | Test
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Hypothesis testing
�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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ESP (extra sensory perception) or just guessing?

0.198 0.200 0.202 0.204 0.206 0.208

True value for
just guessing (0.200)

Pratt & Woodruff’s
proportion (0.2082)

Deck of equal
number of 
Zener/Rhine
cards

n=60,000 
random draws
resulting in 
12,489 
correct guesses

Can sampling variations alone account for Pratt & Woodruff’s 
success rate = 20.82% correct vs. 20% expected.

Sample proportions
From 7 just-guessing games

FOR6520, AIU, Ivo DinovSlide 155

ESP or just guessing?

0.196 0.198 0.200 0.202 0.204 0.206 0.2080.194

True value for just guessing

Pratt & Woodruff’s
proportion

Figure 9.1.1 Sample proportions from 400
                             “just-guessing” experiments.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Computer simulation
making 60,000 guesses
with 20% chance of
correct guess.
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Was Cavendish’s experiment biased?

A number of famous early experiments of measuring physical 
constants have later been shown to be biased.

Mean density of the earth

True value = 5.517

Cavendish’s data: (from previous Example 7.2.2)
5.36, 5.29, 5.58, 5.65, 5.57, 5.53, 5.62, 5.29, 5.44, 5.34, 5.79, 5.10,

5.27, 5.39, 5.42, 5.47, 5.63, 5.34, 5.46, 5.30, 5.75, 5.68, 5.85

n = 23, sample mean = 5.483,    sample SD = 0.1904
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Was Cavendish’s experiment biased?

5.45 5.50 5.55 5.60
True
value (5.517)

Cavendish
mean (5.483)

21.5% of the means were
smaller than this

.0335 .0335

Figure 9.1.2 Sample means from 400 sets of observations
from an unbiased experiment.

SD=0.1904 SD=0.1904
N(5.517,0.1904)

Simulate taking
400 sets of 23
measurements
from
N(5.517,0.1904).
Plotted are the
results of the
sample means.
Are the Cavendish
values unusually
diff. from true
mean?
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Cavendish: measuring distances in std errors

-3 -2 -1 0 1 2 3

20.5% of samples had t
values smaller than this

.844 .844

Cavendish t -value =    0.844

0

0

Figure  9.1.3 Sample t -values from 400 unbiased experiments
                             (each t -value is distance between sample mean and 5.517 in std errors).

0

0

Cavendish
data lies  within
the central 60% 
of the distribution
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-3 -2 -1 0 1 2 3

20.5% of samples had t
values smaller than this

.844 .844

Cavendish t -value =    0.844

0

0

Figure  9.1.3 Sample t -values from 400 unbiased experiments
                             (each t -value is distance between sample mean and 5.517 in std errors).

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

0
0

-3 -2 -1 0 1 2 3

0.204 0.204

0.844 0.844
Figure 9.1.4 Student(df=22) density.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Measuring the distance between the 
true-value and the estimate in terms of the SE

�Intuitive criterion: Estimate is credible if it’s 
not far away from its hypothesized true-value!

�But how far is far-away?
�Compute the distance in standard-terms:

�Reason is that the distribution of T is known in 
some cases (Student’s t, or N(0,1)). The 
estimator (obs-value) is typical/atypical if it is 
close to the center/tail of the distribution.

SE
terValueTrueParameEstimatorT −−−−====
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Guiding principles

We cannot rule in a hypothesized value for a parameter, we 
can only determine whether there is evidence to rule out a 
hypothesized value.

The null hypothesis tested is typically a skeptical reaction
to a research hypothesis

Hypotheses
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Comments

� Why can't we (rule-in) prove that a hypothesized value of a 
parameter is exactly true? (Because when constructing estimates 
based on data, there’s always sampling and may be non-sampling errors, 
which are normal, and will effect the resulting estimate. Even if we do 
60,000 ESP tests, as we saw earlier, repeatedly we are likely to get 
estimates like 0.2 and 0.200001, and 0.199999, etc. – non of which may be 
exactly the theoretically correct, 0.2.)

� Why use the rule-out principle? (Since, we can’t use the rule-in 
method, we try to find compelling evidence against the observed/data-
constructed estimate – to reject it.)

� Why is the null hypothesis & significance testing typically 
used? (Ho: skeptical reaction to a research hypothesis; ST is used to check 
if differences or effects seen in the data can be explained simply in terms 
of sampling variation!)
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Comments

� How can researchers try to demonstrate that effects 
or differences seen in their data are real? (Reject the 
hypothesis that there are no effects)

� How does the alternative hypothesis typically relate 
to a belief, hunch, or research hypothesis that initiates 
a study? (H1=Ha: specifies the type of departure from the null-
hypothesis, H0 (skeptical reaction), which we are expecting (research 
hypothesis itself).

� In the Cavendish’s mean Earth density data, null 
hypothesis was H0 : µ =5.517. We suspected bias, but 
not bias in any specific direction, hence Ha:µ!=5.517.
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Comments

� In the ESP Pratt & Woodruff data, (skeptical 
reaction) null hypothesis was H0 : µ =0.2 (pure-
guessing). We suspected bias, toward success rate 
being higher than that, hence the (research 
hypothesis) Ha:µ>0.2.

� Other commonly encountered situations are:
�H0 : µ1− µ2 =0 � Ha : µ1− µ2 >0
�H0 : µrest− µactivation =0 � Ha : µrest− µactivation !=0
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STEP 1  Calculate the test statistic ,

estimate - hypothesized value
standard error

[This  te lls  us  ho w many s tandard e rro rs  the  es tima te is  abo ve the  hypo thes ized 

va lue  (t0  po s itive )  o r  be lo w  the  hypo thes ized  va lue (t0  nega tive).]

STEP 2  Calculate the P -value using the following table.

STEP 3  Interpret the P -value in the context of the data.

Using       to test H 0: θθθθ  = θθθθ 0 versus some alternative H 1.ˆ  θ  

t0 =
ˆ θ  −θ0

se( ˆ θ  )
=

The t-test
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Alternative Evidence against H0: θθθθ  > θθθθ 0

hypothesis provided by P -value

H 1: θ > θ0     too much bigger than θ0 P  = pr(T   t 0)
(i.e.,    - θ0 too large)

H 1: θ < θ0      too much smaller than θ0 P  = pr(T     t 0)
(i.e.,    - θ0 too negative)

H 1: θ    θ0        too far from θ0 P  = 2 pr(T   |t 0|)
(i.e., |    - θ0| too large)

where T  ~ Student(df )

≠

ˆ  θ 

ˆ  θ 

ˆ  θ 

≤

≥

≥ˆ θ 

ˆ  θ 

ˆ θ 

The t-test
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TABLE 9.3.2 Interpreting the S ize of a P -Value

Translation
> 0.12 (12%) No evidence against H0

0.10 (10%) Weak evidence against H0

0.05 (5%) Some evidence against H0

0.01 (1%) Strong evidence against H0

0.001 (0.1%) Very Strong evidence against H0

Approximate size
of P -Value

Interpretation of the p-value
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P-value

^
0

t00

-scale t-scale
(# of std errors)

ersion of Table 9.1.1)
t   =

se(    )0

^
0

^
^

H :      >
1 0

too much bigger than^
0

Hypothesis
Evidence against

provided byH :      =
0 0

Alternative Pictorial
representation
of the T-test
H0: θθθθ^= θ= θ= θ= θ0000
H1: θ > θθ > θθ > θθ > θ0000
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Hypothesis
Evidence against

provided byH :      =
0 0

Alternative

Figure  9.3.1:  Testing  H  :      =0 0

Pictorial
representation
of the T-test
H1: θ < θθ < θθ < θθ < θ0000

t0 0

P-value

^
0 (t   is negative)0

too much smaller thanH :      <
1 0

^
0
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TABLE 9.3.4  First and Second Births by Sex

Second Child

Male Female Total 
First Child Male 3,202 2,776 5,978       

Female 2,620 2,792 5,412       
Total 5,822 5,568 11,390     

Is a second child gender influenced by the 
gender of the first child, in families with >1 kid?

� Research hypothesis needs to be formulated first 
before collecting/looking/interpreting the data that 
will be used to address it. Mothers whose 1st child is 
a girl are more likely to have a girl, as a second child, 
compared to mothers with boys as 1st children.

� Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.
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Group Number of births Number of girls
1 (Previous child was girl) 5412 2792 (approx. 51.6%)
2 (Previous child was boy) 5978 2776 (approx. 46.4%)

Second Child

Analysis of the birth-gender data –
data summary

� Let p1=true proportion of girls in mothers with girl as 
first child, p2=true proportion of girls in mothers with 
boy as first child. Parameter of interest is p1- p2.

� H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)
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Hypothesis testing as decision making

� Sample sizes: n1=5412, n2=5978, Sample proportions 
(estimates) 

� H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)

,4644.05978/2776
2

ˆ,5159.05412/2792
1

ˆ ≈≈≈≈====≈≈≈≈==== pp

TABLE 9.4.1 Decision Making

Decision made H0 is true H0 is false
Accept H0 as true OK Type II error
Reject H0 as false Type I error OK

Actual situation
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Analysis of the birth-gender data

� Samples are large enough to use Normal-approx. 
Since the two proportions come from totally diff. 
mothers they are independent � use formula 8.5.5.a

8109.1)
0

tPr( 

2

)
2

ˆ1(
2

ˆ

1

)
1

ˆ1(
1

ˆ
2

ˆ
1

ˆ

2
ˆ

1
ˆ

0
2

ˆ
1

ˆ

49986.5edValueHypothesiz-Estimate
0

t

−−−−××××====≥≥≥≥====−−−−

====
−−−−

++++
−−−−

−−−−
====

����
����
����

����
����
���� −−−−

−−−−−−−−

============
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n

pp

n

pp

pp

ppSE
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Analysis of the birth-gender data

� We have strong evidence to reject the H0, and hence 
conclude mothers with first child a girl a more likely
to have a girl as a second child.

