UCLA STAT 13
 Introduction to Statistical Methods for the Life and Health Sciences

- Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Janine Miller and Ming Zheng UCLA Statistics

University of California, Los Angeles, Winter 2003
http://www.stat.ucla.edu/~dinov/courses_students.html

Slide 1

Statistics Online Compute Resources

-http://www.stat.ucla.edu/~dinov/courses_students. dir/Applets.dir/OnlineResources.html

- Interactive Normal Curve
- Online Calculators for Binomial, Normal, ChiSquare, F and T distributions
- Galton's Board or Quincunx

Parameters and estimates

- A parameter is a numerical characteristic of a population or distribution
- An estimate is a quantity calculated from the data to approximate an unknown parameter
- Notation
-Capital letters refer to random variables
■Small letters refer to observed values

Mean and SD of the sampling distribution
$\mathrm{E}($ sample mean $)=$ Population mean
$\mathrm{SD}($ sample mean $)=\frac{\text { Population } S D}{\sqrt{\text { Sample size }}}$
$\mathrm{E}(\bar{X})=\mathrm{E}(X)=\boldsymbol{\mu}, \quad \mathrm{SD}(\bar{X})=\frac{\mathrm{SD}(X)}{\sqrt{n}}=\frac{\boldsymbol{\sigma}}{\sqrt{n}}$
Slide 9
STAT L3. UCLA No Dinov

Review

- How is the population standard deviation of \bar{X} related to the population standard deviation of individual observations? $(\operatorname{SD}(\bar{X})=($ Population SD)/sqrt(sample_size) $)$
- What happens to the sampling distribution of \bar{X} if the sample size is increased? (variability decreases)
- What does it mean when \bar{x} is said to be an "unbiased estimate" of $\mu ?\left({ }^{\mathrm{E}}(\bar{x})=\mu\right.$. Are $\mathrm{Y}^{\wedge}=1 / 4$ Sum, or $\mathrm{Z}^{\wedge}=3 / 4$ Sum unbiased?)
- If you sample from a Normal distribution, what can you say about the distribution of \bar{X} ? (Also Normal)

Review

- We use both \bar{x} and \bar{X} to refer to a sample mean. For what purposes do we use the former and for what purposes do we use the latter?
- What is meant by "the sampling distribution of \bar{X} "?
(sampling variation - the observed variability in the process of taking random samples; sampling distribution - the real probability distribution of the random sampling process)
- How is the population mean of the sample average \bar{X} related to the population mean of individual observations? (E($\bar{X})=$ Population mean)

Central Limit Theorem - heuristic formulation

Central Limit Theorem:
When sampling from almost any distribution, \bar{X} is approximately Normally distributed in large samples. CLT Applet Demo

Review

- What does the central limit theorem say? Why is it useful? (If the sample sizes are large, the mean in Normally distributed, as a RV)
- In what way might you expect the central limit effect to differ between samples from a symmetric distribution and samples from a very skewed distribution? (Larger samples for non-symmetric distributions to see CLT effects)
- What other important factor, apart from skewness, slows down the action of the central limit effect?
(Heavyness in the tails of the original distribution.)

Central Limit Theorem theoretical formulation

Let $\left\{X_{1}, X_{2}, \ldots, X_{k}, \ldots\right\}$ be a sequence of independent observations from one specific random process. Let and $E(X)=\boldsymbol{\mu}$ and $S D(X)=\boldsymbol{\sigma}$ and both are finite $(0<\boldsymbol{\sigma}<\infty ;|\boldsymbol{\mu}|<\infty)$. If $\overline{X_{n}}=\frac{1}{n_{k}} \sum_{k=1}^{n} X$, , sample-avg,
Then \bar{X} has a distribution which approaches $N\left(\mu, \sigma^{2} / n\right)$, as $n \rightarrow \infty$.

Review

- When you have data from a moderate to small sample and want to use a normal approximation to the distribution of \bar{X} in a calculation, what would you want to do before having any faith in the results? (30 or more for the sample-size, depending on the skewness of the distribution of X. Plot the data - non-symmetry and heavyness in the tails slows down the CLT effects).
- Take-home message: CLT is an application of statistics of paramount importance. Often, we are not sure of the distribution of an observable process. However, the CLT gives us a theoretical description of the distribution of the sample means as the samplesize increases $\left(\mathrm{N}\left(\mu, \sigma^{2} / \mathrm{n}\right)\right.$).

