UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

•Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

Teaching Assistants: Janine Miller and Ming Zheng
 UCLA Statistics

University of California, Los Angeles, Winter 2003 http://www.stat.ucla.edu/~dinov/courses_students.html

CTATAL LICIA Inc Disease

Slide

Chapter 5: Discrete Random Variables Output Random variables Output Probability functions Output The Binomial distribution Output Expected values

Definitions

- An experiment is a naturally occurring phenomenon, a scientific <u>study</u>, a sampling <u>trial</u> or a <u>test.</u>, in which an object (unit/subject) is selected at random (and/or treated at random) to <u>observe/measure</u> different outcome characteristics of the process the experiment studies.
- A *random variable* is a type of measurement taken on the outcome of a random experiment.

Slide 3 STAT 13 UCIA Ivo Din

Definitions

- The *probability function* for a discrete random variable X gives P(X = x) [denoted pr(x) or P(x)] for every value x that the R.V. X can take
- E.g., number of heads when a coin is tossed twice

x	0	1	2
pr(x)	1	1	1
pr(x)	4	2	4

Slide 4 STAT 13. UCLA. Ivo Dinov

Stopping at one of each or 3 children

Sample Space – complete/unique description of the possible outcomes from this experiment.

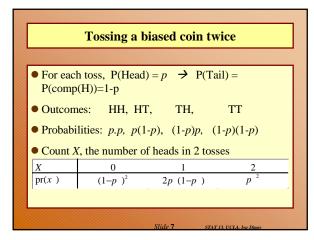
Outcome	GGG	GGB	GB	BG	BBG	BBB
Probability	$\frac{1}{8}$	1 8	$\frac{1}{4}$	$\frac{1}{4}$	1 8	$\frac{1}{8}$

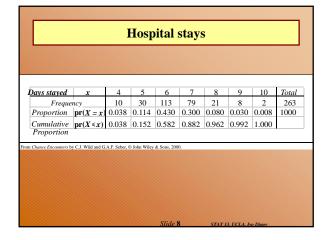
• For R.V. X = number of girls, we have

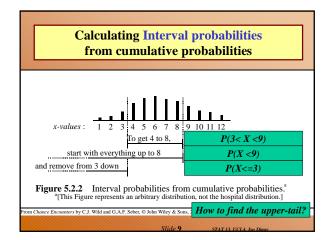
X	0	1	2	3
pr(<i>x</i>)	<u>1</u> 8	<u>5</u> 8	1/8	<u>1</u> 8

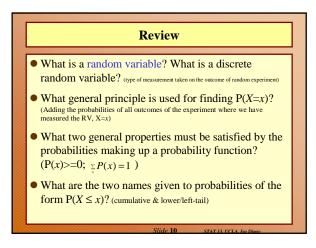
Slide 5 STAT 13, UCLA, Ivo Dinov

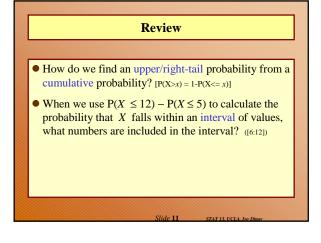
Plotting the probability function $\begin{array}{c|ccccc} X & 0 & 1 & 2 & 3 \\ \hline pr(x) & \frac{1}{8} & \frac{5}{8} & \frac{1}{8} & \frac{1}{8} \\ \hline P(X) & .75 & .50 & .25$

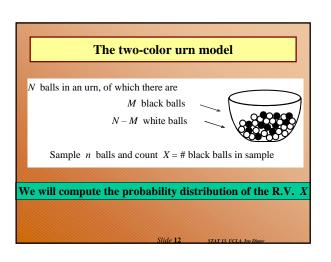


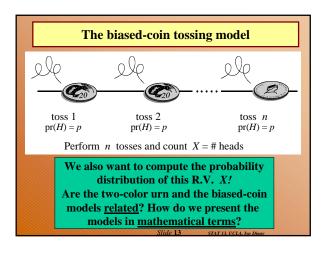












● The distribution of the <u>number of heads in n</u> tosses of a biased coin is called the *Binomial distribution*.