� How much more likely? A 95% CI:

CI (p1- p2) =[0.033; 0.070]. And computed by:

%]7; %3[0093677.096.10515.0
2

)
2

ˆ1(
2

ˆ

1

)
1

ˆ1(
1

ˆ
96.1

2
ˆ

1
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2
ˆ

1
ˆ96.1

2
ˆ

1
ˆSEestimate
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−−−−
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−−−−
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Hypotheses

� The null hypothesis, denoted by H0, is the (skeptical 
reaction) hypothesis tested by the statistical test.  

� Principle guiding the formulation of null hypotheses: 
We cannot rule a hypothesized value in; we can only 
determine whether there is enough evidence to rule it 
out.  Why is that?

� Research (alternative) hypotheses lay out the 
conjectures that the research is designed to 
investigate and, if the researchers hunches prove 
correct, establish as being true.
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Example: Is there racial profiling or 
are there confounding explanatory effects?!?

� The book by Best (Damned Lies and Statistics: Untangling 
Numbers from the Media, Politicians and Activists, Joel Best) 
shows how we can test for racial bias in police arrests. Suppose
we find that among 100 white and 100 black youths, 10 and 17, 
respectively, have experienced arrest. This may look plainly 
discriminatory. But suppose we then find that of the 80 middle-
class white youths 4 have been arrested, and of the 50 middle-
class black youths 2 arrested, whereas the corresponding 
numbers of lower-class white and black youths arrested are, 
respectively, 6 of 20 and 15 of 50. These arrest rates correspond 
to 5 per 100 for white and 4 per 100 for black middle-class
youths, and 30 per 100 for both white and black lower-class
youths. Now, better analyzed, the data suggest effects of social 
class, not race as such.
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One sample tests & Two independent 
samples tests

�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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TABLE 10.2.1 Urinary Androsterone Levels(mg/24 hr)

Homosexual: 2.5, 1.6, 3.9, 3.4, 2.3, 1.6, 2.5, 3.4, 1.6, 4.3, 2.0,
1.8, 2.2, 3.1, 1.3

Heterosexual: 3.9, 4.0, 3.8, 3.9, 2.9, 3.2, 4.6, 4.3, 3.1, 2.7, 2.3

So urce : Margo les e  [1970].

Analysis of two independent samples
Urinary androsterone levels – data, dot-plots and 95% CI. Relations 

between hormonal levels and homosexuality, Margolese, 1970. 
Hormonal levels are lower for homosexuals. Samples are 
independent, as unrelated. Results, P-value of t-test 0.004 with a 
CI (µHet-µHom)=[0.4:1.7]. Normal hypothesis satisfied?Skewed?

Androsterone (mg/24 hrs)

1 2 3 4 5

Homosexuals

Heterosexuals
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Androsterone (mg/24 hrs)

1 2 3 4 5

Homosexuals

Heterosexuals

Figure 10.2.1 Dot plots of the androsterone data (with 95% CIs).

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Urinary androsterone levels cont.

Two Sample T-Test and Confidence Interval
Two sample T for androsterone

N Mean StDev SE Mean
hetero 11 3.518 0.721 0.22
homose 15 2.500 0.923 0.24
95% CI for mu (hetero) - mu (homose): ( 0.35, 1.69)
T-Test mu (hetero) = mu (homose) (vs not=):

T=3.16 P=0.0044 DF=23

P-value

Confidence interval

t-test statistic
Figure 10.2.3 Minitab 2-sample t-output for the androstenone data
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Important points

1. The distinction between a randomized experiment
and an observational study is made at the time of 
result interpretation. The very same statistical 
analysis is carried for the two situations.

2. We’ve already stressed the importance of plotting 
data prior to stat-analysis. Plots have many important 
roles – prevent dangerous misconceptions from 
arising (data overlaps, clusters, outliers, skewness, 
trends in the data, etc.)
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Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as 
follows: {                  } and {                    }. We’ve 
seen before that to make inference about              we 
can use a T-test for H0: with 

And CI(        ) =

If the 2 samples are independent we use the SE formula

with                                .
This gives a conservative approach for hand calculation of an 

approximation to the what is known as the Welch procedure, 
which has a complicated exact formula.
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Means for independent samples –
equal or unequal variances?

Pooled T-test is used for samples with assumed equal 
variances. Under data Normal assumptions and equal 
variances of   

is exactly Student’s t distributed with

Here sp is called the pooled estimate of the variance, 
since it pools info from the 2 samples to form a 
combined estimate of the single variance σ1

2= σ2
2 =σ2. 

The book recommends routine use of the Welch unequal variance method.
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Comparing two means for independent samples

1. How sensitive is the two-sample t-test to non-Normality 
in the data? (The 2-sample T-tests and CI’s are even 
more robust than the 1-sample tests, against non-
Normality, particularly when the shapes of the 2 
distributions are similar and n1=n2=n, even for small n, 
remember df= n1+n2-2.

3. Are there nonparametric alternatives to the two-sample 
t-test? (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same P-
values.)

4. What difference is there between the quantities tested 
and estimated by the two-sample t-procedures and the 
nonparametric equivalent? (Non-parametric tests are based on 
ordering, not size, of the data and hence use median, not mean, for 
the average. The equality of 2 means is tested and CI(µ1

~- µ1
~).

FOR 6520, AIU, Ivo Dinov Slide 184

Two sample tests - dependent samples & 
Estimation

�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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Paired Comparisons

� Sometimes we have two data sets, which are not 
independent, but rather observations matched in pairs.

� Back to the Kaufman & Rock study of the Moon size 
illusion. Does the moon size appear different with eyes 
level  and with eyes raised? Does eye position make a 
difference? Eyes elevated refers to raising the eye from 
horizontal to zenith position. 10 Subjects are tested under eye-
level (control) condition, by physically moving the subject’s body from level 
to zenith position with fixed eye direction – horizontal. Ratios of the Moon 
size in level and zenith positions, for the two paradigms are given below.
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Moon illusion Data
TABLE 10.1.1 The Moon Illusion

Difference
Subject Eyes Elevated  Eyes Level (Elevated - Level) 

1 2.03 2.03 0.00
2 1.65 1.73 -0.08
3 1.00 1.06 -0.06
4 1.25 1.40 -0.15
5 1.05 0.95 0.10
6 1.02 1.13 -0.11
7 1.67 1.41 0.26
8 1.86 1.73 0.13
9 1.56 1.63 -0.07
10 1.73 1.56 0.17

So urce :  Kaufman and Ro ck [1962].
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Plotting Eyes elevated rations vs. eyes level rations

1.0 1.2 1.4 1.6 1.8 2.0
Eyes level

1.0

1.4

1.8

2.0

1.2

1.6
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For paired data, analyze the differences.

Looking for an effect due to elevating eyes

H0:µdiff = 0

Differences (Elev. - Level)
0.30.1-0.1-0.2 0.20.0

Figure 10.1.7 Dot plot of differences for the moon illusion data
                            (with a 95% CI for the mean difference).
Te s t  o f  m u  =  0 . 0 0 0 0  v s  m u  >  0 . 0 0 0 0
Va r i a b l e      N       M e a n     S t D e v    S E  M e a n    t - s t a t   P - v a l u e
D i f f e r e n c e   1 0     0 . 0 1 9 0    0 . 1 3 7 1     0 . 0 4 3 4     0 . 4 4      0 . 3 4
                                   9 5 %  C I  (  - 0 . 0 7 9 1 ,   0 . 1 1 7 1 )

Can’t reject H0, no
evidence eye position
causes illusion
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Paired data

� We have to distinguish between independent and 
related samples because they require different 
methods of analysis.

� Paired data is an example of related data. 

� With paired data, we analyze the differences
� this converts the initial problem into a one-sample 

problem.

� The sign test and Wilcoxon rank-sum test are 
nonparametric alternatives to the one-sample or 
paired t-test.
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2-sample t-tests and intervals for differences 
between means  µµµµ1111−−−−µµµµ2222

Assume
� statistically independent random samples from the two 

populations of interest
�both samples come from Normal distributions

� Pooled method also assumes that  σ1=σ2
Welch method (unpooled) does not

Two-sample t-methods are
�remarkably robust against non-Normality
�can be sensitive to the presence of outliers in small to moderate-

sized samples
�One-sided tests are reasonably sensitive to skewness.

�The Wilcoxon or Mann-Whitney test is a nonparametric 
alternative to the two-sample t-test.
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ANOVA – One-Way
�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�ANOVA
�Correlation and regression techniques
�Non-parametric statistical tests
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One-way ANOVA refers to the situation of having one 
factor (or categorical variable) which defines group 
membership – e.g., comparing 4 reading methods, effects 
of different reading methods on reading comprehension, 
data: 50  – 13/14 y/o students tested.