The standard error of the mean - remember ...

- For the sample mean calculated from a random sample, $\mathrm{SD}(\bar{X})=\frac{\boldsymbol{\sigma}}{\sqrt{n}}$. This implies that the variability from sample to sample in the samplemeans is given by the variability of the individual observations divided by the square root of the sample-size. In a way, averaging decreases variability.
- Recall that for known $\mathrm{SD}(\mathrm{X})=\sigma$, we can express the $\mathrm{SD}(\bar{X})=\frac{\sigma}{\sqrt{n}}$. How about if $\mathrm{SD}(\mathrm{X})$ is unknown $?!?$

The standard error of the mean

The standard error of the sample mean is an estimate of the $S D$ of the sample mean

- i.e. a measure of the precision of the sample mean as an estimate of the population mean
- given by $\mathrm{SE}(\bar{x})=\frac{\text { Sample standard deviation }}{\sqrt{\text { Sample size }}}$

Cavendish's 1798 data on mean density of the Earth, $\mathbf{g} / \mathrm{cm}^{3}$, relative to that of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$

5.50	5.61	4.88	5.07	5.26	5.55	5.36	5.29	5.58	5.65
5.57	5.53	5.62	5.29	5.44	5.34	5.79	5.10	5.27	5.39
5.42	5.47	5.63	5.34	5.46	5.30	5.75	5.68	5.85	

Source: Cavendish [1798].
Sample mean $\quad \bar{x}=5.447931 \mathrm{~g} / \mathrm{cm}^{3}$
and sample $\mathbf{S D}=S_{X}=0.2209457 \mathrm{~g} / \mathrm{cm}^{3}$
Then the standard error for these data is:

$$
S E(\bar{X})=\frac{S_{X}}{\sqrt{n}}=\frac{0.2209457}{\sqrt{29}}=0.04102858
$$

Newton's law of gravitation: $F=G m_{1} m_{2} / r^{2}$, the attraction force F is the ratio of the product (Gravitational const, mass of bodyl, mass body2) and the distance between them, r. Goal is to estimate G! Slide 27

Cavendish's 1798 data on mean density of the
Earth, $\mathbf{g} / \mathbf{c m}^{3}$, relative to that of $\mathbf{H}_{\mathbf{2}} \mathrm{O}$

5.50	5.61	4.88	5.07	5.26	5.55	5.36	5.29	5.58	5.65
5.57	5.53	5.62	5.29	5.44	5.34	5.79	5.10	5.27	5.39
5.42	5.47	5.63	5.34	5.46	5.30	5.75	5.68	5.85	

So urce: Cavendish [1798].
Safely can assume the true mean density of the Earth is within 2 SE's of the sample mean!

$$
\bar{x} \pm 2 \times S E(\bar{x})=5.447931 \pm 2 \times 0.04102858 \mathrm{~g} / \mathrm{cm}^{3}
$$

Review

- Why is the standard deviation of $\bar{X}, \operatorname{SD}(\bar{X})$, not a useful measure of the precision of \bar{X} as an estimator in practical applications? $\left(\operatorname{SD}(\bar{X})=\frac{\sigma}{\sqrt{n}}\right.$ and σ is unknown most time!)
- What measure of precision do we use in practice? (SE)
- How is $\operatorname{SE}(\bar{x})$ related to $\operatorname{SD}(\bar{X})$?
- When we use the formula $\operatorname{SE}(\bar{x})=s_{X} \nmid \sqrt{n}$, what is s_{X} and how do you obtain it? (SampleSD(X))

$$
S_{X}=\sqrt{\frac{1}{n-1}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Sampling distribution of the sample proportion

The sample proportion \hat{p} estimates the population proportion p.
Suppose, we poll college athletes to see what percentage are using performance inducing drugs. If 25% admit to using such drugs (in a single poll) can we trust the results? What is the variability of this proportion measure (over multiple surveys)? Could Football, Water Polo, Skiing and Chess players have the same drug usage rates?

