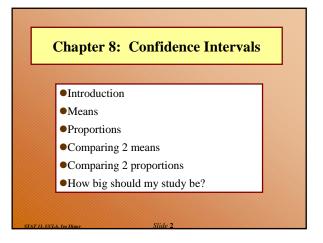
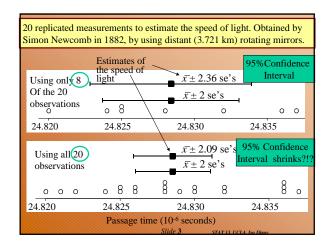
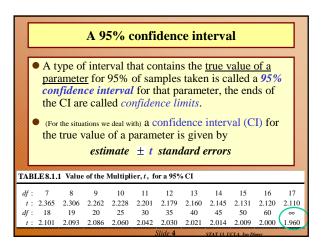
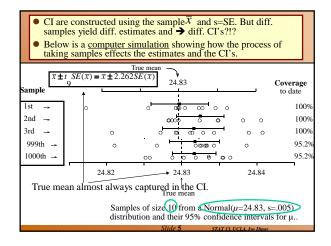
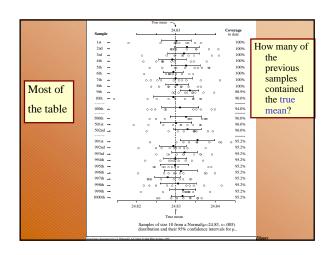
UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences •Instructor: IVO Dinov, Asst. Prof. In Statistics and Neurology •Teaching Assistants: Janine Miller and Ming Zheng UCLA Statistics University of California, Los Angeles, Winter 2003 http://www.stat.ucla.edu/~dinov/courses_students.html

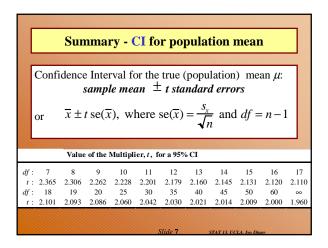


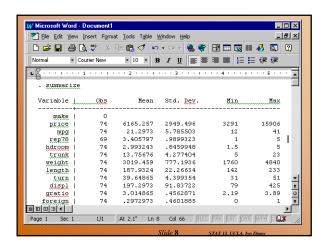


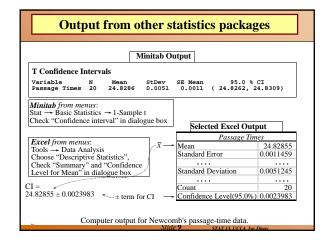


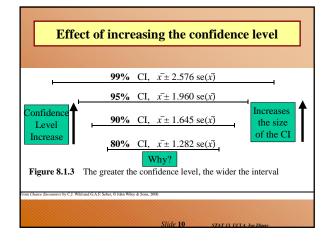


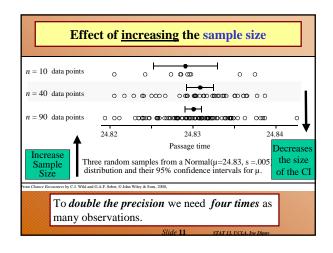


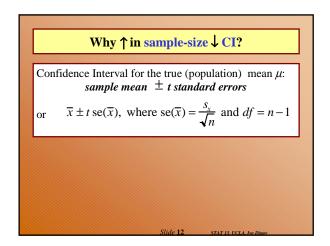












CI for a population proportion

Confidence Interval for the true (population) proportion p: sample proportion $\pm z$ standard errors

or
$$\hat{p} \pm z \operatorname{se}(\hat{p})$$
, where $\operatorname{se}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$, Section 7.3.

Example – higher blood thiol concentrations associated with rheumatoid arthritis?!?

TABLE 8.4.1 Thiol Concentration (mmol)

	Normal	Rheumatoid			
Research question:	1.84	2.81			
Is the change in the Thiol stat	us 1.92	4.06			
in the lysate of packed blood	1.94	3.62			
cells substantial to be indicati	ve 1.92	3.27			
of a non trivial relationship	1.85	3.27			
between Thiol-levels and	1.91	3.76			
rheumatoid arthritis?	2.07				
Sample size	7	6			
Samp le mean	1.92143	3.46500			
Sample standard deviation	0.07559	0.44049			
Slide 14 STAT 13, UCLA, Ivo Dinov					

Example – higher blood thiol concentrations with rheumatoid arthritis

Rheumatoid			0	8	0 0	0	
Normal	ဝ ဏ် ဝ						
	ľ	1	- 1		1		
1.5	2.0	2.5	3.0	3	.5	4.0	4.5
Thiol concentration (mmol)							

Figure 8.4.1 Dot plot of Thiol concentration data.

Two groups of subjects are studied: 1. NC (normal controls)

2. RA (rheumatoid arthritis).

Observations: 1. The avg. levels of thiol seem diff. in NC & RA

2. NC and RA groups are separated completely.

Question: Is there statistical evidence that thiol-level correlates with

the disease?

Big

Question ???