Hypotheses for the one-way analysis-of-variance F-test
Null hypothesis: All of the underlying true means are identical.
Alternative: Differences exist between some of the  true means.

We know how to analyze 1 & 2 sample data.
How about if we have than 2 samples –

One-way ANOVA,  F-test
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Comparing 4 reading methods, effects of different reading 
methods on reading comprehension, data: 50  – 13/14 y/o 
students tested.
-Mapping: using diagrams to relate main points in text;
-Scanning: reading the intro and skimming for an 
overview before reading details;
-Mapping and Scanning;
-Neither.
Table below shows increases in test scores, of 4 groups of 
students taking similar exams twice, w/ & w/o using a 
reading technique.
Research question: Are the results better for students 
using mapping, scanning or both?

Comparing 4 reading methods
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TABLE 10.3.1 Increase in Reading Age 

Both: 0.1 3.2 4.3 -0.5 1.9 3.3 2.5 3.6 0.4 2.3 -1.4 -0.7
-0.1 0.2 0.4 0.9 1.2 1.4 1.8 1.8 2.4 3.1

Map Only: 1.0 -0.5 1.0 0.6 0.6 1.0 1.0 -1.4 2.2 3.6 3.1 2.6
Scan Only: 1.0 3.3 1.4 -0.9 1.0 0.0 0.6
Neither: -0.3 -1.3 1.6 -0.4 -0.7 0.6 -1.8 -2.0 -0.7

Increase in reading age
-2 -1 0 1 2 3 4 5

Scan only

Map only

Map and scan

Neither

Figure 10.3.1 Increases in reading ages with individual 95% CIs.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Observational
study
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Increase in reading age
-2 -1 0 1 2 3 4

Scan only

Map only

Map and scan

Neither

Figure 10.3.1 Increases in reading ages with individual 95% CIs.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

One-way Analysis of Variance
Analysis of Variance for Increase

Source DF SS MS F P
Grp 3 27.06 9.02 4.45 0.008
Error 46 93.35 2.03
Total 49 120.41

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ------+---------+---------+---------+
MapScan 22 1.459 1.544 (------*-----)
MapOnly 12 1.233 1.441 (-------*--------)
ScanOnly 7 0.914 1.302 (----------*----------)
Neither 9 -0.556 1.135 (--------*---------)

------+---------+---------+---------+
Pooled StDev = 1.425 -1.0 0.0 1.0 2.0

F-statistic P-value

Anova Table

Figure 10.3.2 Minitab analysis of variance output for reading ages
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

The F-test indicates that
there’s real evidence true

differences exist it does not
give indication of where the
differences are or how large

they are.
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Computer  output

One-way Analysis of Variance
Analysis of Variance for Increase

Source DF SS MS F P
Grp 3 27.06 9.02 4.45 0.008
Error 46 93.35 2.03
Total 49 120.41

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ------+---------+---------+---------+
MapScan 22 1.459 1.544 (------*-----)
MapOnly 12 1.233 1.441 (-------*--------)
ScanOnly 7 0.914 1.302 (----------*----------)
Neither 9 -0.556 1.135 (--------*---------)

------+---------+---------+---------+
Pooled StDev = 1.425 -1.0 0.0 1.0 2.0

F-statistic P-value

Anova Table

Figure 10.3.2 Minitab analysis of variance output for reading ages
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Interpreting the P-value from the F-test 

(The null hypothesis is that all underlying true means are identical.)

� A large P-value indicates that the differences seen 
between the sample means could be explained simply 
in terms of sampling variation.

� A small P-value indicates evidence that real 
differences exist between at least some of the true 
means, but gives no indication of where the 
differences are or how big they are.

� To find out how big any differences are we need 
confidence intervals.
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Form of a typical ANOVA  table

TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squaresa F -statistic P -value

Between k -1 pr(F    f 0)

Within n tot  - k

Total n tot  - 1
aMean sum of squares = (sum of squares)/df

ni (x i . −x ..)2
�

(ni −1)si
2

�

(xij −x . .)2
��

f0 = sB
2 / sW

2sB
2

sW
2

≥

� The F-test statistic, f0, applies when we have 
independent samples each from k Normal 
populations, N(µi, σ), note same variance is assumed.
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Gp  1
Gp  2
Gp  3

Gp  1
Gp  2
Gp  3

Gp  1
Gp  2
Gp  3

Example 1

Example 2

Example 3

Where did the F-statistics came from?

� Let’s look at this example comparing groups. How do 
we obtain intuitive evidence against H0? Far separated 
sample means + differences of sample means are large 
compared to their internal (within) variability! Which of 
the following examples indicate group diff’s are “large”?
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More about the F-test

� s2
B is a measure of variability 

of sample means, how far apart
they are.
� s2

W reflects the avg. internal
Variability within the samples.

� The F-test statistic, f0, tests H0 by comparing the 
variability of the sample means (numerator) with the 
variability within the samples (denominator).

� Evidence against H0 is provided by values of  f0
which would be unusually large if H0 was true.

ktotn

isin

Ws

k

xixin

Bs

−−−−

−−−−����

====

−−−−

−−−−����

====

2)1
..

(
2

1

2..).(
..2
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What are xi, x.., x .j, etc.? 

J-index

I-index
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What are xi, x.., x .j, etc.? 
Need Online reference

x i,j,  1<=i<=nj;  1<j<=3
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What are xi, x.., x .j, etc.? 
Sum of Squares for treatments (cities)
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What are xi, x.., x .j, etc.? 
Sum of squares for the Error
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What are xi, x.., x .j, etc.? 
F-test
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What are xi, x.., x .j, etc.? 
One-Way Design ANOVA Table

ktotn
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Skip - Pertussis data cont.

DAPV

APV

WCV

-2 0 2 4 6

Vaccine used

Concentration of pertussis antibodies   [log(IU/mL)]
e

Figure 10.2.2 Dot + Box plots of pertussis data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Analysis of Variance Procedure

Dependent Variable: PERTUSS

Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 15.81677991 7.90838996 6.17 0.0031
Error 87 111.47241564 1.28129213
Corrected Total 89 127.28919556

F-statistic P-value

With the outlier included, the P-value increases to 0.023

Figure 10.3.5 Anova output for the pertussis data from SAS.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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F-test assumptions

1. Samples are independent, physically independent 
subjects, units, objects are being studies.

2. Sample Normal distributions, especially sensitive 
for small ni, number of observations, N(µi, σ).

3. Standard deviations should be equal within all 
samples, σ1= σ2= σ3=… σnk

= σ. (1/2 <= σk/σj<=2)

How to check/validate these assumptions for your data?
For the reading-score improvement data:
- independence is clear since different groups of students are used.
- Dot-plots of group data show no evidence of non-Normality.
- Sample SD’s are very similar, hence we assume population SD’s are 

similar.
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Correlation and regression techniques
�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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Chapter 12:  Lines in 2D
(Regression and Correlation)

�Vertical Lines
�Horizontal Lines
�Oblique lines
�Increasing/Decreasing
�Slope of a line
�Intercept
�Y=α X + β, in general.

Math Equation for the Line?
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Chapter 12:  Lines in 2D
(Regression and Correlation)

�Draw the following lines:
�Y=2X+1
�Y=-3X-5
�Line through (X1,Y1) and 
(X2,Y2). 
�(Y-Y1)/(Y2-Y1)= 

(X-X1)/(X2-X1). 

Math Equation for the Line?
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Approaches for modeling data relationships
Regression and Correlation

�There are random and nonrandom variables
�Correlation applies if both variables (X/Y) are 
random (e.g., We saw a previous example, systolic vs. 
diastolic blood pressure SISVOL/DIAVOL) and are 
treated symmetrically.
�Regression applies in the case when you want to 
single out one of the variables (response variable, Y) 
and use the other variable as predictor (explanatory 
variable, X), which explains the behavior of the 
response variable, Y.
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Causal relationship? 
– infant death rate (per 1,000) in 14 countries

40 60 80
% Breast feeding at 6 months

20

60

100

140

20 40 60 80 100
% Access to safe water

40

60

80

Predict behavior of Y (response)
Based on the values of X
(explanatory var.) Strategies for
uncovering the reasons (causes)
for an observed effect.

Strong evidence (linear pattern)
of death rate increase with 
increasing level of breastfeeding (BF)?
Naïve conclusion breast feeding is
bad? But high rates of BF is 
associated with lower access to H2O.
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Regression relationship = trend + residual scatter

9000 10000 11000 12000
Disposable income ($)

9000 10000 11000 12000

(a)  Sales/income

Disposable income ($)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.
� Regression is a way of studying relationships between 

variables (random/nonrandom)  for predicting or explaining 
behavior of 1 variable (response) in terms of others 
(explanatory variables or predictors).
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Correlation Coefficient 

Correlation coefficient (-1<=R<=1): a measure of linear 
association, or clustering around a line of multivariate 
data. 

Relationship between two variables (X, Y) can be 
summarized by: (µX, σX), (µY, σY) and the correlation 
coefficient, R. R=1, perfect positive correlation (straight 
line relationship),   R =0, no correlation (random cloud 
scatter), R = –1, perfect negative correlation.  