Approximate Normality in large samples

Histogram of $\operatorname{Bin}(200, \mathrm{p}=0.4)$ probabilities with superimposed Normal curve approximation. Recall that for $\mathrm{Y} \sim \operatorname{Bin}(\mathrm{n}, \mathrm{p})$. $\mathrm{Y}=$ \# Heads in n -trials. Hence, the proportion of Heads is: $\mathrm{Z}=\mathrm{Y} / \mathrm{n}$.
$\mu_{Y}=E(Y)=n p \quad \mu_{Z}=E(Z)=\frac{1}{n} E(Y)=p$ $\sigma_{Y}=S D(Y)=\sqrt{n p(1-p)} \quad \sigma_{Z}=S D(Z)=\frac{1}{n} S D(Y)=\sqrt{\frac{p(1-p)}{n}}$
This gives us bounds on the variability of the sample proportion:

$$
\mu_{Z} \pm 2 S E(Z)=p \pm 2 \sqrt{\frac{p(1-p)}{n}}
$$

What is the variability of this proportion measure over multiple surveys?

$$
\text { mean }=p \quad \text { and } \quad \text { standard deviation }=\sqrt{\frac{p(1-p)}{n}}
$$

[^0]Standard error of the sample proportion

Standard error of the sample proportion:

$$
\operatorname{se}(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

Review

We use both \hat{p} and \hat{p} to describe a sample proportion. For what purposes do we use the former and for what purposes do we use the latter? (obereved values $s s . \mathrm{RV}$)

- What two models were discussed in connection with investigating the distribution of \hat{p} ? What assumptions are made by each model? (Number of uits having a property from a large population Y $\sim \operatorname{Bin}(\mathrm{n}, \mathrm{p})$, when sample $<10 \%$ of popul.;
$\mathrm{Y} / \mathrm{n} \sim \operatorname{Normal}(\mathrm{m}, \mathrm{s})$, since it's the avg. of all Head(1) and Tail(0) observations, when n -large).
- What is the standard deviation of a sample proportion obtained from a binomial experiment?

Review

- In the TV show Annual People's Choice Awards, awards are given in many categories (including favorite TV comedy show, and favorite TV drama) and are chosen using a Gallup poll of 5,000 Americans (US population approx. 260 million).
- At the time the 1988 Awards were screened in NZ, an NZ Listener journalist did "a bit of a survey" and came up with a list of awards for NZ (population 3.2 million).
- Her list differed somewhat from the U.S. list. She said, "it may be worth noting that in both cases approximately 0.002 percent of each country's populations were surveyed." The reporter inferred that because of this fact, her survey was just as reliable as the Gallup poll. Do you agree? Justify your answer. (only 62 people surreyed, but thar's okay. Possible bad desigg (not arandom sample)?

Review

- A 1997 questionnaire investigating the opinions of computer hackers was available on the internet for 2 months and attracted 101 responses, e.g. 82% said that stricter criminal laws would have no effect on their activities. Why would you have no faith that a 2 std-error interval would cover the true proportion?
(sampling errors present (self-selection), which are a lot larger than nonsampling statistical random errors).

Bias and Precision

- The bias in an estimator is the distance between between the center of the sampling distribution of the estimator and the true value of the parameter being estimated. In math terms, bias $=E(\hat{\Theta})-\boldsymbol{\theta}$, where theta $\hat{\Theta}$ is the estimator, as a RV, of the true (unknown) parameter $\boldsymbol{\theta}$.
- Example, Why is the sample mean an unbiased estimate for the population mean? How about $3 / 4$ of the sample mean?

$$
E(\Theta)-\mu=E\left(\frac{3}{4} \frac{1}{n} \sum_{k=1}^{n} X_{k}\right)-\mu=
$$

$E(\hat{\Theta})-\boldsymbol{\mu}=E\left(\frac{1}{n} \sum_{k=1}^{n} X_{k}\right)-\boldsymbol{\mu}=0$
$\frac{3}{4} \boldsymbol{\mu}-\boldsymbol{\mu}=\frac{\boldsymbol{\mu}}{4} \neq 0, \quad$ in general.