Binomial(N, p) – the probability distribution of the number of Heads in an N-toss coin experiment, where the probability for Head occurring in each trial is p. **E.g.**, **Binomial**(6, 0.7) 2 0 1 3 4 Individual pr(X = x)0.001 0.010 0.060 0.185 0.324 0.303 0.118 Cumulative $pr(X \leq x)$ 0.001 0.011 0.070 0.256 0.580 0.882 1.000 For example $P(X=0) = P(all\ 6\ tosses\ are\ Tails) =$ $(1-0.7)^6 = 0.3^6 = 0.001$

The *biased-coin tossing model* is a physical model for situations which can be characterized as a series of trials where: • each trial has only two outcomes: *success* or *failure*; • p = P(*success*) is the same for every trial; and • trials are independent. • The distribution of X = number of successes (heads) in N such trials is Binomial(N, p)

Sampling from a finite population – Binomial Approximation

If we take a sample of size n

- from a much larger population (of size *N*)
- in which a proportion p have a characteristic of interest, then the distribution of X, the number in the sample with that characteristic,
- is approximately Binomial(n, p).
 □ (Operating Rule: Approximation is adequate if n/N< 0.1.)
- Example, polling the US population to see what proportion is/has-been married.

CP 1. 10

Odds and ends ...

- For what types of situation is the urn-sampling model useful? For modeling binary random processes. When sampling with replacement, Binomial distribution is exact, where as, in sampling without replacement Binomial distribution is an approximation.
- For what types of situation is the biased-coin sampling model useful? Defective parts. Approval poll of cloning for medicinal purposes. Number of Boys in 151 presidential children (90).
- Give the three essential conditions for its applicability. (two outcomes; same p for every trial; independence)

Slide 20 STAT 13, UCLA, Ivo Dino

Odds and ends ...

- \bullet What is the distribution of the number of heads in ntosses of a biased coin?
- Under what conditions does the Binomial distribution apply to samples taken without replacement from a finite population? When interested in assessing the distribution of a R.V., X, the number of observations in the sample (of n) with one specific characteristic, where n/N < 0.1 and a proportion p have the characteristic of interest in the beginning of the experiment.

Binomial Probabilities –

the moment we all have been waiting for!

• Suppose $X \sim Binomial(n, p)$, then the probability

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{(n - x)}, \quad 0 \le x \le n$$

• Where the binomial coefficients are defined by

$$\binom{n}{x} = \frac{n!}{(n-x)!} \frac{n!}{x!}, \quad n! = 1 \times 2 \times 3 \times \dots \times (n-1) \times n$$
n-factorial

Binomial Formula with examples

• Does the Binomial probability satisfy the requirements?

$$\sum_{x} P(X = x) = \sum_{x} {n \choose x} p^{x} (1-p)^{(n-x)} = (p+(1-p))^{n} = 1$$

• Explicit examples for n=2, do the case n=3 at home!
$$\sum_{x=0}^{2} {2 \choose x} p^{x} (1-p)^{(2-x)} = \begin{cases} \text{Three terms in the sum} \\ {2 \choose 0} p^{y} (1-p)^{z} + {2 \choose 1} p^{y} (1-p)^{y} + {2 \choose 2} p^{z} (1-p)^{y} = \\ 1 \times 1 \times (1-p)^{z} + 2 \times p \times (1-p) + 1 \times p^{z} \times 1 = \begin{cases} \text{Usual} \\ \text{quadratic-expansion} \\ \text{formula} \end{cases}$$

Expected values

- The game of chance: cost to play:\$1.50; Prices {\$1, \$2, \$3}, probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.
- Should we play the game? What are our chances of winning/loosing?

Prize (\$) Probability	pr(x)	0.6	0.3	0.1	
_			0.5		
What we would "expect" from 100 games				add across row	
Number of games won_		0.6×100	0.3 ×100	0.1×100	
\$ won		$1 \times 0.6 \times 100$	2×0.3×100	$3 \times 0.1 \times 100$	Sum
otal prize money = S	lum:	Average prize i	noney = Sum	/100	

Theoretically Fair Game: price to play EQ the expected return!

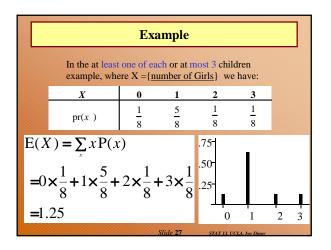
Number	Prize won in dollars(x)				
of games	1	2	3	Average winning	gs
played		frequencies	s	per game	
(N)	(Rela	ative freque	ncies)	(\overline{x})	So far we looked
100	64	25	11		at the theoretica
	(.64)	(.25)	(.11)	1.7	expectation of th
1,000	573	316	111		game. Now we
	(.573)	(.316)	(.111)	1.538	simulate the gan
10,000	5995	3015	990		on a computer
	(.5995)	(.3015)	(.099)	1.4995	to obtain randor
20,000	11917	6080	2000		samples from
	(.5959)	(.3040)	(.1001)	1.5042	our distribution.
30,000	17946	9049	3005		· · · · · · · · · · · · · · · · · · ·
	(.5982)	(.3016)	(.1002)	1.5020	according to the
∞	(.6)	(.3)	(.1)	1.5	probabilities

