UCLA STAT 13
 Introduction to Statistical Methods for the Life and Health Sciences

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Janine Miller and Ming Zheng UCLA Statistics

University of California, Los Angeles, Winter 2003
http://www.stat.ucla.edu/~dinov/courses_students.html

STAT 13, UCLA, Ivo Dinov
Slide 1

TABLE 2.1.1 Data on Male Heart Attack Patients

A subset of the data collected at a Hospital is summarized in this table. Each patient has measurements recorded for a number of variables - ID, Ejection factor (ventricular output), blood systolic/diastolic pressure, etc.

- Reading the table
-Which of the measured variables (age, ejection etc.) are useful in predicting how long the patient may live. -Are there relationships between these predictors? -variability \& noise in the observations hide the message of the data.

Types of variable

Quantitative variables are measurements and counts

■Variables with few repeated values are treated as continuous.

■ Variables with many repeated values are treated as discrete

Qualitative variables (a.k.a. factors or classvariables) describe group membership

Chapter 2: Tools for Exploring

 Univariate Data-Types of variables

- Presentation of data
- Simple plots
- Numerical summaries
- Repeated and grouped data
- Qualitative variables

Storing and Reporting Numbers

Round numbers for presentation

- Maintain complete accuracy in numbers to be used in calculations. If you need to round-off, this should be the very last operation ...

	Table before simplification				
TABLE 2.2.1 Gold Reserves of Gold-Holding IMF Countries					
Country	1970	1975	1980	1985	1990
Belgium	42.01	42.17	34.18	34.18	30.23
Canada	22.59	21.95	20.98	20.11	14.76
France	100.91	100.93	81.85	81.85	81.85
Italy	82.48	82.48	66.67	66.67	66.67
Japan	15.22	21.11	24.23	24.33	24.23
Netherlands	51.06	54.33	43.94	43.94	43.94
Switzerland	78.03	83.2	83.28	83.28	83.28
U.K.	38.52	21.03	18.84	19.03	18.94
U.S.A.	316.34	274.71	264.32	262.65	261.91
Units: millions of troy ounces. Source: The World Almanac and Book of Facts.					

Questions ...

- For what two purposes are tables of numbers presented? (convey information about trends in the data, detailed analysis)
- When should you round numbers, and when should you preserve full accuracy?
- How should you arrange the numbers you are most interested in comparing? (Arrange numbers you want to compare in columns, not rows. Provide written/verbal summaries/footnotes. Show row/column averages.)
Should a table be left to tell its own story?

Figure 2.3.2 Dot plot showing special features.

Figure 2.3.4 Dot plot with and without a scale break.

Example of a stem-and-leaf plot

Units: $7 \mid 2=72$
Stem

Stem-plot of the 45 obs's of the Ejection variable in the Heart Attack data table.

Example of exploiting gaps and clusters

Figure 2.3.3 Grading of a university course.

Figure 2.3.8 Histogram of the female coyote-lengths data.

Questions ...

- What advantages does a stem-and-leaf plot have over a histogram? (S\&L Plots return info on individual values, quick to produce by hand, provide data sorting mechanisms. But, Hist's are more attractive and more understandable).
- The shape of a histogram can be quite drastically altered by choosing different class-interval boundaries. What type of plot does not have this problem? (density trace) What other factor affects the shape of a histogram? (bin-size)
- What was another reason given for plotting data on a variable, apart from interest in how the data on that variable behaves? (shows features, cluster/gaps, outliers; as well as trends)