Review

- What is the standard error of an estimate, and what do we use it for? (measure of precision)
- Given that an estimator of a parameter is approximately normally distributed, where can we expect the true value of the parameter to lie? (within 2SE away)
- If each of 1000 researchers independently conducted a study to estimate a parameter θ, how many researchers would you expect to catch the true value of θ in their 2 -standard-error interval? ($10{ }^{* 95}=950$)

Standard error of a difference

Standard error for a difference between independent estimates:

$$
\begin{aligned}
& \mathrm{SE}\left(\mathrm{Est}_{1}-\mathrm{Est}_{2}\right)=\sqrt{\mathrm{SE}\left(\mathrm{Est}_{1}\right)^{2}+\mathrm{SE}\left(\mathrm{Est}_{2}\right)^{2}} \\
& \text { or } \quad \begin{array}{l}
\mathrm{SE}\left(\hat{\boldsymbol{\theta}}_{1}-\hat{\boldsymbol{\theta}}_{2}\right)=\sqrt{\mathrm{SE}\left(\hat{\boldsymbol{\theta}}_{1}\right)^{2}+\mathrm{SE}\left(\hat{\boldsymbol{\theta}}_{2}\right)^{2}} \\
\mathrm{~N}_{1}=139, \mathrm{p}_{1} \wedge=0.52, \mathrm{~N}_{2}=378, \mathrm{p}_{2} \wedge=0.29, \\
S E\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{0.52 \times 0.48}{139}+\frac{0.29 \times 0.71}{378}}=0.04838
\end{array}
\end{aligned}
$$

Standard error of a difference of proportions

Standard error for a difference between independent estimates:

$$
S E\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{0.52 \times 0.48}{139}+\frac{0.29 \times 0.71}{378}}=0.04838
$$

So the estimated difference give/take 2SE's is:

$$
\hat{p}_{1}-\hat{p}_{2} \pm 2 \times 0.04838=[0.13 ; 0.33]
$$

Student's \boldsymbol{t}-distribution

- For random samples from a Normal distribution,

$$
T=\frac{(\bar{X}-\mu)}{S E(\bar{X})} \quad \begin{aligned}
& \begin{array}{l}
\text { Recall that for samples } \\
\text { from N(} \mu, \sigma)
\end{array} \\
& Z=\frac{(\bar{X}-\mu)}{S D(X)}=\frac{(\bar{X}-\mu)}{\sigma / \sqrt{n}} \sim N(0,1)
\end{aligned}
$$

is exactly distributed as $\operatorname{Student}(d f=n-1) \longleftarrow \begin{gathered}\text { Approx//Wxact } \\ \text { Distributions }\end{gathered}$ \square but methods we shall base upon this distribution for T work well even for small samples sampled from distributions which are quite non-Normal.
■ $d f$ is number of observations -1 , degrees of freedom.

Notation

- By $t_{d f}(p r o b)$, we mean the number t such that when $T \sim \operatorname{Student}(d f), \mathrm{P}\left(T \geq t_{d f}\right)=p r o b$; that is, the tail area above t (that is to the right of t on the graph) is prob.

Figure 7.6.2 The z (prob) and t (prob) notations.
Figure 7.6.2 The z (prob) and t (prob) notations.

Review

- Qualitatively, how does the Student ($d f$) distribution differ from the standard $\operatorname{Normal}(0,1)$ distribution? What effect does increasing the value of df have on the shape of the distribution? (σ is replaced by SE)
- What is the relationship between the Student $(d f=\infty)$ distribution and the $\operatorname{Normal}(0,1)$ distribution? (Approximates $\mathrm{N}(0,1)$ as $\mathrm{n} \rightarrow$ increases)

Review

For a small Normal sample, if you want an interval to contain the true value of μ for 95% of samples taken, should you take more or fewer than twostandard errors on either side of $\bar{x} ?$ (more)

- Under what circumstances does mathematical theory show that the distribution of $T=(\bar{X}-\mu) / \operatorname{SE}(\bar{X})$ is exactly Student $(d f=n-1) ?$ (Normal samples)
- Why would methods derived from the theory be of little practical use if they stopped working whenever the data was not normally distributed? (In practice, we're never sure of Normality of our sampling distribution).

Sampling Distributions

For random quantities, we use a capital letter for the random variable, and a small letter for an observed value, for example, X and x, \bar{X} and \bar{x}, \hat{P} and \hat{p}, $\hat{\Theta}$ and $\hat{\boldsymbol{\theta}}$.

- In estimation, the random variables (capital letters) are used when we want to think about the effects of sampling variation, that is, about how the random process of taking a sample and calculating an estimate behaves.

