Homework \#5 Solutions

(out of 50 total points)

Problem 5.1
a) $\mathrm{E}(\mathrm{X})=-5 * .579+5 * .347+10 * .069+60 * .005=-.17 \quad(2$ points $)$

$$
\begin{aligned}
\mathrm{SD}(\mathrm{X}) & =\sqrt{(-5+.17)^{2} * .579+(5+.17)^{2} * .347+(10+.17)^{2} * .069+(60+.17)^{2} * .005} \\
& =6.930 \quad(2 \text { points })
\end{aligned}
$$

$\operatorname{Pr}(\mathrm{X}>0)=.347+.069+.005=.421(2$ points $)$
b) $\mathrm{E}(\bar{X})=-.17$ (2 points)

$$
\mathrm{SE}(\bar{X})=\frac{S D(X)}{\sqrt{n}}=.693(2 \text { points })
$$

c) Normal Distribution, Central Limit Theorem (2 points)
d) For 100 bets, first standardize 0 using $\mathrm{Z}=\frac{0+.17}{.693}=.25$, then calculate

$$
\operatorname{Pr}(\bar{X}>0)=.401(4 \text { points total, } 2 \text { for standardizing and } 2 \text { for probability })
$$

e) For 1000 bets,

$$
\mathrm{E}(\bar{X})=-.17 \text { (} 2 \text { points })
$$

$\operatorname{SE}(\bar{X})=\frac{S D(X)}{\sqrt{n}}=.219$ (2 points)
$\mathrm{Z}=\frac{0+.17}{.219}=.78(2$ points $)$
$\operatorname{Pr}(\bar{X}>0)=.218$ (2 points $)$

For 5000 bets,
$\mathrm{E}(\bar{X})=-.17$ (2 points $)$
$\mathrm{SE}(\bar{X})=\frac{S D(X)}{\sqrt{n}}=.098(2$ points $)$
$\mathrm{Z}=\frac{0+.17}{.098}=1.73$ (2 points $)$

$$
\operatorname{Pr}(\bar{X}>0)=.042(2 \text { points })
$$

For 10000 bets,

$$
\begin{aligned}
& \mathrm{E}(\bar{X})=-.17(2 \text { points }) \\
& \mathrm{SE}(\bar{X})=\frac{S D(X)}{\sqrt{n}}=.069 \text { (2points) } \\
& \left.\mathrm{Z}=\frac{0+.17}{.069}=2.46 \text { (} 2 \text { points }\right) \\
& \operatorname{Pr}(\bar{X}>0)=.007(2 \text { points })
\end{aligned}
$$

f)

Number of Bets

This graph shows that as you increase the number of bets, the probability of making a positive return decreases. (4 points total, 2 points for graph and 2 points for describing the graph)

Problem 5.2

a) $\operatorname{se}\left(\overline{x_{1}}-\overline{x_{2}}\right)=\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}=\sqrt{\frac{1.82^{2}}{53}+\frac{1.53^{2}}{60}}=.3186$ (2 points)
b) ($7.90-4.30) \pm 2 * .3186$
$=(2.96,4.24)(2$ points $)$
c) As this interval is well away from 0 , sexual content seems to make a difference. The true mean number of correctly remembered brands under these conditions is likely to be greater when sexual content is present by somewhere between 3 and 4.2 than when it is absent. (2 points)