Computing R(X,Y): (standardize, multiply, average)
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X={x1, x2,…, xN,}
Y={y1, y2,…, yN,}
(µX, σX), (µY, σY)

sample mean / SD. 
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Correlation Coefficient 

Example:
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Correlation Coefficient 

Example:
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Correlation Coefficient - Properties

Correlation is pseudo-invariant w.r.t. linear transformations of X or Y
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Correlation Coefficient - Properties

Correlation is Associative

Correlation measures linear association, NOT an association in 
general!!! So, Corr(X,Y) could be misleading for X & Y related in 
a non-linear fashion.
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Correlation Coefficient - Properties

1. R measures the extent of
linear association between
two continuous variables. 

2. Association does not imply
causation - both variables
may be affected by a third
variable – age was a 
confounding variable.
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Trend and Scatter - Computer timing data

� The major components of a regression relationship 
are trend and scatter around the trend.

� To investigate a trend – fit a math function to data, or 
smooth the data.

� Computer timing data: a mainframe computer has X users, 
each running jobs taking Y min time. The main CPU swaps 
between all tasks. Y* is the total time to finish all tasks. Both 
Y and Y* increase with increase of tasks/users, but how?

X = Number of terminals: 40 50 60 45 40 10 30 20
Y* = Total Time (mins): 6.6 14.9 18.4 12.4 7.9 0.9 5.5 2.7
Y = Time Per Task (secs): 9.9 17.8 18.4 16.5 11.9 5.5 11 8.1

X = Number of terminals: 50 30 65 40 65 65
Y* = Total Time (mins): 12.6 6.7 23.6 9.2 20.2 21.4
Y = Time Per Task (secs): 15.1 13.3 21.8 13.8 18.6 19.8
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0 10 20 30 40 50 60

0

5

10

15

20

25

X = Number of terminals
70

Trend and Scatter - Computer timing data

0 10 20 30 40 50 60

5

10

15

20

X = Number of terminals

Linear
trend?!?

Quadratic
trend?!?

We want to find reasonable
models (descriptions) for

these data!
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Equation for the straight line –
linear/affine function

x

y

0

unitsw

w   units

0

1

β0=Intercept (the y-value at x=0)
β1=Slope of the line (rise/run), change of y for every 

unit of increase for x.
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The quadratic curve

positive2 negative2

Quadratic Curve

Y=β0+ β1x+ β2x2
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Other Non-linear model curves 
(trigonometric, piece-wise polynomial)

� Data from the Keck telescope in Hawaii (red points) show the 
variation over time of the radial velocity of the star Gliese
876. The white curve is the best fit to the data points, 
implying that there are two unseen planets perturbing the 
motion of the star and each other.

Nature, Jack Lissauer 419, 355 - 358 (Sept. 26, 2002);
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The quadratic curve

Segments of the curve

Y=β0+ β1x+ β1x2
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The exponential curve,    y = a ebx

0
0

a

x

y

b   negative
0

0

a

x

y
b   positive

Used in population 
growth/decay models.
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yi

yi
^

x 1 x 2 xi xn. . . . .

Prediction
error

ith data point
(x  ,i y  )i

(a)  The data (b)  Which line?

Least-squares line

Choose line with smallest
sum of squared
prediction errors

Min   Σ

Its parameters are denoted:

   Intercept:

   Slope:

y   -i yi
^

(c)  Prediction errors

Figure 12.3.1 Fitting a line by least squares.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

2
(y  −i y  )i

^

^
0

^
1

Choosing the
“best-fitting”
line
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Fitting a line through the data

(a)  The data (b)  Which line?
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The idea of a residual or prediction error

yi

yi
^

Data point

Trend

(x  ,i y  )i

Predicted

Observed
Residual     u  =i

^y   -i yi
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Least squares criterion:  Choose the values of the 
parameters to minimize the sum of squared 
prediction errors (or sum of squared residuals),

(yi − ˆ y i)
2

i =1

n

�

Least squares criterion
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Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line

yi

yi
^

x 1 x 2 xi xn. . . . .

Prediction
error

ith data point
(x  ,i y  )i

Least-squares line

Choose line with smallest
sum of squared
prediction errors

Min   Σ

Its parameters are denoted:

   Intercept:

   Slope:

y   -i yi
^

(c)  Prediction errors

2(y  −i y  )i
^

^
0

^
1
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Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line
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Computer timings data – linear fit

10 20 30 40 50 60
5

10

15

20

X = Number of terminals

3 + 0.25x

7 + 0.15x

(Sum sq’d err = 37.46)

(Sum sq’d err = 90.36)

Figure 12.3.2 Two lines on the computer-timings data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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TABLE 12.3.1 Prediction Errors

x y
40 9.90 13.00 -3.10 13.00 -3.10
50 17.80 15.50 2.30 14.50 3.30
60 18.40 18.00 0.40 16.00 2.40
45 16.50 14.25 2.25 13.75 2.75
40 11.90 13.00 -1.10 13.00 -1.10
10 5.50 5.50 0.00 8.50 -3.00
30 11.00 10.50 0.50 11.50 -0.50
20 8.10 8.00 0.10 10.00 -1.90
50 15.10 15.50 -0.40 14.50 0.60
30 13.30 10.50 2.80 11.50 1.80
65 21.80 19.25 2.55 16.75 5.05
40 13.80 13.00 0.80 13.00 0.80
65 18.60 19.25 -0.65 16.75 1.85
65 19.80 19.25 0.55 16.75 3.05

              Sum of squared errors 37.46 90.36

3 + 0.25x 7 + 0.15x
ˆ y ˆ y  y − ˆ  y  y − ˆ  y  

Computer timings data
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Adding the least squares line

0 20 40 60
0

5

10

15

20

25

X = Number of terminals

y  =     +     x^
0

^
1

^

^
0

Here       = 3.05,       = 0.26^
0

^
1

(x, y)

Some Minitab regression output
The regression equation is
timeper = 3.05 + 0.260 nterm
Predictor Coef ...
Constant 3.050 ...
nterm 0.26034 ...

Figure 12.3.3 Computer-timings data with least-squares line.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Review, Fri., Oct. 19, 2001

1. The least-squares line passes through 
the points (x = 0,    = ?) and (x =    ,     = ?). Supply 
the missing values.

x
ˆ y = ˆ β 0 + ˆ β 1x

ŷŷ
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Hands – on worksheet !

1. X={-1, 2, 3, 4},  Y={0, -1, 1, 2}, 

24

13

-12

0-1
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Hands – on worksheet !

1. X={-1, 2, 3, 4},  Y={0, -1, 1, 2}, 

32.2541.5224

0.50.2510.5113

02.250-1.50-12

1.50.259-0.5-30-1

YX xx −−−− yy −−−− 2)( xx −−−− 2)( yy −−−− )(
)(

yy
xx

−−−−
××××−−−−

5.0    ,2 ======== yx

142 0.5 5 5

β0=y^-β1*x^
β0= 0.5-10/14

β1=5/14
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Course Material Review

1. ===========Part I=================

2. Data collection, surveys.

3. Experimental vs. observational studies

4. Numerical Summaries (5-#-summary)

5. Binomial distribution (prob’s, mean, variance)

6. Probabilities & proportions, independence of events and 
conditional probabilities

7. Normal Distribution and normal approximation
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Course Material Review – cont.

1. ===============Part II=================

2. Central Limit Theorem – sampling distribution of 

3. Confidence intervals and parameter estimation

4. Hypothesis testing

5. Paired vs. Independent samples

6. Analysis Of Variance (1-way-ANOVA, one categorical var.)

7. Correlation and regression

8. Best-linear-fit, least squares method

X
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Review

1. What are the quantities that specify a particular line? 

2. Explain the idea of a prediction error in the context 
of fitting a line to a scatter plot. To what visual 
feature on the plot does a prediction error 
correspond? (scatter-size)

3. What property is satisfied by the line that fits the data 
best in the least-squares sense? 

4. The least-squares line passes through 
the points (x = 0,    = ?) and (x =    ,     = ?). Supply 
the missing values.

x
ˆ y = ˆ β 0 + ˆ β 1x

ŷŷ
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90 95 100 105 110
X = Cutting speed (surface-ft/min)

10

20

30

40

Figure 12.4.1 Lathe tool lifetimes.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Motivating the simple linear model
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y y

x 2 3x1x 4xx 2 3x1x 4x

(a)  The simple linear model (b)  Data sampled from the model

The simple linear model

When   X = x,    Y ~ Normal(µY,σ)   where µY = β0 + β1 x,     OR

when   X = x,    Y = ββββ0 + ββββ1 x +  U,   where  U ~ Normal(0,σ)
Random error
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0

10

20

30

y

0

10

20

30

2 4 6 80 2 4 6 80

Sample 1:      = 3.63,      = 2.26^
1

^
0 Sample 2:      = 9.11,       = 1.44^

0
^
1

Data generated from Y = 6 + 2x + error (U)
Dotted line               is true line and 
solid line            is the data-estimated LS line.
Note differences between true β0=6, β1=2 and 
their estimates β0^ & β1^.
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0
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30
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0
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0

10

20

30

2 4 6 80 2 4 6 80

2 4 6 80 2 4 6 80
xx

Sample 3:      = 7.38,       = 2.10^
1

^
0

Sample 5:      = 9.14,       = 1.13^
0

^
1

Sample 4:      = 7.92,      = 1.59^
0

^
1

Combined:      = 7.44,       = 1.70^
0

^
1

Data generated from Y = 6 + 2x + error(U)
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0 5 10 15 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Histograms of least-squares estimates from 1,000 data sets

True valueTrue value

Mean = 6.05
Std dev. =  2.34

Mean = 1.98
Std dev. =  0.46

Estimates of slope,
1

Estimates of intercept,
0

Figure 12.4.3 Data generated from the model  Y = 6 + 2 x + U
                             where  U    Normal(  µ = 0, σ  = 3).

