Homework 6 Solutions

Problem 1: (6 points, 1 point for a problem)

1) $N\left(5000,112^{2}\right)$
2) $N\left(5000,4 * 28^{2}\right)=N\left(5000,56^{2}\right)$
3) they differ in SD: plan 2 has smaller SD (a half of that of plan 1)
4) $z=\frac{5100-5000}{112}=0.8928$
$\operatorname{Prob}($ spend more than budget $)=\operatorname{prob}(\mathrm{Z}>\mathrm{z})=1-0.814=0.186$
5) $z=\frac{5100-5000}{56}=1.7857$
$\operatorname{Prob}($ spend more than budget $)=\operatorname{prob}(\mathrm{Z}>\mathrm{z})=1-0.963=0.037$
6) plan 2

Problem 2: (7 points total)
Let $X_{i j}, i=1,2,3,4,5, j=1,2$, denote the output of i-th die in j-th throw. Then clearly $Y=\sum_{i} \sum_{j} X_{i j}$. And we can also see that $X_{i j}$'s are independent of each other and identically distributed.
$E\left(X_{11}\right)=\frac{1}{8} \sum_{i} i=4.5$ and $\operatorname{var}\left(X_{11}\right)=\sum_{i} \frac{1}{8}(i-4.5)^{2}=\frac{21}{4}$
hence $\mu_{Y}=4.5 * 10=45$, (2 points)
and $\sigma_{Y}=\sqrt{\operatorname{var}(Y)}=\sqrt{10 * \frac{21}{4}}=7.25$ (2 points)
Approximately, \bar{Y} will follow a Normal distribution by Central Limit theorem. (1 point) And $E(\bar{Y})=E\left(Y_{1}\right)=45$, (1 point)
$s d(\bar{Y})=\frac{1}{\sqrt{n}} s d\left(Y_{1}\right)=7.25 / 3=2.42 \quad$ (1 point)

Problem 3: (6 points total)

1) For treatment group: mean=14.1
$\mathrm{Sd}=2.47$
For control group: mean=183/19=9.63
$\mathrm{Sd}=3.34 \quad$ (2 points total: 1 point for each group)
2) $s d\left(\bar{x}_{1}-\bar{x}_{2}\right)=\sqrt{\frac{s d_{1}^{2}}{n_{1}}+\frac{s d_{2}^{2}}{n_{2}}}=\sqrt{\frac{2.47^{2}}{20}+\frac{3.34^{2}}{19}}=0.944$
hence a $95 \% \mathrm{CI}$ for the difference in mean is $(\mathrm{t} \alpha=0.025,19-1=2.101)$
$[14.1-9.63-2.101 * 0.944,14.1-9.63+2.101 * 0.944]=[2.49,6.45] \quad(1$ point $)$
because both end are positive, we can fairly safely say that the mean of treatment group is larger than the control group by a number between 2.49 and 6.45 (1 point)
3) $(19+20) * 4=156$ (1 point)
4)

It may contain the true mean, but there is possibility that it doesn't contain the true mean. If we do such experiments for many times, about 95% of the CI's constructed in the same way will contain the true mean. (but we don't know that for a specific one.) (1 point)