Difference between means

Confidence Interval for a difference between <u>population</u> means $(\mu_1 - \mu_2)$:

> Difference between sample means \pm t standard errors of the difference

> > $\overline{x}_1 - \overline{x}_2 \pm t \operatorname{se}(\overline{x}_1 - \overline{x}_2)$

or

Difference between proportions

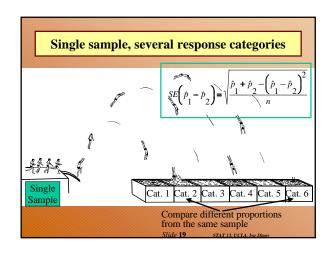
Confidence Interval for a difference between population proportions $(P_1 - P_2)$:

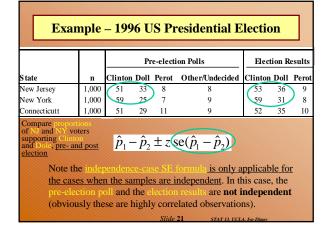
> Difference between sample proportions \pm z standard errors of the difference

> > $\hat{p}_1 - \hat{p}_2 \pm z \operatorname{se}(\hat{p}_1 - \hat{p}_2)$

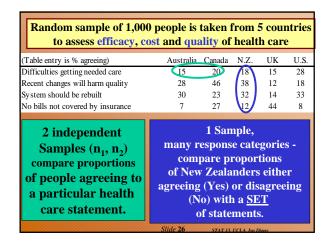
How do we compute the SE($\hat{p} - \hat{p}$) for different cases?

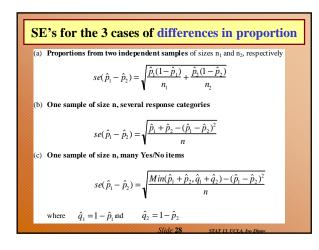
Proportions from 2 independent samples A occurs? A occurs? Sample 1 Yes Compare the proportions from the two independent samples

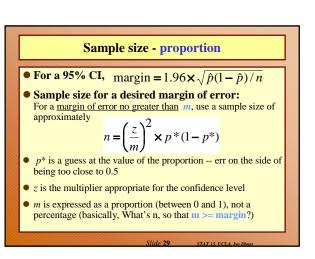




Example - 1996 US Presidential Election **Pre-election Polls Election Results** Clinton Doll Perot Other/Undecided Clinton Doll Perot New Jersey 1.000 53 New York 1,000 25 9 59 31 Connecticutt 29 35 10 Single sample, several response categories $\hat{p}_1 - \hat{p}_2 \pm z \operatorname{se}(\hat{p}_1 - \overline{\hat{p}}_2)$ How far is Clinton estimate $\pm z \times SE = \hat{p}_1 - \hat{p}_2 \pm 1.96 \times SE | \hat{p}_1$ ahead of Dole in NJ? Diff.proportions= $0.18 \pm 1.96 \times 0.02842 = [12\% : 24\%]$







Sample size -- mean

• Sample size for a desired margin of error:

For a margin of error no greater than *m*, use a sample size of approximately

 $n = \left(\frac{z\boldsymbol{\sigma}^*}{m}\right)^2$

- ullet σ^* is an estimate of the variability of individual observations
- z is the multiplier appropriate for the confidence level

lide 30 STATES UCLA Inc Dine

Chapter 8 Summary

er t

Confidence intervals

- We construct an interval estimate of a parameter to summarize our level of uncertainty about its true value.
- The uncertainty is a consequence of the sampling variation in point estimates.
- If we use a method that produces intervals which contain the true value of a parameter for 95% of samples taken, the interval we have calculated from our data is called a 95% confidence interval for the parameter.
- Our confidence in the particular interval comes from the fact that the method works 95% of the time (for 95% CI's).

lide 32 STAT I

STAT 13. UCLA. Ivo Dinov

TABLE 8.7.1 Standard Errors and Degrees of Freedom							
Mean,	μ	\overline{x}	$\frac{s_x}{\sqrt{n}}$	n-I			
Proportion,	p	\hat{p}	$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	∞			
Difference in means,	μ_1 – μ_2	$\overline{x}_1 - \overline{x}_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	Min(n ₁ -1,n ₂ -1)			
Difference in proportions,	p ₁ -p ₂	$\hat{p}_1 - \hat{p}_2$	(see Table 8.5.5)	∞			

 $df = \infty$ means we use a muitiplier obtained from the Normal(0,1) distribution

CIs work well when sample sizes are big enough to satisfy the 10% rule in Appendix A3.

Applies to means from independent samples.

Applies to means from independent samples.

df given is a conservative approximation for hand calculation (see Section 10.2).

Slide 33 STAT I3 UCLA Iva Dinav

Summary cont.

For a great many situations,

an (approximate) confidence interval is given by

estimate ± t standard errors

The size of the multiplier, t, depends both on the desired confidence level and the degrees of freedom (df).

[With proportions, we use the Normal distribution (i.e., $df=\infty$) and it is conventional to use z rather than t to denote the multiplier.]

 The margin of error is the quantity added to and subtracted from the estimate to construct the interval (i.e. t standard errors).

lide 34 STAT 13. UCLA. Ivo Dia

Summary cont.

- If we want greater confidence that an interval calculated from our data will contain the true value, we have to use a wider interval.
- To double the precision of a 95% confidence interval (i.e.halve the width of the confidence interval), we need to take 4 times as many observations.

Slide 35 STAT 13, UCLA, Ivo Dine