Sampling distribution of \bar{X}

Sample mean, \bar{X} :
For a random sample of size n from a distribution for which $\mathrm{E}(X)=\mu$ and $\operatorname{sd}(X)=\sigma$, the sample mean \bar{X} has:

$$
■ \mathrm{E}(\bar{X})=\mathrm{E}(X)=\boldsymbol{\mu}, \quad \mathrm{SD}(\bar{X})=\frac{\mathrm{S} D(X)}{\sqrt{n}}=\frac{\sigma}{\sqrt{n}}
$$

- If we are sampling from a Normal distribution, then

$$
\bar{X} \sim \text { Normal. } \quad \text { (exactly) }
$$

- Central Limit Theorem: For almost any distribution, \bar{X} is approximately Normally distributed in large samples.

Sampling distribution of the sample proportion

- Sample proportion, $\hat{P}:$ For a random sample of size n from a population in which a proportion p have a characteristic of interest, we have the following results about the sample proportion with that characteristic:
- $\mu_{\hat{p}}=\mathrm{E}(\hat{P})=p \quad \sigma_{\hat{p}}=\operatorname{sd}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$
- \hat{P} is approximately Normally distributed for large n
(e.g., $n p(1-p) \geq 10$, though a more accurate rule is given in the nex chapter)

Precision

- The precision of an estimate refers to its variability in repeated sampling
- One estimate is less precise than another if it has more variability.

Standard errors cont.

- Proportions

$■$ The sample proportion \hat{p} is an unbiased estimate of the population proportion p
■ $\operatorname{se}(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

- Standard error of a difference: For independent estimates,

$$
\operatorname{se}\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)=\sqrt{\operatorname{se}\left(\hat{\theta}_{1}\right)^{2}+\operatorname{se}\left(\hat{\theta}_{2}\right)^{2}}
$$

Parameters and estimates

- A parameter is a numerical characteristic of a population or distribution
- An estimate is a known quantity calculated from the data to approximate an unknown parameter
- For general discussions about parameters and estimates, we talk in terms of $\hat{\theta}$ being an estimate of a parameter θ
\square The bias in an estimator is the difference between $E(\hat{\Theta})$ and θ
- $\hat{\theta}$ is an unbiased estimate of θ if $\mathrm{E}(\hat{\Theta})=\theta$.

Student's \boldsymbol{t}-distribution ...

- Is bell shaped and centered at zero like the $\operatorname{Normal}(0,1)$, but
- More variable (larger spread and fatter tails).
- As $d f$ becomes larger, the Student $(d f)$ distribution becomes more and more like the $\operatorname{Normal}(0,1)$ distribution.
- Student $(d f=\infty)$ and $\operatorname{Normal}(0,1)$ are two ways of describing the same distribution.

Student's \boldsymbol{t}-distribution cont.

- For random samples from a Normal distribution,

$$
T=(\bar{X}-\mu) / S E(\bar{X})
$$

is exactly distributed as $\operatorname{Student}(d f=n-1)$, but methods we shall base upon this distribution for T work well even for small samples sampled from distributions which are quite non-Normal.

- By $t_{d f}$ (prob), we mean the number t such that when $T \sim \operatorname{Student}(d f), \operatorname{pr}(T \geq t)=p r o b$; that is, the tail area above t (that is to the right of t on the graph) is prob.

CLT Example - CI shrinks by half by quadrupling the sample size!

- If I ask 30 of you the question "Is 5 credit hour a reasonable load for Stat 13?", and say, 15 (50\%) said no. Should we change the format of the class?
- Not really - the 2SE interval is about [$0.32 ; 0.68$]. So, we have little concrete evidence of the proportion of students who think we need a change in Stat 13 format,

$$
\hat{\mathrm{p}} \pm 2 \times \mathrm{SE}(\hat{\mathrm{p}})=0.5 \pm 2 \times \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{n}}=0.5 \pm-0.18
$$

- If I ask all 300 Stat 13 students and 150 say no (still 50%), then 2 SE interval around 50% is: $[0.44 ; 0.56]$.
- So, large sample is much more useful and this is due to CLT effects, without which, we have no clue how useful our estimate actually is ...

[^0]: The sample proportion Y/n can be approximated by normal distribution, by CLT, and this explains the tight fit between the observed histogram and a $\mathrm{N}(p n, \sqrt{n p(1-p)})$

