UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

•Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

•<u>Teaching Assistants:</u>Janine Miller and Ming Zheng UCLA Statistics

University of California, Los Angeles, Winter 2003 http://www.stat.ucla.edu/~dinov/courses_students.html

STAT 13. UCLA. Ivo Dinov

Chapter 2: Tools for Exploring Univariate Data • Types of variables • Presentation of data • Simple plots • Numerical summaries • Repeated and grouped data • Qualitative variables

AT IS UCLA

TABLE 2.1.1 Data on Male Heart Attack Patients

A subset of the data collected at a Hospital is summarized in this table. Each patient has measurements recorded for a number of variables – ID, Ejection factor (ventricular output), blood systolic/diastolic pressure, etc.

- Reading the table

-Which of the measured variables (age, ejection etc.) are useful in <u>predicting</u> how long the patient may live.
-Are there <u>relationships</u> between these predictors?
-variability & noise in the observations hide the message of the data.

ID	EJEC	SYS- VOL	DIA-	occu	STEN	TIME	OUT- COME	AGE	SMOKE	BET	A CHOL	SURG		
390	72	36	131	0	0	143	0	-49	2	2	59	0		
279 391	52	74	155	37	63	143	0	54	2	2	68			
201 202			T	2 1		Dat		3.4					ick P	
69 310	-	Ab	LE	2.1	.1	Dat	a on	IVI	ale	EIG	art	Alla	ICK P	aute
392 311 393						5	SYS-		DIA	-				
70 203 394		п)	EJ	EC		VOL		vo	L	oce	CLU	ST	'EN
204 280		- 39)		72		36		13	1		0		0
55 79		27	9		52		74		15	5		37		63
205 206 312		39	1		62		52		13	7		33		47
80 281		20	1		50		165		32	9		33		30
207 282 396		20	2		50		47		9	5		0		100
208 209		6	9		27		124		17	0		77		23
283 210 397		31	0		60		86		21	5		7		50
211 398		39	2		72		37		13	2		40		10
284 399		31	1		60		65		16	3		0		40
285 71 286		28	8		59		39		9	4		0		0
212 400		40	7		67		39		11	7		0		73
287 81 813	^a NA	= No	t Av	ailabl	e (m is	singe	data co	ode).						

Types of variable

- *Quantitative* variables are *measurements* and counts
 - Variables with *few repeated values* are treated as *continuous*.
 - Variables with *many repeated values* are treated as *discrete*
- *Qualitative* variables (a.k.a. factors or classvariables) describe *group membership*

Questions ...

- What is the difference between quantitative and qualitative variables?
- What is the difference between a discrete variable and a continuous variable?
- Name two ways in which observations on qualitative variables can be stored on a computer. (strings/indexes)
- When would you treat a discrete random variable as though it were a continuous random variable?
 Can you give an example? (\$34.45, bill)

STAT 13 UCLA IN D

Storing and Reporting Numbers

- Round numbers for presentation
- Maintain complete accuracy in numbers to be used in calculations. If you need to round-off, this should be the very last operation ...

STAT IS UCLA

Table	before sil	припсац		
Gold Reserves	s of Gold-Ho	lding IMF Co	ountries	
1970	1975	1980	1985	1990
42.01	42.17	34.18	34.18	30.23
22.59	21.95	20.98	20.11	14.76
100.91	100.93	81.85	81.85	81.85
82.48	82.48	66.67	66.67	66.67
15.22	21.11	24.23	24.33	24.23
51.06	54.33	43.94	43.94	43.94
78.03	83.2	83.28	83.28	83.28
			10.02	10.04
38.52	21.03	18.84	19.03	18.94
	Gold Reserves <u>1970</u> 42.01 22.59 100.91 82.48 15.22	Gold Reserves of Gold-Hol 1970 1975 42.01 42.17 22.59 21.95 100.91 100.93 82.48 82.48 15.22 21.11	T Gold Reserves of Gold-Holding IMF Col 1970 1975 1980 42.01 42.17 34.18 22.59 21.95 20.98 100.91 100.93 81.85 82.48 82.48 66.67 15.22 21.11 24.23	42.01 42.17 34.18 34.18 22.59 21.95 20.98 20.11 100.91 100.93 81.85 81.85 82.48 82.48 66.67 66.67 15.22 21.11 24.23 24.33

	~ ~					
TABLE 2.2.2	2 Simplifie	d Table of	Gold Res	erves of l	MF Cou	ntries
Country	1970	1975	1980	1985	1990	Avera
US	320	270	260	260	260	2
Switzerland	78	83	83	83	83	
France	100	100	82	82	82	
Italy	82	82	67	67	67	
Netherlands	51	54	44	44	44	
Belgium	42	42	34	34	30	
Japan	15	21	24	24	24	
UK	39	21	19	19	19	
Canada	23	22	21	20	15	
Average	83	78	71	71	70	
Units: millions of	troy ounces.					