Data generated from Y = 6 + 2x + error(U)
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For the simple linear model, least-squares estimates 
are unbiased [ E(ββββ^)= β β β β ] and Normally distributed.

Summary

Noisier data produce more-variable least-squares 
estimates.
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Summary

1. Before considering using the simple linear model, what 
sort of pattern would you be looking for in the scatter 
plot? (linear trend with constant scatter spread across the range of X)

2. What assumptions are made by the simple linear model, 
SLM? (X is linearly related to the mean value of the Y obs’s at 
each X, µY= β0 + β1 x; where β0 & β1 are the true values of the 
intercept and slope of the SLM; The LS estimates β0^ & β1^  
estimate the true values of β0 & β1; and the random errors U=Y-
µY~N(µ, σ).)

3. If the simple linear model holds, what do you know about 
the sampling distributions of the least-squares estimates? 
(Unbiased and Normally distributed)
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Summary

4. In the simple linear model, what behavior is 
governed by  σ ? (the spread of scatter of the data around trend)

5. Our estimate of σ can be thought of as a sample 
standard deviation for the set of prediction errors
from the least-squares line.

0

10

20

30

2 4 6 80
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RMS Error for regression

� Error = Actual value – Predicted value

� The RMS Error for the regression line Y= β0 + β1 X is

0

10

20

30

2 4 6 80

Y= β0 + β1 XY

X

51      ,ˆˆˆ    where
15

2)ˆ(2)ˆ(2)ˆ(2)ˆ(2)ˆ(

10

5544332211

≤≤≤≤≤≤≤≤++++====
−−−−

−−−−++++−−−−++++−−−−++++−−−−++++−−−−

kxy

yyyyyyyyyy

kk ββββββββ
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Compute the RMS Error for this 
regression line

� Error = Actual value – Predicted value

� The RMS Error for the regression line Y= β0 + β1 X is

0

10

20

30

2 4 6 80

Y

X

51      ,ˆˆˆ    where
15

2)ˆ(2)ˆ(2)ˆ(2)ˆ(2)ˆ(

10

5544332211

≤≤≤≤≤≤≤≤++++====
−−−−

−−−−++++−−−−++++−−−−++++−−−−++++−−−−

kxy

yyyyyyyyyy

kk ββββββββ

X   Y
1 9
2 15
3 12
4 19
5 11
6 20
7 22
8 18
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Compute the RMS Error for this 
regression line

� Error = Actual value – Predicted value

� The RMS Error for the regression line Y= β0 + β1 X is

� First compute the LS linear fit (estimate β0^ +  β1^ )
� Then Compute the individual errors
� Finally compute the cumulative RMS measure.

51      ,ˆˆˆ    where
15

2)ˆ(2)ˆ(2)ˆ(2)ˆ(2)ˆ(

10

5544332211

≤≤≤≤≤≤≤≤++++====
−−−−

−−−−++++−−−−++++−−−−++++−−−−++++−−−−

kxy

yyyyyyyyyy

kk ββββββββ

X   Y
1 9
2 15
3 12
4 19
5 11
6 20
7 22
8 18
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Compute the RMS Error for this 
regression line

� First compute the LS linear fit (estimate β0^ +β1^ ),µµµµX=4.5,µµµµX=15.75

� Compute

X   Y X-µµµµX Y- X-µµµµY (X-µµµµX)2   (Y-µµµµY)2 (X-µµµµX)2*(Y-µµµµY)2

1 9
2 15
3 12
4 19
5 11
6 20
7 22
8 18
Total: [[[[ ]]]]
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n
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yiyxix
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1
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Compute the RMS Error for this 
regression line

� Then Compute the individual errors

� Finally compute the cumulative RMS measure.

� Note on the Correlation coefficient formula,
51      ,ˆˆˆ    where

15
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11
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Y={y1, y2,…, yN,}
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sample mean / SD. 
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Recall the correlation coefficient…
Another form for the correlation coefficient is:
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Misuse of the correlation coefficient

Some patterns with  r = 0

r = 0r = 0r = 0

(a) (b) (c)
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�Regression relationship = 
trend + residual scatter 

�Trend=best linear fit Line (LS)

�Scatter = residual (prediction) error Err=Obs-Pred

Linear  Regression
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Another Notation for the Slope of the LS line

1. Note that there is a slight difference in the formula for 
the slope of the Least-Squares Best-Linear Fit line:
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Non-parametric statistical tests
�Intro to stats, vocabulary & intro to SPSS
�Displaying data
�Central tendency and variability
�Normal z-scores, standardized distribution
�Probability, Samples & Sampling error
�Type I and Type II errors; Power of a test
�Intro to hypothesis testing
�One sample tests & Two independent samples tests
�Two sample tests - dependent samples & Estimation
�Correlation and regression techniques
�Non-parametric statistical tests
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TABLE 10.1.2  Air Force Head Sizes Data

 Recruit  Cardboard  Metal   Difference  Sign of 
(mm) (mm) (Card-metal) difference 

1 146 145 1 + 
2 151 153 -2 - 
3 163 161 2 + 
4 152 151 1 + 
5 151 145 6 + 
6 151 150 1 + 

Measure the head-size of all air force recruits. Using 
cheaper cardboard or more expensive metal calipers. Are 
there systematic differences in the two measuring 
methods? Again,  paired comparisons.

Flying helmet sizes for NZ Air Force 
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TABLE 10.1.2  Air Force Head Sizes Data

 Recruit  Cardboard  Metal   Difference  Sign of 
(mm) (mm) (Card-metal) difference 

1 146 145 1 + 
2 151 153 -2 - 
3 163 161 2 + 
4 152 151 1 + 
5 151 145 6 + 
6 151 150 1 + 
7 149 150 -1 - 
8 166 163 3 + 
9 149 147 2 + 

10 155 154 1 + 
11 155 150 5 + 
12 156 156 0 0
13 162 161 1 + 
14 150 152 -2 - 
15 156 154 2 + 
16 158 154 4 + 
17 149 147 2 + 
18 163 160 3 + 

Helmet sizes for NZ Air Force – complete table
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Head sizes:  Does type of caliper make a difference?

Differences (Cardboard - Metal)
-2 0 2 4 6

Hypothesized value

Figure 10.1.8 Dot plot of differences in size (with 95% CI).
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.P a ir e d  T - Te s t  an d  C o nf id e n c e  I n t e r va l
paired T for cardboard - metal

N Mean StDev SE Mean

cardboard 18 154.56 5.82 1.37
metal 18 152.94 5.54 1.30
Difference 18 1.611 2.146 0.506

95% CI for mean difference: (0.544, 2.678)
T-Test of mean difference=0 (vs not=0): T-Value=3.19

P-Value=0.005

Figure 10.1.9 Minitab paired-t output for the size data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

H0:µdiff = 0
Ha:µdiff != 0
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Review 

1. What is a paired-comparison experiment? (obs’d data are 
matched in pairs).

2. In a paired-comparison experiment, why is it wrong 
to treat the two sets of measurements as independent 
data sets? (data are usually taken from the same unit under diff. Treatments, so obs’s
should be related).

3. How do you analyze the data from a paired-
comparison experiment? (analyze the difference).

4. What situations is appropriate to use the paired-
comparison method to analyze the data? (pre- and post-
metrifonate study using FDG PET imaging).
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The population median – µµµµ~

Median
= Mean

MeanMedian Mean Median
~ ~

50%50%50%50%50%50%

~ =

Symmetric Neg. skewedPos. skewed

Figure 10.1.10 The population median

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000. Mean Median
~

50%50%

Neg. skewed

Median
= Mean

50%50%

~ =

Symmetric

MeanMedian
~

50%50%

Pos. skewed
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Definition of the population median

1. The population median is defined as the number in 
the middle of the distribution of the RV, i.e., 50% of 
the data lies below and 50% above the median.  

2. Under what circumstances is the population median
the same as the population mean? (symmetry of the distribution.)

3. Why do we use the population median rather than the 
population mean in the sign test? (for a skewed distribution, mean 
may not be representative, or may be outlier heavily influenced.)

4. Why is the model for the sign test like tossing a fair 
coin? (In the sign-test we test H0: µ

~ =0, under H0 a random observation 
is as likely to be < µ~ as to be > µ~. So observation has + or – sign with 
the same probability, hence the coin-toss model, distribution-free, non-
parametric approach. Testing H0 is just like testing biased/unbiased coin). 
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Helmet paired head measurements

From the cardboard vs. metal caliper tests, we see 14 + 
and 3 – signs, implying larger overall measurements 
using the cardboard calipers. It’s like tossing a coin 17 
times and getting 14 heads. How likely is that?

If Y~Binomial(17, 0.5), number of successes (heads) in 
17 fair coin tosses, then P(Y>=14)=0.00636, hence if 
we test p=0.5, vs. p!=0.5, two-tailed test, the chance is 
2P(Y>=14)=0.0127.
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Comments

5. What independence assumption must hold before the 
sign test is applicable? How important is it that this 
assumption is true? (requires that obs’s are independent (one-sample test) and 
different pairs are independent (paired data), very sensitive.)