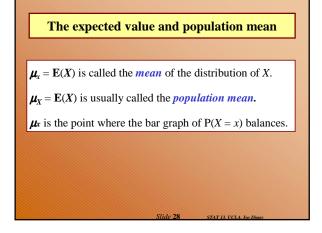
Definition of the expected value, in general.

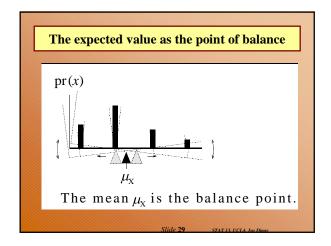
• The expected value:

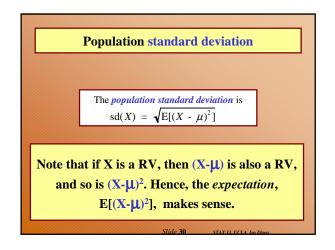
$$E(X) = \sum_{\substack{x \in X \\ \text{all } x}} x P(x) \left(= \int_{\substack{x \in X \\ \text{all } x}} x P(x) dx \right)$$

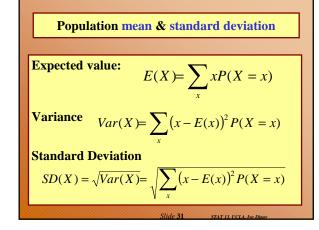
= Sum of (value times probability of value)

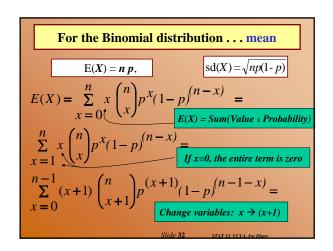












Linear Scaling (affine transformations) aX + b

For any constants a and b, the expectation of the RV aX + b is equal to the sum of the product of a and the expectation of the RV X and the constant b.

$$E(aX + b) = a E(X) + b$$

And similarly for the standard deviation (b, an additive factor, does not affect the SD).

$$SD(aX + b) = |a| SD(X)$$

lide 38 STATES TO

Linear Scaling (affine transformations) aX + b

Why is that so?

$$E(aX + b) = a E(X) + b$$
 $SD(aX + b) = |a| SD(X)$

$$E(aX + b) = \sum_{x=0}^{n} (ax + b) P(X = x) =$$

$$\sum_{x=0}^{n} a \, x \, P(X=x) + \sum_{x=0}^{n} b \, P(X=x) =$$

$$a\sum_{x=0}^{n} x P(X=x) + b\sum_{x=0}^{n} P(X=x) =$$

 $aE(X) + b \times 1 = aE(X) + b$.

CU: 1. 20

Linear Scaling (affine transformations) aX + b

And why do we care?

$$E(aX + b) = a E(X) + b$$
 $SD(aX + b) = |a| SD(X)$

-E.g., say the rules for the game of chance we saw before change and the new pay-off is as follows: {\$0, \$1.50, \$3}, with probabilities of {0.6, 0.3, 0.1}, as before. What is the newly expected return of the game? Remember the old expectation was equal to the entrance fee of \$1.50, and the game was fair!

$$Y = 3(X-1)/2$$

$$\{\$1, \$2, \$3\} \rightarrow \{\$0, \$1.50, \$3\},\$$

$$E(Y) = 3/2 E(X) - 3/2 = 3/4 = $0.75$$

And the game became clearly biased. Note how easy it is to compute E(Y).

Slide 41 STAT 13 UCLA Iva Dinas

Review

- What does the expected value of X tell you about? (Expected outcome from an experiment regarding the characteristics measured by the RV X)
- Why is the expected value also called the population mean? [because for finite population E(X) is the ordinary mean (average)]
- What is the relationship between the population mean and the bar graph of the probability function? (balances the graph)
- What are the mean and standard deviation of the Binomial distribution? (np; np(1-p))
- Why is SD(X+10) = SD(X)?
- Why is SD(2X) = 2SD(X)? (Section 5.4.3)

Slide 42 STAT B UCLA Ivo Dino