Questions
• For what two purposes are tables of numbers presented? (convey information about trends in the data, detailed analysis)
• When should you round numbers, and when should you preserve full accuracy?
• How should you arrange the numbers you are most interested in comparing? (Arrange numbers you want to compare in columns, not rows. Provide written/verbal summaries/footnotes. Show row/column averages.)
Should a table be left to tell its own story? Slide 12 Stat 12 MCL4. In Human

ABLE 2.3.1 Traffi	c Death-Rates (per 100,0	000 Population) for 30	Countries	
17.4 Australia	20.1 Austria	19.9 Belgium	12.5 Bulgaria	15.8 Canada
10.1 Czechoslovakia	13.0 Denmark	11.6 Finland	20.0 France	12.0 E. Germany
3.1 W. Germany	21.1 Greece	5.4 Hong Kong	17.1 Hungary	15.3 Ireland
0.3 Israel	10.4 Japan	26.8 Kuwait	11.3 Netherlands	20.1 New Zealand
0.5 Norway	14.6 Poland	25.6 Portugal	12.6 Singapore	9.8 Sweden
5.7 Switzerland	18.6 United States	12.1 N. Ireland	12.0 Scotland	10.1England & Wales
ata for 1983, 1984 or 198 ource: Hutchinson [1987,	5 depending on the country (page 3].	prior to reunification of Gen	rmany)	

TABLE 2.3.	2 Coy	ote Lengt	hs Data (cm)																
Females																				
93.0	97.0	92.0	101.6	93.0	84.5	10	2.5		97.	8	9	1.0		- 98	8.0		93.	5		91.1
90.2	91.5	80.0	86.4	91.4	83.5	8	8.0		71.	0	8	1.3		88	8.5		86.	5		90.0
84.0	89.5	84.0	85.0	87.0	88.0	8	6.5		96.	0	8	7.0		93	3.5		93.	5		90.0
85.0	97.0	86.0	73.7																	
Males																				
97.0	95.0	96.0	91.0	95.0	84.5	8	8.0		96.	0	- 90	6.0		8	7.0		95.	0	1	00.
101.0	96.0	93.0	92.5	95.0	98.5	8	8.0		81.	3	9	1.4		88	8.9		86.	.4	1	01.
83.8	104.1	88.9	92.0	91.0	90.0	8	5.0		93.	5	78	8.0		100	0.5		103.	0		91.
105.0	86.0	95.5	86.5	90.5	80.0	8	0.0													
Coyotes captu					urtesy o	f Dr V	/era	ı Ea	astw	ood	L.									
TABLE 2.3	.3	Frequenc	y Table f	or										4		5.	-		<u>.</u>	
		Female C	oyote Lei	igths														-		
												_	é	Z				Y		-
Class Ir	nterval	Tally	F	requency		Stem	-and	d-le	eaf p	lot		1	F	1	Ę.	Ę,				
	70-75	⊁		2		7	1	4							۰.		-		-	
	75-80			0		7														
-	80-85 ·	¥		6		8	0	1	4	4	4									
length		$\mathbb{M}_{\mathbb{N}}$		12		8	5	5	5	6	6	7	7	7	7	8	8	9		
	90-95 ·	**		13		9	0	0	0	0	1	1	2	2	2	3	3	4	4	4
-	5-100 .	¥		5		9	6	7	7	8	8									
10	0-105 '			2		10	2	3												
Total				40																

Questions ...

- What advantages does a stem-and-leaf plot have over a histogram? (S&L Plots return info on individual values, quick to produce by hand, provide data sorting mechanisms. But, Hist's are more attractive and more understandable).
- The shape of a histogram can be quite drastically altered by choosing different class-interval boundaries. What type of plot does not have this problem? (density trace) What other factor affects the shape of a histogram? (bin-size)
- What was another reason given for plotting data on a variable, apart from interest in how the data on that variable behaves? (shows features, cluster/gaps, outliers; as well as trends)

Questions ...

- What does it mean for a histogram or stem-and-leaf plot to be bimodal? What do we suspect when we see a bimodal plot?
- What are outliers, and how do they show up in these plots? What should we try to do when we see them?
- What do we mean by symmetry and positive and negative skewness?
- What shape do we call exponential?
- Should we be suspicious of abrupt changes? Why?
- Yes! Try to establish the reason, the jump may have to be rectified!

						ł	Free	que	enc	:y	Ta	ble							
TABLE 2.5.1 Word Lengths for the First 100																			
Words on a Randomly Chosen Page																			
3	2	2	4	4	4	3	9	9	3	6	2	3	2	3	4	6	5	3	4
2	3	4	5	2	9	5	8	3	2	4	5	2	4	1	4	2	5	2	5
3	6	9	6	3	2	3	4	4	4	2	2	4	2	3	7	4	2	6	4
2	5	9	2	3	7	11	2	3	6	4	4	7	6	6	10	4	3	5	7
7	7	5	10	3	2	3	9	4	5	5	4	4	3	5	2	5	2	4	2
							_												
							Fre	que	ncy	yТ	abl	e							
	V	alue	e u			1	2	3		4	5	6	7	8	9	10	11		
	Er	ear	iency	/ f		1	22	18	2	22	13	8	6	1	6	2	1		
		<u>eq</u> t	iene y	j 📩				10	<u></u>		15			<u></u>		-		-0	
	1111		11111	1111	1111	1111	1111	1111	Slic	le 41	1111		TATI	3. UCI	A. Ivo	Dinov	1111	111	