6. What advantages and disadvantages does the sign test 
have in comparison with the t-test? (Main advantage – test is 
distribution-free and insensitive to outliers. Disadvantage – when hypothesis for T-test, or a 
parametric test are met the CI are shorter and the parametric tests are more likely to detect 
departure from normality.)
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Review 

7. Why is the sign test called a distribution-free test? 
Does this mean that distributions are not used in 
performing the test? (no assumptions on the data underlying 
distribution, but distributions are actually used, e.g., Binomial).

8. In applying the sign test to paired data, how do you 
handle situations where both observations are tied 
(indistinguishable)? (ignore them)
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Why Use 
Nonparametric Statistics?

�Parametric tests are based upon assumptions that 
may include the following:
�The data have the same variance, regardless of the treatments or 

conditions in the experiment.
�The data are normally distributed for each of the treatments or 

conditions in the experiment.

�What happens when we are not sure that these 
assumptions have been satisfied?
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How Do Nonparametric Tests Compare 
with the Usual z, t, and F Tests?

� Studies have shown that when the usual 
assumptions are satisfied, nonparametric tests are 
about 95% efficient when compared to their 
parametric equivalents.

� When normality and common variance are not 
satisfied, the nonparametric procedures can be 
much more efficient than their parametric 
equivalents.
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The Wilcoxon Rank Sum Test

� Suppose we wish to test the hypothesis that two 
distributions have the same center. 

� We select two independent random samples from each 
population. Designate each of the observations from 
population 1 as an “A” and each of the observations 
from population 2 as a “B”.  

� If H0 is true, and the two samples have been drawn 
from the same population, when we rank the values in 
both samples from small to large, the A’s and B’s 
should be randomly mixed in the rankings.
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What happens when H0 is true?

•Suppose we had 5 measurements from 
population 1 and 6 measurements from 
population 2.   

•If they were drawn from the same population, 
the rankings might be like this.

ABABBABABBA
•In this case if we summed the ranks of the A 
measurements and the ranks of the B 
measurements, the sums would be similar.
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• If the observations come from two different 
populations, perhaps with population 1 lying 
to the left of population 2, the ranking of the 
observations might take the following ordering.

What happens if H0 is not true?

AAABABABBB

In this case the sum of the ranks of the B 
observations would be larger than that for the 
A observations.
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How to Implement Wilcoxon’s Rank Test

1211
*

1 )1(     TnnnT −++=

•Rank the combined sample from smallest to 
largest.
•Let T1 represent the sum of the ranks of the 
first sample (A’s).
•Then,           defined below, is the sum of the 
ranks that the A’s would have had if the 
observations were ranked from large to small.

*
1T

FOR6520, AIU, Ivo DinovSlide 276

The Wilcoxon Rank Sum Test

� The test statistictest statistic is the smaller of T1 and T1
*.

� Reject H0 if the test statistic is less than the critical critical 
valuevalue found in Table 7(a). 

� Table 7(a) is indexed by letting population 1 be the 
one associated with the smaller sample size n1, and 
population 2 as the one associated with n2, the larger 
sample size.

H0: the two population distributions are the same

Ha: the two populations are in some way different

H0: the two population distributions are the same

Ha: the two populations are in some way different
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Example

The wing stroke frequencies of two 
species of bees were recorded for a sample of n1
= 4 from species 1 and n2 = 6 from species 2. 
Can you conclude that the distributions of wing 
strokes differ for these two species? Use α = .05.

182

178

185188

180190

169225

180235

Species 2Species 1 H0: the two species are the same
Ha: the two species are in some way different
H0: the two species are the same
Ha: the two species are in some way different

1. The sample with the smaller sample 
size is called sample 1.

2. We rank the 10 observations from 
smallest to largest, shown in 
parentheses in the table.

If several measurements are tied, 
each gets the average of the ranks 
they would have gotten, if they 
were not tied! (See x = 180)

If several measurements are tied, 
each gets the average of the ranks 
they would have gotten, if they 
were not tied! (See x = 180)

(10)
(9)

(8)
(7)

(3.5)
(1)

(3.5)
(6)
(2)
(5)
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The Bee Problem
Can you conclude that the distributions 
of wing strokes differ for these two species? α = .05.

182

178

185188

180190

169225

180235

Species 2Species 1

1. The test statistic is T = 10.

2. The critical value of T from 
Table 7(b) for a two-tailed test 
with α/2 = .025 is T = 12; H0 is 
rejected if T ≤ 12.

(1)

(2)

(3.5)

(3.5)

(5)

(6)(7)
(8)

(9)
(10)

1034)164(4
)1(

3410987 Calculate

1211
*

1

1

=−++=
−++=

=+++=

TnnnT
TDo not reject H0. Insufficient 

evidence to indicate a difference in 
the distributions of wing stroke 
frequencies.

Do not reject H0. Insufficient 
evidence to indicate a difference in 
the distributions of wing stroke 
frequencies.
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Minitab Output

.10;34 Recall *
11 == TT

Mann-Whitney Test and CI: Species1, Species2

Species1 N = 4 Median = 207.50
Species2 N = 6 Median = 180.00
Point estimate for ETA1-ETA2 is 30.50
95.7 Percent CI for ETA1-ETA2 is (5.99,56.01)
W = 34.0
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant
at 0.0142
The test is significant at 0.0139 (adjusted for ties)

Minitab calls the procedure the Mann-Whitney U 
Test, equivalent to the Wilcoxon Rank Sum Test.

The test statistic is W = T1 = 34 and has p-value 
= .0142. Do not reject H0 for α = .05. 

Minitab calls the procedure the Mann-Whitney U 
Test, equivalent to the Wilcoxon Rank Sum Test.

The test statistic is W = T1 = 34 and has p-value 
= .0142. Do not reject H0 for α = .05. 
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Large Sample Approximation:
Wilcoxon Rank Sum Test

When n1 and n2 are large (greater than 10 is large 
enough), a normal approximation can be used to 
approximate the critical values in Table 7.

12
)1( and 

2
)1(

on withdistributi 

 eapproximatan  has  statistic The .2

).,min(Let  . and  Calculate 1.

21212211

*
11

*
11

++=++=

−=

=

nnnnσnnnµ

z
σ

Tz

TTTTT

TT

T

Tµ 1211
*

1 )1(     TnnnT −++=

T1 = sum of the ranks
of sample 1 (A’s).
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Some Notes

•When should you use the Wilcoxon Rank Sum 
test instead of the two-sample t test for 
independent samples?

�when the responses can only be ranked and 
not quantified (e.g., ordinal qualitative data)
�when the F test or the Rule of Thumb shows a 
problem with equality of variances
�when a normality plot shows a violation of 
the normality assumption
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� The sign test is a fairly simple 
procedure that can be used to compare two 
populations when the samples consist of paired 
observations.

� It can be used 
�when the assumptions required for the paired-difference 

test of Chapter 10 are not valid or 
� when the responses can only be ranked as “one better 

than the other”, but cannot be quantified.

The Sign Test
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The Sign Test

�For each pair, measure whether the first 
response—say, A—exceeds the second 
response—say, B.
�The test statistic is x, the number of times that 
A exceeds B in the n pairs of observations.
�Only pairs without ties are included in the test.
�Critical values for the rejection region or exact 
p-values can be found using the cumulative 
binomial tables in Appendix I.

�For each pair, measure whether the first 
response—say, A—exceeds the second 
response—say, B.
�The test statistic is x, the number of times that 
A exceeds B in the n pairs of observations.
�Only pairs without ties are included in the test.
�Critical values for the rejection region or exact 
p-values can be found using the cumulative 
binomial tables in Appendix I.
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The Sign Test

H0: the two populations are identical versus
Ha: one or two-tailed alternative
is equivalent to 
H0: p = P(A exceeds B) = .5   versus
Ha: p (≠, <, or >) .5
Test statistic: x = number of plus signs
Rejection region, p-values from Bin(n=size, p).

H0: the two populations are identical versus
Ha: one or two-tailed alternative
is equivalent to 
H0: p = P(A exceeds B) = .5   versus
Ha: p (≠, <, or >) .5
Test statistic: x = number of plus signs
Rejection region, p-values from Bin(n=size, p).
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Example

Two gourmet chefs each tasted and rated 
eight different meals from 1 to 10. Does it appear 
that one of the chefs tends to give higher ratings 
than the other? Use α = .01.

0

9

9

7

+

4

7

3

-

5

4

2

-

8

6

1

Sign

Chef B

Chef A

Meal

-

3

2

5

+

7

8

4

--

87

74

86

H0: the rating distributions are the same (p = .5)
Ha: the ratings are different (p ≠ .5)
H0: the rating distributions are the same (p = .5)
Ha: the ratings are different (p ≠ .5)
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The Gourmet Chefs

0

9

9

7

+

4

7

3

-

5

4

2

-

8

6

1

Sign

Chef B

Chef A

Meal

-

3

2

5

+

7

8

4

--

87

74

86

H0: p = .5
Ha: p ≠ .5    with n = 7 (omit the tied pair)
Test Statistic: x = number of plus signs = 2

H0: p = .5
Ha: p ≠ .5    with n = 7 (omit the tied pair)
Test Statistic: x = number of plus signs = 2

Use Table 1 with n = 7 and p = .5. 
p-value = P(observe x = 2 or something equally as unlikely)
= P(x ≤ 2) + P(x ≥ 5) = 2(.227) = .454

Use Table 1 with n = 7 and p = .5. 
p-value = P(observe x = 2 or something equally as unlikely)
= P(x ≤ 2) + P(x ≥ 5) = 2(.227) = .454

p-value =.454 is too large to 
reject H0. There is insufficient 
evidence to indicate that one 
chef tends to rate one meal 
higher than the other.

p-value =.454 is too large to 
reject H0. There is insufficient 
evidence to indicate that one 
chef tends to rate one meal 
higher than the other.

.992

6

.227

2

.062

1

.008

0

P(x ≤ k)

k

.773

4

.500

3

1.000.938

75
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Large Sample Approximation:
The Sign Test

When n ≥ 25, a normal approximation can be 
used to approximate the critical values of 
Binomial distribution.

on.distributi

 eapproximatan  has 
5.

5. statistic The .2

.signs plus ofnumber Calculate1.

z
n
nxz

x
−=

=
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Example

You record the number of accidents per day at a large 
manufacturing plant for both the day and evening shifts for n = 
100 days. You find that the number of accidents per day for the 
evening shift xE exceeded the corresponding number of accidents 
in the day shift xD on 63 of the 100 days. Do these results provide 
sufficient evidence to indicate that more accidents tend to occur 
on one shift than on the other?

H0: the distributions (# of accidents) are the same (p = .5)
Ha: the distributions are different (p ≠ .5)
H0: the distributions (# of accidents) are the same (p = .5)
Ha: the distributions are different (p ≠ .5)

60.2
1005.

)100(5.63
5.

5. =−=−=
n
nxz :statistic Test

For a two tailed test, we reject H0
if |z| > 1.96 (5% level).
H0 is rejected. There is evidence 
of a difference between the day 
and night shifts.

For a two tailed test, we reject H0
if |z| > 1.96 (5% level).
H0 is rejected. There is evidence 
of a difference between the day 
and night shifts.

Y~Bin(n, p) �
E(Y) = np
Var(Y) = np(1-p)
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Which test should you use?

� We compare statistical tests using

Definition: Power = 1 − β

= P(reject H0 when Ha is true)

� The powerpower of the test is the probability of rejecting the null 
hypothesis when it is false and some specified alternative is true.

� The powerpower is the probability that the test will do what it was 
designed to do—that is, detect a departure from the null 
hypothesis when a departure exists.
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Which test should you use?

� If all parametric assumptions have been met, the 
parametric test will be the most powerful. 

� If not, a nonparametric test may be more powerful.

� If you can reject H0 with a less powerful nonparametric 
test, you will not have to worry about parametric 
assumptions.

� If not, you might try 
� more powerful nonparametric test or
� increasing the sample size to gain more power
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� The Wilcoxon  Signed-Rank Test is a more powerful 
nonparametric procedure that can be used to compare 
two populations when the samples consist of paired 
observations.

� It uses the ranksranks of the differences, d = x1-x2 that we 
used in the paired-difference test.

The Wilcoxon Signed-Rank Test
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�For each pair, calculate the difference d = x1-x2. 
Eliminate zero differences. 
�Rank the absolute values of the differences from 1 to n. 
Tied observations are assigned average of the ranks they 
would have gotten if not tied.

�T+ = rank sum for positive differences
�T- = rank sum for negative differences

�If the two populations are the same, T+ and T- should 
be nearly equal. If either T+ or T- is unusually large, this 
provides evidence against the null hypothesis.

�For each pair, calculate the difference d = x1-x2. 
Eliminate zero differences. 
�Rank the absolute values of the differences from 1 to n. 
Tied observations are assigned average of the ranks they 
would have gotten if not tied.

�T+ = rank sum for positive differences
�T- = rank sum for negative differences

�If the two populations are the same, T+ and T- should 
be nearly equal. If either T+ or T- is unusually large, this 
provides evidence against the null hypothesis.

The The Wilcoxon Wilcoxon SignedSigned--Rank TestRank Test
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The Wilcoxon Signed-Rank Test

H0: the two populations are identical versus
Ha: one or two-tailed alternative
Test statistic: T = min ( T + and T - )
Critical values for a one or two-tailed 
rejection region can be found using 
Wilcoxon Signed-Rank Test Table.

H0: the two populations are identical versus
Ha: one or two-tailed alternative
Test statistic: T = min ( T + and T - )
Critical values for a one or two-tailed 
rejection region can be found using 
Wilcoxon Signed-Rank Test Table.
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Example
To compare the densities of cakes using 
mixes A and B, six pairs of pans (A and B) were 
baked side-by-side in six different oven 
locations. Is there evidence of a difference in 
density for the two cake mixes?

-.014

.112

.098

3

-.018

.120

.102

2

.006

.129

.135

1

d = xA-xB

Cake Mix  B

Cake Mix A

Location

-.004

.135

.131

5

-.011

.152

.141

4

-.019

.163

.144

6

H0: the density distributions are the same 
Ha: the density distributions are different
H0: the density distributions are the same 
Ha: the density distributions are different
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Cake Densities

Rank the 6 
differences, 
without regard 
to sign.

Rank the 6 
differences, 
without regard 
to sign.

Calculate: T+ = 2 and T - = 5+4+3+1+6 = 19.
The test statistic is T = min (T+ ,  T - ) = 2.
Rejection region: Use Table 8. For a two-tailed test with 
α = .05, reject H0 if T ≤ 1.

Calculate: T+ = 2 and T - = 5+4+3+1+6 = 19.
The test statistic is T = min (T+ ,  T - ) = 2.
Rejection region: Use Table 8. For a two-tailed test with 
α = .05, reject H0 if T ≤ 1.

-.014

.112

.098

3

-.018

.120

.102

2

.006

.129

.135

1

d = xA-xB

Cake Mix  B

Cake Mix A

Location

-.004

.135

.131

5

-.011

.152

.141

4

-.019

.163

.144

6

613452Rank

Do not reject H0. There is 
insufficient evidence to indicate 
that there is a difference in 
densities for the two cake mixes.

Do not reject H0. There is 
insufficient evidence to indicate 
that there is a difference in 
densities for the two cake mixes.
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Large Sample Approximation:
The Signed-Rank Test

When n ≥ 25, a normal approximation can be 
used to approximate the critical values in Table 8.

24
)12)(1(

4
)1(

.2

).,min(.

2 ++=+=

−=

= −+−+

nnnσnnµ

z
σ

Tz

TTTTT

TT

T

T

 and 

 withondistributi 

 eapproximat an has statistic  The 

 Let  and  Calculate 1.
µ

FOR6520, AIU, Ivo DinovSlide 297

�The KruskalKruskal--Wallis Wallis HH TestTest is a nonparametric 
procedure that can be used to compare more than 
two populations in a  completely randomized 
design.

�Non-parametric equivalent to ANOVA F-test!
�All n = n1+n2+…+nk measurements are jointly 

ranked.
�We use the sums of the ranks of the k samples to 

compare the distributions.

The Kruskal-Wallis – H Test
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�Rank the total measurements in all k samples 
from 1 to n. Tied observations are assigned average of the 
ranks they would have gotten if not tied.
�Calculate

�Ti = rank sum for the ith sample   i = 1, 2,…,k
�n = n1+n2+…+nk

�And the test statistic H is (analog to: F = MSST/MSSE)

�Rank the total measurements in all k samples 
from 1 to n. Tied observations are assigned average of the 
ranks they would have gotten if not tied.
�Calculate

�Ti = rank sum for the ith sample   i = 1, 2,…,k
�n = n1+n2+…+nk

�And the test statistic H is (analog to: F = MSST/MSSE)

)1(3
)1(

12

1

2
+−�

�

�

�

�
�

�

�

+
= �

=

n
n

T
nn

H
k

i i
i

The Kruskal-Wallis – H Test
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H0: the k distributions are identical versus
Ha: at least one distribution is different
Test statistic: Kruskal-Wallis H
When H0 is true, the test statistic H has an 
approximate χχχχ2 distribution with df = k-1.
Use a right-tailed rejection region or p-value 
based on the Chi-square distribution.

H0: the k distributions are identical versus
Ha: at least one distribution is different
Test statistic: Kruskal-Wallis H
When H0 is true, the test statistic H has an 
approximate χχχχ2 distribution with df = k-1.
Use a right-tailed rejection region or p-value 
based on the Chi-square distribution.

The Kruskal-Wallis H TestThe Kruskal-Wallis H Test
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Example

Four groups of students were randomly 
assigned to be taught with four different 
techniques, and their achievement test scores 
were recorded. Are the distributions of test 
scores the same, or do they differ in location?

88628179

67
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59

3

83

69
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2
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1

80
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4
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Teaching Methods

H0: the distributions of scores are the same 
Ha: the distributions differ in location
H0: the distributions of scores are the same 
Ha: the distributions differ in location

88628179

67
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59

3
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55153531Ti

(14)(2)(11)(9)

(4)

(8)

(1) 

(12)

(5)

(7)

(6)

(13)

(3)

(10)

(15)

(16)

Rank the 16 
measurements 
from 1 to 16, 
and calculate 
the four rank 
sums.

Rank the 16 
measurements 
from 1 to 16, 
and calculate 
the four rank 
sums.
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Teaching Methods

H0: the distributions of scores are the same 
Ha: the distributions differ in location
H0: the distributions of scores are the same 
Ha: the distributions differ in location
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Rejection region: Use Table 5. 
For a right-tailed chi-square test 
with α = .05 and df = 4-1 =3, 
reject H0 if H ≥ 7.81.

Rejection region: Use Table 5. 
For a right-tailed chi-square test 
with α = .05 and df = 4-1 =3, 
reject H0 if H ≥ 7.81.

Reject H0. There is sufficient 
evidence to indicate that there 
is a difference in test scores for 
the four teaching techniques.

Reject H0. There is sufficient 
evidence to indicate that there 
is a difference in test scores for 
the four teaching techniques.
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� The Friedman Friedman FFrr TestTest is the nonparametric equivalent 
of the   randomized block design with k treatments 
and b blocks.

� All k measurements within a block are ranked from 1 
to b.

� We use the sums of the ranks of the k treatment 
observations to compare the k treatment distributions.

� Model: Xi,j = µ + αi + βj + εi,j.            
1<=i<=k (treatment effects), 1<=j<=ni (block)

The Friedman Fr Test
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The Friedman Fr Test

�Rank the k measurements, within each block, from  
from 1 to k. Tied observations are assigned average of 
the ranks they would have gotten if not tied.
�Calculate

�Ti = rank sum for the ith treatment  i = 1, 2,…,k
�and the test statistic

�Rank the k measurements, within each block, from  
from 1 to k. Tied observations are assigned average of 
the ranks they would have gotten if not tied.
�Calculate

�Ti = rank sum for the ith treatment  i = 1, 2,…,k
�and the test statistic
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The Friedman Fr Test
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H0: the k treatments are identical versus
Ha: at least one distribution is different
Test statistic: Friedman Fr

When H0 is true, the test statistic Fr has an 
approximate χχχχ2 distribution with df = k-1.
Use a right-tailed rejection region or p-value 
based on the Chi-square distribution.

H0: the k treatments are identical versus
Ha: at least one distribution is different
Test statistic: Friedman Fr

When H0 is true, the test statistic Fr has an 
approximate χχχχ2 distribution with df = k-1.
Use a right-tailed rejection region or p-value 
based on the Chi-square distribution.

The Friedman Fr TestThe Friedman Fr Test
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Example

A student is subjected to a stimulus and 
we measure the time until the student reacts 
by pressing a button. Four students are used in 
the experiment, each is subjected to three 
stimuli, and their reaction times are measured. 
Do the distributions of reaction times differ for 
the three stimuli? Stimuli

.8.7.54
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1.0
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Reaction Times
Stimuli

.8.7.54
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1.0

.7

.8

3

8.5114.5Ti
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(3)

(3)
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(1)

(2)

(1.5)

(2)

Rank the 3 
measurements for 
each subject from 
1 to 3, and 
calculate the three 
rank sums.

Rank the 3 
measurements for 
each subject from 
1 to 3, and 
calculate the three 
rank sums.

H0: the distributions of reaction times are the same 
Ha: the distributions differ in location
H0: the distributions of reaction times are the same 
Ha: the distributions differ in location
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Reaction Times

H0: the distributions of reaction times are the 
same 
Ha: the distributions differ in location

H0: the distributions of reaction times are the 
same 
Ha: the distributions differ in location
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F ir :statistic Test

Rejection region: Use Table 5. 
For a right-tailed chi-square test 
with α = .05 and df = 3-1 =2, 
reject H0 if H ≥ 5.99.

Rejection region: Use Table 5. 
For a right-tailed chi-square test 
with α = .05 and df = 3-1 =2, 
reject H0 if H ≥ 5.99.

Do not reject H0. There is 
insufficient evidence to 
indicate that there is a 
difference in reaction times for 
the three stimuli.

Do not reject H0. There is 
insufficient evidence to 
indicate that there is a 
difference in reaction times for 
the three stimuli.

FOR6520, AIU, Ivo DinovSlide 309

� The rank correlation coefficient, Spearman rank correlation coefficient, Spearman rrss is the 
nonparametric equivalent of the Pearson correlation 
coefficient r.

� The two variables are each ranked from smallest to 
largest and the ranks are denoted as x and y.

� We are interested in the strength of the relationship 
(correlation) between the two variables. 

Rank Correlation Coefficient
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Rank Correlation Coefficient
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Rank Correlation Coefficient

H0: no association between the rank pairs
Ha: one or two-tailed alternative
Test statistic: rs

Critical values for a one or two-tailed 
rejection region can be found using

H0: no association between the rank pairs
Ha: one or two-tailed alternative
Test statistic: rs

Critical values for a one or two-tailed 
rejection region can be found using
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Example

Five elementary school science teachers 
have been ranked by a judge according to their 
teaching ability. They have also taken a national 
“teacher’s exam”. Is there agreement between 
the judge’s rank and the exam score? 

82

3

3

69

2

2

72

4

1

Exam score

Judge’s Rank

Teacher

80

5

5

93

1

4

If the judge’s rank is low (best teacher), we might 
expect the teacher’s score to be high. We look for a 
negative association between the ranked measurements.

If the judge’s rank is low (best teacher), we might 
expect the teacher’s score to be high. We look for a 
negative association between the ranked measurements.
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Example

82
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Exam score

Judge’s Rank

Teacher

80
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1

4

Rank the exam scores 
(the first variable is 
already in rank form). 
There are no ties.

Rank the exam scores 
(the first variable is 
already in rank form). 
There are no ties.
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For a one-tailed test with α = .05 
and n = 5, reject H0 if rs ≥ .900. 
We do not reject H0. Not enough 
evidence to indicate a negative 
association.

For a one-tailed test with α = .05 
and n = 5, reject H0 if rs ≥ .900. 
We do not reject H0. Not enough 
evidence to indicate a negative 
association.
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Summary
•The nonparametric analogues of the parametric 
procedures presented  in Chapters 10–14 are 
straightforward and fairly simple to implement.
•The Wilcoxon rank sum test is the nonparametric analogue of 
the two-sample t test.
•The sign test and the Wilcoxon signed-rank test are the 
nonparametric analogues of the paired-sample t test.
•The Kruskal-Wallis H test is the rank equivalent of the one-
way analysis of variance F test.
•The Friedman Fr test is the rank equivalent of the randomized 
block design two-way analysis of variance F test.
•Spearman's rank correlation rs is the rank equivalent of 
Pearson’s correlation coefficient.
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Key Concepts
I.I. Nonparametric MethodsNonparametric Methods

1. These methods can be used when the data cannot be 
measured on a quantitative scale, or when

2. The numerical scale of measurement is arbitrarily set by the 
researcher, or when

3. The parametric assumptions such as normality or constant 
variance are seriously violated.

II.II. WilcoxonWilcoxon Rank Sum Test: Independent Random Rank Sum Test: Independent Random 
SamplesSamples

1. Jointly rank the two samples: Designate the smaller 
sample as sample 1. Then

1211
*

111 )1(        sample ofRank TnnnTT −++=�=
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Key Concepts
2. Use T1 to test for population 1 to the left of population 2

Use       to test for population to the right of population 2.

Use the smaller of T1 and     to test for a difference in the 
locations of the two populations.  

3. Table 7 of Appendix I has critical values for the rejection 
of H0. 

4. When the sample sizes are large, use the normal 
approximation:
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Key Concepts

III.III. Sign Test for a Paired ExperimentSign Test for a Paired Experiment

1. Find x, the number of times that observation A exceeds 
observation B for a given pair.

2. To test for a difference in two populations, test H0 : p = 0.5 
versus a one- or two-tailed alternative.

3. Use Table 1 of Appendix I to calculate the p-value for the test.

4. When the sample sizes are large, use the normal 
approximation:

n
nxz

5.
5.−=
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Key Concepts

IV.IV. WilcoxonWilcoxon SignedSigned--Rank Test: Paired ExperimentRank Test: Paired Experiment

1. Calculate the differences in the paired observations. Rank 
the absolute values of the differences. Calculate the rank 
sums T − and T + for the positive and negative differences, 
respectively. The test statistic T is the smaller of the two rank
sums.

2. Table 8 of Appendix I has critical values for the rejection of  
for both one- and two-tailed tests.

3. When the sampling sizes are large, use the normal 
approximation: ][
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Key Concepts

V. V. KruskalKruskal--Wallis Wallis HH Test: Completely Randomized DesignTest: Completely Randomized Design

1. Jointly rank the n observations in the k samples. Calculate the 
rank sums, Ti = rank sum  of sample i, and the test statistic

2. If the null hypothesis of equality of distributions is false, H
will be unusually large, resulting in a one-tailed test.

3. For sample sizes of five or greater, the rejection region for H is 
based on the chi-square distribution with (k − 1) degrees of 
freedom.
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Key Concepts

VI. The Friedman VI. The Friedman FFrr Test: Randomized Block DesignTest: Randomized Block Design

1. Rank the responses within each block from 1 to k. Calculate the 
rank sums T1, T2, …, Tk, and the test statistic

2. If the null hypothesis of equality of treatment distributions is
false, Fr will be unusually large, resulting  in a one-tailed test.

3. For block sizes of five or greater, the rejection region for Fr is 
based on the chi-square distribution with (k − 1) degrees of 
freedom.
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Key Concepts

VII.VII. Spearman's Rank Correlation CoefficientSpearman's Rank Correlation Coefficient
1. Rank the responses for the two variables from smallest to 

largest.

2. Calculate the correlation coefficient for the ranked 
observations:

3. Table 9 in Appendix I gives critical values for rank 
correlations significantly different from 0.

4. The rank correlation coefficient detects not only significant 
linear correlation but also any other monotonic relationship 
between the two variables.
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